Ir al contenido

Documat


Existence and Concentration of Semi-classical Ground State Solutions for Chern–Simons–Schrödinger System

  • Wang, Lin-Jing [1] ; Li, Gui-Dong [1] ; Tang, Chun-Lei [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00480-y
  • Enlaces
  • Resumen
    • In this paper, we consider the equation −ε2u + V(x)u + A0(u) + A2 1(u) + A2 2(u) u = f (u) in H1(R2), where ε is a small parameter, V is the external potential, Ai(i = 0, 1, 2) is the gauge field and f ∈ C(R, R) is 5-superlinear growth. By using variational methods and analytic technique, we prove that this system possesses a ground state solution uε.

      Moreover, our results show that, as ε → 0, the global maximum point xε of uε must concentrate at the global minimum point x0 of V.

  • Referencias bibliográficas
    • 1. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations: I: existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)
    • 2. Bergé, L., de Bouard, A., Saut, J.-C.: Blowing up time-dependent solutions of the planar, Chern–Simons gauged nonlinear schrodinger equation....
    • 3. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)
    • 4. Chen, S., Zhang, B., Tang, X.: Existence and concentration of semiclassical ground state solutions for the generalized Chern–Simons–Schrödinger...
    • 5. Cunha, P.L., d’Avenia, P., Pomponio, A., Siciliano, G.: A multiplicity result for Chern–Simons–Schrödinger equation with a general nonlinearity....
    • 6. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in R2. J. Differ. Equ. 264, 4006–4035 (2018)
    • 7. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin,...
    • 8. Han, J., Huh, H., Seok, J.: Chern–Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar...
    • 9. Huh, H.: Standing waves of the Schrödinger equation coupled with the Chern–Simons gauge field. J. Math. Phys. 53(8), 063702 (2012)
    • 10. Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D. 42, 3500–3513 (1990)
    • 11. Jackiw, R., Pi, S.-Y.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969–2972 (1990)
    • 12. Jackiw, R., Pi, S.-Y.: Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 1–40, Lowdimensional field theories and condensed...
    • 13. Ji, C., Fang, F.: Standing waves for the Chern–Simons–Schrödinger equation with critical exponential growth. J. Math. Anal. Appl. 450,...
    • 14. Li, G., Luo, X.: Normalized solutions for the Chern–Simons–Schrödinger equation in R2. Ann. Acad. Sci. Fenn. Math. 42, 405–428 (2017)
    • 15. Li, G., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455, 1559–1578 (2017)
    • 16. Li, G.-D., Li, Y.-Y., Tang, C.-L.: Existence and concentrate behavior of positive solutions for Chern–Simons–Schrödinger systems with...
    • 17. Liu, J., Liao, J.-F., Tang, C.-L.: A positive ground state solution for a class of asymptotically periodic Schrödinger equations. Comput....
    • 18. Liu, Z., Ouyang, Z., Zhang, J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation...
    • 19. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579...
    • 20. Seok, J.: Infinitely many standing waves for the nonlinear Chern–Simons–Schrödinger equations. Adv. Math. Phys. 519374, 7 (2015)
    • 21. Wan, Y., Tan, J.: Concentration of semi-classical solutions to the Chern–Simons–Schrödinger systems. NoDEA Nonlinear Differ. Equ. Appl....
    • 22. Wan, Y., Tan, J.: The existence of nontrivial solutions to Chern–Simons–Schrödinger systems. Discrete Contin. Dyn. Syst. 37, 2765–2786...
    • 23. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston,...
    • 24. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern–Simons–Schrödinger equations. Appl. Anal. 99, 880–898 (2020)
    • 25. Yuan, J.: Multiple normalized solutions of Chern–Simons–Schrödinger system. NoDEA Nonlinear Differ. Equ. Appl. 22, 1801–1816 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno