Ir al contenido

Documat


Perturbed Second-Order Stochastic Evolution Equations

  • Cheng, Lijuan [1] ; Ren, Yong [2]
    1. [1] Lingnan Normal University

      Lingnan Normal University

      China

    2. [2] Anhui Normal University

      Anhui Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00475-9
  • Enlaces
  • Resumen
    • In this paper, we discuss a class of perturbed second-order stochastic evolution equations. A perturbed second-order stochastic evolution equation for the unperturbed one is proposed. We show the mild solutions of perturbed second-order stochastic evolution equation and the unperturbed one are close on finite time-interval and on interval whose length tends to infinity as small perturbations tend to zero. A class of stochastic partial differential equations with perturbations is proposed as an application to illustrate the theoretical results.

  • Referencias bibliográficas
    • Bainov, D., Simeonov, P.: Integral inequalities and applications. Kluwer Academiac Publishers, Netherlands (1992)
    • Chow, P., Menaldi, J.: Method of regularization for second-order stochastic evolution equations. Stochastic Anal. Appl. 1, 353–376 (1983)
    • Chueshov, I., Kloeden, P., Yang, M.: Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay....
    • Da Prato, G., Zabczyk, J.: Second-order Partial Differential Equations in Hilber Spaces. Cambridge University Press, Cambridge (2002)
    • Jovanovi´c, M., Jankovi´c, S.: Neutral stochastic functional differential equations with additive perturbations. Appl. Math. Comput. 213,...
    • Jovanovi´c, M., Jankovi´c, S.: On perturbed nonlinear Itô type stochastic integrodifferential equations. J. Math. Anal. Appl. 269, 301–316...
    • Jovanovi´c, M., Jankovi´c, S.: Functionally perturbed stochastic differential equations. Math. Nachrihten 16, 1808–1822 (2006)
    • Khasmnskii, R.: On stochastic processes defined by differential equations with a small parameter. Theory Prob. Appl. 11, 211–268 (1966)
    • Liu, K.: Stationary distributions of second order stochastic evolution equations with memory in Hilbert spaces. Stochastic Process. Appl....
    • Mahmudov, N.I., McKibben, M.A.: Abstract second-order damped McKean-Vlasov stochastic evolution equations. Stoch. Anal. Appl. 24, 303–328...
    • McKibben, M.A., Webster, M.: A class of second-order McKeanCVlasov stochastic evolution equations driven by fractional Brownian motion and...
    • Ren, Y., Sun, D.D.: Second-order neutral impulsive stochastic evolution equations with delay. J. Math. Phys. 50, 102709 (2009)
    • Stoyanov, J., Botev, D.: Quantitative results for perturbed stochastic differential equations. J. Appl. Math. Stochast. Anal. 3, 255–261 (1996)
    • Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta. Math. Acad. Sci. Hungaricae 32,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno