Ir al contenido

Documat


Spectral Problem and Initial Value Problem of a Nonlocal Sturm-Liouville Equation

  • Li, Jing [1] ; Wang, Mengran [1]
    1. [1] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00468-8
  • Enlaces
  • Resumen
    • In this paper, we considered the spectral problem and initial value problem of a nonlocal Sturm-Liouville equation with fractional integrals and fractional derivatives. We proved that the fractional operator associated to the nonlocal Sturm-Liouville equation is self-adjoint in Hilbert space. And then, we derived the corresponding spectral problem consists of countable number of real eigenvalues, and the algebraic multiplicity of each eigenvalue is simple. We also discussed the orthogonal completeness of the corresponding eigenfunction system in the Hilbert spaces. Furthermore, we obtained asymptotic properties of eigenvalues and the number of zeros of eigenfunctions by using the perturbation theory for linear operators. Finally, we studied the uniqueness of solutions for the nonlocal Sturm-Liouville equation under some initial value conditions.

  • Referencias bibliográficas
    • Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)
    • Amrein, W.O., Hinz, A.M., Pearson, D.B.: Sturm-Liouville Theory, Past and Present. Basel, Birkhauser (2005)
    • A. Zettl, Sturm-Liouville Theory. Mathematical Surveys and Monographs, vol. 121. Providence, RI: Am. Math. Soc. (2005)
    • Khalili, Y., Kadkhoda, N., Baleanu, D.: On the determination of the impulsive Sturm-Liouville operator with the eigenparameter-dependent boundary...
    • Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Inc., Redding (2006)
    • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College, London (2010)
    • Qi, J.G., Chen, S.Z.: Eigenvalue problems of the model from nonlocal continuum mechanics. J. Math. Phys. 52, 073516-1–073516-14 (2011)
    • Li, J., Qi, J.G.: Eigenvalue problem for fractional differential equations with right and left fractional derivatives. Appl. Math. Comp. 256,...
    • Li, J., Qi, J.G.: Note on a nonlocal Sturm-Liouville problem with both right and left fractional derivatives. Appl. Math. Lett. 97, 14–19...
    • Klimek, M., Agrawal, O.P.: Fractional Sturm-Liouville problem. Comput. Math. Appl. 66(5), 795–812 (2013)
    • Ozarslan, R., Ercan, A., Bas, E.: β-type fractional Sturm-Liouville coulomb operator and applied results. Math. Meth. Appl. Sci. 42, 6648–6659...
    • Dehghan, M., Mingarelli, A.B.: Fractional Sturm-Liouville eigenvalue problems. I. RACSAM 114(2), 46 (2020)
    • Bas, E., Metin, F.: Fractional singular Sturm-Liouville operator for coulomb potential. Adv. Differ. Equ. 2013, 300 (2013)
    • Bas, E., Ozarslan, R., Baleanu, D.: Sturm-Liouville difference equations having bessel and hydrogen atom potential type. Open Phys. 16(1),...
    • Bas, E., Ozarslan, R., Baleanu, D., Ercan, A.: Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular...
    • Derakhshan, M.H., Ansari, A.: Fractional Sturm-Liouville problems for weber fractional derivatives. Int. J. Comput. Math. 96(2), 217–237 (2019)
    • Baleanu, D., Alzabut, J., Jonnalagadda, J.M., Adjabi, Y., Matar, M.M.: A coupled system of generalized Sturm-Liouville problems and Langevin...
    • Ozarslan, R., Bas, E., Baleanu, D.: Representation of solutions for Sturm-Liouville eigenvalue problems with generalized fractional derivative....
    • Paola, M., Zingales, M.: Long-range cohesive interactions of non-local continuum mechanics faced by fractional calculus. Int. J. Sol. Struct....
    • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • Hille, E.: Lectures on Ordinary Differential Equations. Addison-Wesley, London (1969)
    • Kato, T.: Perturbation Theory for Linear Operator. Springer-Verlag, New York (1966)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno