Ir al contenido

Documat


Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory

  • Chentouf, Boumediène [1]
    1. [1] Kuwait University

      Kuwait University

      Kuwait

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00472-y
  • Enlaces
  • Resumen
    • This paper addresses the impact of the presence of a boundary memory term in the third-order Korteweg–de Vries equation in a bounded interval [0,ℓ]. First, an overall literature review is provided. Indeed, a comprehensive discussion on the literature constitutes a survey part of the current paper. Thereafter, it is shown that the system under consideration possesses a unique solution under a smallness assumption on the initial data and an appropriate condition on the parameters and the kernel involved in the memory term. Last but not least, we demonstrate that the zero solution is exponentially stable as long as the length ℓ is small enough by means of Lyapunov method, which permits to provide an estimate of the exponential decay rate. These findings improve and complement those of Zhang (in: Desch W, Kappel F, Kunisch K (eds) Proceedings of international conference on control and estimation of distributed parameter systems: nonlinear phenomena, International Series of Numerical Mathematics, vol 118, Birkhauser, Basel, pp 371–389, 1994) (resp. Baudouin et al. in IEEE Trans Autom Control 64:1403–1414, 2019), where no memory term is present (resp. a delay occurs instead of memory).

  • Referencias bibliográficas
    • Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
    • Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory: Theory and Applications. Springer, Berlin (2012)
    • Apalara, T.A.: Well-posedness and exponential stability for a linear damped Timoshenko system with second sound thermoelasticity and internal...
    • Biswas, A., Ekici, M., Sonmezoglu, A.: Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic nonlinearity. Nonlinear...
    • Baudouin, L., Crépeau, E., Valein, J.: Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback. IEEE...
    • Bona, J.L., Dougalis, V.A.: An initial- and boundary-value problem for a model equation for propagation of long waves. J. Math. Anal. Appl....
    • Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. A 278, 555–601 (1975)
    • Bona, J.L., Sun, S.M., Zhang, B.Y.: Forced oscillations of a damped Korteweg–de Vries equation in a quarter plane. Commun. Contemp. Math....
    • Bona, J.L., Sun, S.M., Zhang, B.Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. Commun....
    • Bona, J.L., Chen, H., Sun, S.M., Zhang, B.Y.: Comparison of quarter-plane and two-point boundary value problems: the KdV-equation. Discrete...
    • Bona, J.L., Sun, S.M., Zhang, B.Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II....
    • Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires Présentés par Divers Savants à l’Acad. des Sci. Inst. Nat. Fr. 23, 1–680...
    • Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitex. Springer, Berlin (2011)
    • Bubnov, B.A.: General boundary value problems for the Korteweg–de Vries equation in a bounded domain. Differ. Equ. 15, 26–31 (1979)
    • Bubnov, B.A.: Boundary value problems for the alternative Korteweg–de Vries equation in a bounded domain. Dokl. Akad. Nauk SSSR 247, 272–275...
    • Bubnov, B.A.: Solvability in the large of nonlinear boundary value problems for the Korteweg–de Vries equation in a bounded domain. Differ....
    • Caicedo, M.C., Capistrano-Filho, R.A., Zhang, B.Y.: Control of the Korteweg–de Vries equation with Neumann boundary conditions. SIAM J. Control...
    • Caicedo,M.C., Zhang, B.Y.:Well-posedness of a nonlinear boundary value problem for the Korteweg– de Vries equation on a bounded domain. J....
    • Capistrano-Filho, R.A., Pazoto, A.F., Rosier, L.: internal controllability of the Korteweg–de Vries– Burgers equation on a bounded domain....
    • Capistrano-Filho, R.A., Sun, S.M., Zhang, B.Y.: General boundary value problems of the Korteweg– de Vries equation on a bounded domain. Math....
    • Capistrano-Filho, R.A., Zhang, B.Y.: Initial boundary value problem for Korteweg–de Vries equation: a review and open problems. São Paulo...
    • Cavaterra, C., Guidetti, D.: Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term....
    • Cerpa, E.: Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46, 877–899...
    • Cerpa, E., Coron, J.M.: Rapid stabilization for a Korteweg–de Vries equation from the left Dirichlet boundary condition. IEEE Trans. Autom....
    • Cerpa, E., Crépeau, E.: Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain. Ann. Inst. H. Poincaré...
    • Cerpa, E., Rivas, I., Zhang, B.Y.: Boundary controllability of the Korteweg–de Vries equation on a bounded domain. SIAM J. Control Optim....
    • Cerpa, E.: Control of the Korteweg–de Vries equation: a tutorial. Math. Control Relat. Field 4, 45–99 (2014)
    • Chapouly, M.: Global controllability of a nonlinear Korteweg–de Vries equation. Commun. Contemp. Math. 11, 495–521 (2009)
    • Chang, H.C.: Nonlinear waves on liquid film surfaces-II. Flooding in a vertical tube. Chem. Eng. Sci. 41, 2463–2476 (1986)
    • Chu, J., Coron, J.M., Shang, P.: Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths. J. Differ. Equ. 259,...
    • Cohen, B.I., Krommes, J.A., Tang, W.M., Rosenbluth, M.N.: Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nuclear...
    • Colin, T., Ghidaglia, J.M.: Un problème aux limites pour l’équation de Korteweg–de Vries sur un intervalle born’e. Journées Equations aux...
    • Colin, T., Ghidaglia, J.M.: Un problème mixte pour l’équation de Korteweg–de Vries sur un intervalle borné. C. R. Acad. Sci. Paris. Sér. I...
    • Colin, T., Ghidaglia, J.M.: An initial-boundary-value problem for the Korteweg–de Vries equation posed on a finite interval. Adv. Differ....
    • Coron, J.M., Crépeau, E.: Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6, 367–398...
    • Coron, J.M., Lü, Q.: Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right. J. Math. Pures...
    • Coron, J.M., Rivas, I., Xiang, S.: Local exponential stabilization for a class of Korteweg–de Vries equations by means of time-varying feedback...
    • Crépeau, E.: Exact controllability of the Korteweg–de Vries equation around a non-trivial stationary solution. Int. J. Control 74, 1096–1106...
    • Crépeau, E.: Exact boundary controllability of the Korteweg–de Vries equation with a piecewise constant main coefficient. Syst. Control Lett....
    • Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)
    • Dolapci, I.T., Yildirim, A.: Some exact solutions to the generalized Korteweg–de Vries equation and the system of shallow water wave equations....
    • Erdo ˘gan, M.B., Tzirakis, N.: Dispersive Partial Differential Equations. Cambridge University Press, Cambridge (2016)
    • Faminskii, A.V.: The Cauchy problem and the mixed problem in the half strip for equation of Korteweg–de Vries type. Dinamika Sploshn. Sredy...
    • Faminskii, A.V.: A mixed problem in a semistrip for the Korteweg–de Vries equation and its generalizations. Dinamika Sploshn. Sredy 258, 54–94...
    • Faminskii, A.V.: On mixed problems for the Korteweg–de Vries equation with irregular boundary data. Dokl. Math. 59, 366–367 (1999)
    • Faminskii, A.V.: On an initial boundary value problem in a bounded domain for the generalized Korteweg–de Vries equation. Funct. Differ. Equ....
    • Faminskii, A.V.: On two initial boundary value problems for the generalized KdV equation. Nonlinear Bound. Probl. 14, 58–71 (2004)
    • Faminskii, A.V.: Global well-posedness of two initial boundary-value problems for the Korteweg–de Vries equation. Differ. Integral Equ. 20,...
    • Faminskii, A.V.: Controllability problems for the Korteweg–de Vries equation with integral overdetermination. Differ. Equ. 55, 123–133 (2019)
    • Faminskii, A.V., Larkin, N.A.: Odd-order quasilinear evolution equations posed on a bounded interval. Bol. Soc. Paran. Mat. 28, 67–77 (2010)
    • Faminskii, A.V., Larkin, N.A.: Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron....
    • Fokas, A.S., Himonas, A., Mantzavinos, D.: The Korteweg–de Vries equation on the half-line. Nonlinearity 29, 489–527 (2016)
    • Giorgi, C., Naso, M.G.: Exponential stability of a linear viscoelastic bar with thermal memory. Annali di Matematica Pura ed Applicata (IV)...
    • Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion...
    • Glass, O., Guerrero, S.: Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition. Syst. Control Lett....
    • Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)
    • Himonas, A.A., Mantzavinos, D., Yan, F.: The Korteweg–de Vries equation on an interval. J. Math. Phys. 60, 051507 (2019). https://doi.org/10.1063/1.5080366
    • Holmer, J.: The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Partial Differ. Equ. 31, 1151–1190 (2006)
    • Jeffrey, A., Kakutani, T.: Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation. SIAM Rev. 14, 582–643...
    • Jia, C., Zhang, B.Y.: Boundary stabilization of the Korteweg–de Vries equation and the Korteweg–de Vries–Burgers equation. Acta Appl. Math....
    • Jia, C., Rivas, I., Zhang, B.Y.: Lower regularity solutions of a class of non-homogeneous boundary value problems of the Korteweg–de Vries...
    • Jia, C.: Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval. J. Math. Anal. Appl. 444, 624–647...
    • Khablov, V.V.: A boundary value problem for the Korteweg–de Vries equation in a bounded domain. In: Application of the Methods of Functional...
    • Khablov, V.V.: Correct formulations of boundary problems for the modified Korteweg–de Vries equation. Proc. Sem. S. L. Sobolev 2, 137–146...
    • Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves....
    • Kramer, E., Zhang, B.Y.: Nonhomogeneous boundary value problems for the Korteweg–de Vries equation on a bounded domain. J. Syst. Sci. Complex....
    • Kramer, E., Rivas, I., Zhang, B.Y.: Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg–de Vries equation...
    • Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction–diffusion systems. Prog. Theor. Phys. 54, 687–699 (1975)
    • Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346–367 (1978)
    • Larkin, N.A.: Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains. J. Math. Anal. Appl. 297, 169–185 (2004)
    • Larkin, N.A.: Modified KdV equation with a source term in a bounded domain. Math. Methods Appl. Sci. 29, 751–765 (2006)
    • Larkin, N.A.: Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 344, 079–1092 (2008)
    • Liu, W.J., Krstic, M.: Global boundary stabilization of the Korteweg–de Vries–Burgers equation. Comput. Appl. Math. 21, 315–354 (2002)
    • Larkin, N.A., Luchesi, J.: General mixed problems for the KdV equations on bounded intervals. Electron. J. Differ. Equ. 2010, 1–17 (2010)
    • Larkin, N.A., Luchesi, J.: Initial-boundary value problems for generalized dispersive equations of higher orders posed on bounded intervals....
    • Li, X., Du, Z., Liu, J.: Existence of solitary wave solutions for a nonlinear fifth–order KdV equation. Qual. Theory Dyn. Syst., 19(1), Paper...
    • Lighthill, M.J.: On waves generated in dispersive systems to travelling effects, with applications to the dynamics of rotating fluids. J....
    • Linares, F., Pazoto, A.F.: On the exponential decay of the critical generalized Korteweg–de Vries with localized damping. Proc. Am. Math....
    • Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, New York (2009)
    • Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC Res. Notes Math., vol. 398, Chapman and Hall (1999)
    • Lo, A., Tatar, N.: Uniform stability of a laminated beam with structural memory. Qual. Theory Dyn. Syst. 15, 517–540 (2016)
    • Marx, S., Cerpa, E., Prieur, C., Andrieu, V.: Global stabilization of the Korteweg–de Vries equation with saturating distributed control....
    • Marx, S., Cerpa, E.: Output feedback stabilization of the Korteweg–de Vries equation. Automatica 87, 210–217 (2018)
    • Massarolo, C.P., Menzala, G.P., Pazoto, A.F.: On the uniform decay for the Korteweg–de Vries equation with weak damping. Math. Methods Appl....
    • Massarolo, C.P., Menzala, G.P., Pazoto, A.F.: A coupled system of Korteweg–de Vries equations as singular limit of the Kuramoto–Sivashinsky...
    • Massarolo, C.P., Pazoto, A.F.: Uniform stabilization of a nonlinear coupled system of Korteweg–de Vries equations as a singular limit of the...
    • Messaoudi, S.A., Farg, A., Doudi, N.: Well posedness and exponential stability in a wave equation with a strong damping and a strong delay....
    • Micu, S., Ortega, J.H., Pazoto, A.F.: On the controllability of a coupled system of two Korteweg–de Vries equations. Commun. Contemp. Math....
    • Micu, S., Ortega, J.H.: On the controllability of a coupled system of Korteweg–de Vries equations. In: Mathematical and Numerical Aspects...
    • Miles, J.W.: The Korteweg–de Vries equation: a historical essay. J. Fluid Mech. 106, 131–147 (1981)
    • Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks....
    • Nicaise, S., Pignotti, C.: Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptot....
    • Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed memory. Differ. Integral Equ. 21, 935–958...
    • Pazoto, A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11,...
    • Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
    • Perla Menzala, G., Vasconcellos, C.F., Zuazua, E.: Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math....
    • Rayleigh, (Strutt, J.W.): On waves. Philos. Mag. 1, 257–271 (1876)
    • Rivas, I., Usman, M., Zhang, B.Y.: Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg–de...
    • Rosier, L.: Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33–55...
    • Rosier, L.: Control of the surface of a fluid by a wavemaker. ESAIM Control Optim. Calc. Var. 10, 346–380 (2004)
    • Rosier, L., Zhang, B.Y.: Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim....
    • Rosier, L., Zhang, B.Y.: Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22, 647–682...
    • Russell, D.L., Zhang, B.Y.: Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J....
    • Russell, D.L., Zhang, B.Y.: Smoothing and decay properties of the Korteweg–de Vries equation on a periodic domain with point dissipation....
    • Russell, D.L., Zhang, B.Y.: Exact controllability and stabilizability of the Korteweg–de Vries equation. Trans. Am. Math. Soc. 348, 3643–3672...
    • Russell, J.S.: Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies and...
    • Russell, J.S.: Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, pp. 311–390...
    • Shahrouzi, M.: Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback....
    • Sivashinsky, G.: Nonlinear analysis for hydrodynamic instability in Laminar flames. Derivation of basic equations. Acta Astron. 4, 1177–1206...
    • Sivashinsky, G.I.: On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39, 67–82 (1980)
    • Sun, S.M.: The Korteweg–de Vries equation on a periodic domain with singular-point dissipation. SIAM J. Control Optim. 34, 892–912 (1996)
    • Tang, S., Chu, J., Shang, P., Coron, J.M.: Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold. Adv....
    • Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. American Mathematical Society, Providence (2006)
    • Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 44, 663–666 (1978)
    • Usman, M., Zhang, B.Y.: Forced oscillations of a class of nonlinear dispersive wave equations and their stability. J. Syst. Sci. Complex....
    • Usman, M., Zhang, B.Y.: Forced oscillations of the Korteweg–de Vries equation on a bounded domain and their stability. Discrete Contin. Dyn....
    • Valein, J.: Stabilization of the Korteweg–de Vries equation with internal time-delay feedback, 2019. hal-02020757 (2019)
    • Whiham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261 (1965)
    • Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley, New York (1974)
    • Xiang, S.: Small-time local stabilization for a Korteweg–de Vries equation. Syst. Control Lett. 111, 64–69 (2018)
    • Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12,...
    • Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15,...
    • Zhang, B.Y.: Boundary stabilization of the Korteweg–de Vries equations. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Proceedings of the International...
    • Zhang, B.Y.: Exact boundary controllability of the Korteweg–de Vries equation. SIAM J. Control Optim. 37, 543–565 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno