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Abstract

Statistical database protection, also known as Statistical Disclosure Control (SDC), is a part of
information security which tries to prevent published statistical information (tables, individual records)
from disclosing the contribution of specific respondents. This paper deals with the assessment of the
disclosure risk associated to the release of tabular data. So-called sensitivity rules are currently being
used to measure the disclosure risk for tables. These rules operate on an a priori basis: the data are
examined and the rules are used to decide whether the data can be released as they stand or should
rather be protected. In this paper, we propose to complement a priori risk assessment with a posteriori
risk assessment in order to achieve a higher level of security, that is, we propose to take the protected
information into account when measuring the disclosure risk.
The proposed a posteriori disclosure risk measure is compatible with a broad class of disclosure
protection methods and can be extended for computing disclosure risk for a set of linked tables. In
the case of linked table protection via cell suppression, the proposed measure allows detection of
secondary suppression patterns which offer more protection than others.
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1 Introduction

Statistical database protection is a part of information security called inference control

in the classical book by Denning (1982). The most typical output offered by national

statistical agencies is tabular data. Tables are central in official statistics: many

survey and census data are categorical in nature, so that their representation as cross-

classifications or tables is a natural reporting strategy. Tabular data being thus aggregate
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data, one is tempted to think they are not supposed to contain information that can reveal

the contribution of particular respondents. However, as noted in Giessing (2001), in

many cases table cells do contain information on a single or very few respondents, which

implies a disclosure risk for the data of those respondents. In these cases, disclosure

control methods must be applied to the tables prior to their release.

A number of disclosure control methods to protect tabular data have been proposed

(see Willenborg and de Waal (2001), Duncan, Fienberg, Krishnan, Padman, and Roehrig

(2001) for a survey). Next we list the main principles underlying those methods:

Cell suppression If a table cell is deemed sensitive, then it is suppressed from the

released table (primary suppression). If marginal totals or other linked tables are

also to be published, then it may be necessary to remove additional table cells

(secondary suppressions) to prevent primary suppressions from being computable.

Secondary suppressions should be chosen in a way such that the utility of the

resulting table is maximized.

Rounding A positive integer b (rounding base) is selected and all table cells are

rounded to an integer multiple of b. Controlled rounding is a variant of rounding

in which table additivity is preserved (i.e. rounded rows and columns still sum to

their rounded marginals).

Table redesign Categories used to tabulate data are recoded into different (often more

general) categories, so that the resulting tabulation does not contain sensitive cells

any more. A simple redesign could be to combine two rows containing sensitive

cells to obtain a new row without sensitive cells.

Sampling A table is released which is based on a sample of the units on which the

original table was built.

Swapping and simulation In data swapping, units are swapped so that the table

resulting from the swapped data set still preserves all k-dimensional margins of the

original table. A more elaborate version of swapping was proposed in Fienberg,

Makov and Steele (1998), whereby the original table is replaced by a random draw

from the exact distribution under the log-linear model whose minimal sufficient

statistics correspond to the margins of the original table. Further extensions of

this idea would lead to drawing a synthetic table from the full distribution of all

possible tables with the same margins of the original table.

As noted by Duncan, Fienberg, Krishnan, Padman, and Roehrig (2001), any attempt

to compare methods for tabular data protection should focus on two basic attributes:

1. Disclosure risk: a measure of the risk to respondent confidentiality that the data

releaser (typically a statistical agency) would experience as a consequence of

releasing the table.

2. Data utility: a measure of the value of the released table to a legitimate data user.
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In this paper, we concentrate on the assessment of disclosure risk. Up to now,

disclosure risk assessment for tables was usually performed a priori, that is, before

applying any protection methods to the table. The standard approach is to use a

sensitivity rule to decide whether a particular table cell can safely be released.

However, a priori measures do not actually measure the disclosure risk incurred

once a particular table is released. In this paper, we propose to complement a priori

risk assessment with a posteriori risk assessment, which takes protected information

into account. The proposed measure applies to a broad class of disclosure protection

methods and is computable in practice.

Section 2 describes existing disclosure risk measures, which are a priori by their

nature. In Section 3, an a posteriori measure based on the reciprocal of conditional

entropy is proposed as a complement to a priori measures. Section 4 describes an

application of the proposed a posteriori measure to different table protection methods,

both for simple tables and for linked tables. In the case of cell suppression methods, the

proposed measure turns out to be useful to detect suppression patterns which offer more

protection than others. Section 5 is a conclusion.

2 Background on a priori disclosure risk measures

A priori disclosure risk measures used by statistical agencies for tabular data protection

are also called sensitivity rules. For magnitude tables (normally related to economic

data), there are two widely accepted sensitivity rules:

n − k-dominance In this rule, n and k are two parameters with values to be specified.

A cell is called sensitive if the sum of the contributions of n or fewer respondents

represents more than a fraction k of the total cell value.

pq-rule The prior-posterior rule is another rule gaining increasing acceptance. It also

has two parameters p and q. It is assumed that, prior to table publication, each

respondent can estimate the contribution of each other respondent to within less

than q percent. A cell is considered sensitive if, posterior to the publication of the

table, someone can estimate the contribution of an individual respondent to within

less than p percent. A special case is the p%-rule: in this case, no knowledge prior

to table publication is assumed, i.e. the pq-rule is used with q = 100.

For tables of counts or frequencies (normally related to demographic data), a so-

called threshold rule is used. A cell is defined to be sensitive if the number of

respondents is less than a threshold k.

These sensitivity rules have received critiques for failing to adequately reflect the risk

of disclosure, but these were mostly limited to numerical counterexamples for particular

choices of the parameters of these rules. Recently, it was shown in Domingo-Ferrer
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and Torra (2002) through general counterexamples that releasing a cell declared non-

sensitive by these rules can imply higher disclosure risk than releasing a cell declared

sensitive. It was proposed to use Shannon’s entropy of relative contributions to a table

cell as a better alternative to (n, k)-dominance, pq-rule and p%-rule. Formally speaking,

H(X) = −

N
∑

i=1

(xi/x) log2 (xi/x) (1)

where x = x1 + x2 + · · · + xN is the value of a table cell and xi are contributions to that

cell.

A cell is considered sensitive by the above rule if H(X)/ log2 N < t, where t ∈ [0, 1]

is a parameter; otherwise, the cell is declared non-sensitive.

3 An a posteriori disclosure risk measure based on conditional entropy

We have mentioned above that using only a priori measures may be insufficient for table

protection. Now we want to illustrate this on the following examples.

Example 1 Suppose that the person or entity who wants to guess secret information

about how much a particular respondent contributed to some cell of the table is someone

who also contributed to that cell. So he obviously knows his own contribution to that cell.

He also may know some additional information, for example, how many respondents

have contributed to that cell, who they are, etc. This internal intruder is in a better

position than an outsider to estimate the contribution of his interest. This kind of

information is not taken into account by a priori measures. According to these, the

disclosure risk is the same for all types of intruders and that is not true.

The information held by an intruder does not only depend on her being internal or

external; it clearly depends also on what information has previously been published and

on how that information has been protected.

Example 2 Assume we have an n-dimensional table whose cells are deemed sensitive,

and therefore cannot be released. Only some 2-dimensional (or (n − i)-dimensional)

tables are released, which have been obtained as projections of the n-dimensional table.

Due to their origin, the released tables are linked tables, so the uncertainty about a cell

value in the n-dimensional table is conditional to the particular tables released so far.

Therefore, we propose to complement a priori risk assessment provided by

sensitivity rules with a posteriori risk assessment. The latter is performed after data

have been protected and takes protected data into account to compute bounds on cells

labeled as sensitive by a sensitivity rule.
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Our proposal for a posteriori measure is to use the reciprocal of Shannon’s

conditional entropy [Shannon (1948)] to express the disclosure risk in a natural and

unified manner.

Entropy-based measures were already discussed in Willenborg and de Waal (2001)

for computing information loss at the table level, but not for computing disclosure

risk. However, the authors of Willenborg and de Waal (2001) do not believe entropy

is a practical information loss measure. We support their opinion with the following

example.

Example 3 Assume we use rounding with integer base b to protect a table. The entropy-

based information loss measure defined in Willenborg and de Waal (2001) is the

reciprocal of the number of original tables whose rounded version matches the published

rounded table (i.e. the number of original tables “compatible” with the published one).

The number of compatible tables depends on the rounding base b, but is independent on

how close the published rounded values are to the original values. Thus, the entropy-

based information loss measure is the same when the original table exactly corresponds

to the rounded table (which happens when all cell values in the original table are

multiples of b) and when all differences between corresponding cell values in the

original and rounded tables are close to b/2. This does not seem to adequately reflect

the utility of the published data.

In Duncan, Fienberg, Krishnan, Padman, and Roehrig (2001), the reciprocal of

Shannon’s entropy (not conditional entropy) was suggested as measure of disclosure

risk at the cell level. What was not clear there is how to compute the probabilities,

that is, what distribution should be chosen. In fact, as we noted above, the particular

distribution for an intruder depends on the knowledge of that intruder.

The above discussion suggests that the most natural a posteriori measure for

disclosure risk is the reciprocal of conditional entropy

DR(X) = 1/H(X|Y = y) = 1/















−
∑

x

p(x/y) log2 p(x/y)















(2)

where X is a variable representing an original cell and Y is a variable representing the

intruder’s knowledge (which is supposed to be equal to some specific value y). The

intuitive notion behind Expression (2) is that, the more uncertainty about the value of

the original cell X (which depends on the constraints Y = y), the less disclosure risk

(and conversely).

There are two practical problems in computing Expression (2):

1. Finding the set S y(X) of possible values of X given the constraints y.

2. Estimating the probabilities p(x|y), i.e. the probability of the cell X being x given

that Y is y.
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As noted by Willenborg and de Waal (2001) when discussing entropy-based

information loss measures, taking the uniform probability distribution over the set S y(X)

can make sense for some disclosure control methods. Using the uniform distribution,

Expression (2) is simplified to

DRunif(X) = 1/ log2 m
(

S y(X)
)

(3)

where m
(

S y(X)
)

is the number of possible values of the cell in S y(X).

Table 1: A table with suppressed cells.

Economic Size class Total

activity

4 5 6 7 8

2,3 80 253 54 0 0 387

4 641 3694 2062 746 0 7143

5 592 x1 329 x2 1440 3898

6 57 x3 946 x4 2027 4281

7 78 0 890 1719 1743 4430

Total 1148 4353 4281 4847 5210 20139

Note 1 (On m(S y(X))m(S y(X))m(S y(X))) We assume in what follows that table cells take values in a

discrete domain: either integer values or real values with a fixed number of decimal

positions. This is the usual case in published statistical tables: count tables consist of

integer values and magnitude tables consist of either integer values or real values with

limited precision. Thus the set S y(X) of possible values is enumerable and it makes sense

to speak of m
(

S y(X)
)

as the number of cell values in S y(X).

4 Application to several table protection scenarios

We show in this Section how to compute Expression (3) for several disclosure control

methods for tables; the case of linked tables will also be discussed.

4.1 Cell suppression

The disclosure risk computation for cell suppression is illustrated by extending an

example provided in Willenborg and de Waal (2001). Let Table 1 be a table from which

four cells x1, x2, x3 and x4 have been suppressed. Assume that the suppressed values are

integer.
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According to the definition given in Section 3, the disclosure risk for each suppressed

cell is the reciprocal of one of the following conditional entropies:

H (x1|x1 + x2 = 1537, x1 + x3 = 406, xi > 0)

H (x2|x1 + x2 = 1537, x2 + x4 = 2382, xi > 0)

H (x3|x1 + x3 = 406, x3 + x4 = 1251, xi > 0)

H (x4|x2 + x4 = 2382, x3 + x4 = 1251, xi > 0)

(4)

Table 2: A table with two rows combined.

Economic Size class Total

activity

4 5 6 7 8

2,3 80 253 54 0 0 387

4 641 3694 2062 746 0 7143

5,6 649 406 1275 2382 3467 8179

7 78 0 890 1719 1743 4430

Total 1148 4353 4281 4847 5210 20139

Expressions (4) contain constraints yi for each suppressed cell xi which allow

m(S yi(xi)) to be computed by solving two linear programming (LP) problems (one

maximization and one minimization) and subtracting the solutions. In the case of Table

1, minimizations and maximizations bound every cell as follows: 0 6 x1 6 406,

1131 6 x2 6 1537, 0 6 x3 6 406 and 845 6 x4 6 1251. By subtracting the bounds

we obtain m(S yi(xi)) = 407 for i = 1, 2, 3, 4. Using Expression (3), we can compute

DRuni f (xi) = 1/ log2 407 = 0.115 for every cell.

4.2 Rounding

When the table is protected by rounding, the cell entropy conditional to the rounded

table depends on the rounding base b. In a rounded table without marginals, if the value

of a cell x′
i

is nib (i.e. ni times the rounding base), then we know that the original cell xi

must lie in the interval Ii = [(ni − 1/2)b, (ni + 1/2)b). Thus, DRuni f (xi) = 1/ log2 m(Ii),

where m(Ii) is the number of possible cell values in Ii (keep in mind that cell values are

either integer or with a fixed number of decimal positions).

4.3 Table redesign

This case is very similar to cell suppression. Imagine that the sensitive cells in Table 1

are protected by combining rows with Economic activity = 5 or 6. This yields Table 2.
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Let us label the six cells in the original row with Economic activity = 5 as x1 through

x6 and the six cells in Economic activity = 6 as x7 through x12 (x6 is the marginal of the

first row and x12 is the marginal of the second row).

Then the following equalities hold:

x1 + x2 + x3 + x4 + x5 − x6 = 0

x7 + x8 + x9 + x10 + x11 − x12 = 0

x1 + x7 = 649

x2 + x8 = 406

x3 + x9 = 1275

x4 + x10 = 2382

x5 + x11 = 3467

x6 + x12 = 8179

xi > 0 for i = 1, . . . , 12

(5)

From the above, m(S yi(xi)) and DRuni f (xi) are computed in a way analogous to the

case of cell suppression.

4.4 Linked tables

We will show the application of conditional entropy as a posteriori disclosure risk

measure for linked tables with an example.

Let us consider the three-dimensional table AS R formed by cells zai s jrk
, where each

cell denotes the total turnover of businesses with activity ai and size s j in region rk.

Assume that table AS R is not released because every cell in it is considered sensitive.

Instead of AS R, some of the following tables obtained by bidimensional projection

are released: AS = {zai s j
}, which breaks down turnover by activity and business size,

AR = {zairk
}, which breaks down turnover by activity and region, and S R = {zs jrk

},

which breaks down turnover by size and region. Assume three scenarios: 1) only AS is

released; 2) AS and AR are released; 3) AS , AR and S R are released. The disclosure risk

of cell zai s jrk
in each scenario can be expressed as:

DRuni f

(

zai s jrk
|AS
)

= 1/H















zai s jrk
|zai s j

=

∑

k

zai s jrk















(6)

DRuni f

(

zai s jrk
|AS , AR

)

= 1/H

















zai s jrk
|zai s j

=

∑

k

zai s jrk
, zairk

=

∑

j

zai s jrk

















(7)
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DRuni f

(

zai s jrk
|AS , AR, S R

)

= 1/H

















zai s jrk
|zai s j

=

∑

k

zai s jrk
, zairk

=

∑

j

zai s jrk
, zs jrk

=

∑

i

zai s jrk

















(8)

The released tables impose constraints on the possible cell values of the table

AS R. Such constraints actually determine the simplexes S AS (zai s jrk
), S AS ,AR(zai s jrk

) or

S AS ,AR,S R(zai s jrk
) where zai s jrk

should lie. By solving one LP maximization and one LP

minimization for each zai s jrk
, an interval where the cell lies can be determined. Then, the

cell disclosure risk is computed using Expression (3). If a cell is too closely bounded,

then its disclosure risk is too high and disclosure control methods must be used.

When the disclosure control method chosen is cell suppression, it is important to

notice that linked tables have the property that there are sets of linearly dependent

constraints, so that one of the constraints in each such set may be suppressed without

decreasing the rank of the whole constraint system. This will influence the quality of the

protection offered by different suppression patterns: the best pattern is the one decreasing

most the system rank, which results in more degrees of freedom, and thus more cell

entropy and lower disclosure risk. We show this with in the following section.

Table 3: Constraint matrix imposed by Table AS. Here i ∈ {1, . . . , 3}, j ∈ {1, . . . , 4}, k ∈
{1, . . . , 3}.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1 s1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1 s2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1 s3

1 1 1 1 1 1 1 1 1 1 1 za1 s4

.

.

.

1 1 1 1 1 1 1 1 za3 s4

4.5 Minimizing disclosure risk in linked table release

For the sake of concreteness, we will resume the example of three linked tables used in

the previous section. We want to estimate the disclosure risk of cells in AS R depending

on the released tables. Assume that i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , t}.

4.5.1 One table released out of three linked tables

If only the table AS is released, the constraint matrix is shown in Table 3, where there

is a column for each cell zai s jrk
. The matrix rank is nm, as all equations are linearly

independent. Every choice for secondary suppressions causes the same rank decrease

and consequently has an equivalent impact on the disclosure risk. Therefore, there is no



184 A posteriori disclosure risk measure for tabular data based on conditional entropy

room for optimization (unless there are specific additional constraints specified by the

data protector).

4.5.2 Two tables released out of three linked tables

If tables AS and AR are released, the constraint matrix is shown in Table 4, where there

is a column for each cell zai s jrk
. This matrix consists of n submatrices of size (t+m)×mt

with rank (t +m− 1), that is, one constraint in each submatrix is a linear combination of

the remaining constraints in the submatrix. That is, using Gaussian elimination we have:

t
∑

k=1

zairk
−

m
∑

j=1

zai s j
= 0 for 1 6 i 6 n (9)

Therefore, n constraints can be suppressed and the matrix rank will not change,

nor will change H(zai s jrk
|AS , AR) nor the disclosure risk. Note that only one row per

submatrix can be suppressed for disclosure risk to stay unchanged, which, in terms of

tables AS and AR, means only one cell per two corresponding rows in AS and AR (e.g.

for the submatrix related to Expression (9), the two rows are those in AS and AR with

subscript ai).

From the above discussion, we can state the following proposition:

Proposition 1 When two out three linked tables are released, the entropy increase and

the disclosure risk decrease are maximized if the suppression patterns are chosen so that

the secondary suppressions are in the same columns and rows for both released tables.

Proof. Assume that tables AS and AR are released. Now assume that zai s jrk
in

supertable AS R has a high disclosure risk which makes it necessary to increase its

entropy. So, if a cell suppression is used, a natural option is to suppress the cells in

the released tables which refer to zai s jrk
. These suppressions will be called primary

suppressions and will be zai s j
and zairk

in the tables AS and AR, respectively. The

suppression of these two cells will decrease the rank by 1 (see the discussion above).

Secondary suppressions will be the following:

• Two cells, say zai sl
and za f s j

in the table AS in order to prevent zai s j
from being

computable (in what follows, we will say —“to protect zai s j
”), which decrease the

rank by 1,

• The cell za f sl
in AS to protect za f s j

, which decreases the rank by 1.

• Two cells in the table AR: one in the row ai and other in the column rk. If zairv
is

the cell in row ai, its suppression decreases the rank by 1. When we choose the

candidate for the suppression in column rk, we should take into account that, if

we choose the cell in a row other than a f , this will not decrease the rank (because

the rows where we have already suppressed cells are ai and a f ). So, in order to
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increase the entropy and to decrease disclosure risk, we have to choose row a f ,

that is we have to suppress the cell za f rk
.

• Finally, in order to protect za f rk
, we have to suppress za f rv

, which will decrease the

rank by 1.

So, from the above argument, we have that choosing the same rows for secondary

suppressions in both tables will decrease the rank by 1 more than if we chose different

rows. Therefore, this is the strategy to maximize rank decrease, which is equivalent to

to maximizing entropy increase and disclosure risk decrease. QED

Table 4: Constraint matrix imposed by tables AS and AR. Here i ∈ {1, . . . , 3}, j ∈
{1, . . . , 4}, k ∈ {1, . . . , 3}.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1 s1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1r1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 za1r2

1 1 1 1 1 1 1 1 1 1 1 1 za1r3

1 1 1 1 1 1 1 1 1 1 1 za1 s2

1 1 1 1 1 1 1 1 1 1 1 za1 s3

1 1 1 1 1 1 1 1 1 1 1 za1 s4

.

.

.
.
.
.

1 1 1 1 1 1 1 1 za3 s4

4.5.3 All three linked tables released

Now let us consider the case where three tables AS , AR, S R are released. Again, using

Gaussian elimination, we obtain several sets of constraints which are linearly dependent

(exactly one constraint in each set is a linear combination of the rest). The linear

combinations are as follows:

t
∑

k=1

zairk
−

m
∑

j=1

zai s j
= 0 for 1 6 i 6 n (10)

t
∑

k=1

zs jrk
−

n
∑

j=1

zai s j
= 0 for 1 6 j 6 s − 1 (11)

m
∑

j=1

zs jrk
−

n
∑

i=1

zairk
= 0 for 1 6 k 6 t − 1 (12)

zsmrt
−

m−1
∑

j=1

t−1
∑

k=1

zs jrk
+

n
∑

i=1

m−1
∑

j=1

zai s j
−

n
∑

i=1

zairt
= 0 (13)
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Furthermore, up to n+m+ t−1 cells can be suppressed without changing the entropy

nor the disclosure risk. But this is heavily dependent on which cells are suppressed.

A suppression pattern of maximal size which does not change the rank of the system

may be the following: za1 sm
, za2 sm

, . . . , zan sm
, zs1rt

, zs2rt
, . . . , zsm−1rt

, zsmr1
, zsmr2

, . . . , zsmrt
.

Now, assume that the cell za1 s1r1
has za1s1 = zs a a high disclosure risk which makes

it necessary to increase its entropy. If cell suppression is used, a natural option is to

suppress every cell in the three tables which refers to za1 s1r1
. These suppressions will

be called primary suppressions and will be za1 s1
from Table AS , za1r1

from Table AR

and zs1r1
from Table S R. Note that with these suppressions the rank of the system will

decrease by 1. If za1 s1
is suppressed, the rank does not decrease because, by Expression

(11), the suppressed cell is a linear combination

za1 s1
=

t
∑

k=1

zs1rk
−
∑

i,1

zai s1
(14)

If za1r1 is suppressed next, the rank does not change either. By Expression (12), we

can express the suppressed cell as a linear combination of cells which have not yet been

suppressed:

za1r1
=

m
∑

j=1

zs jr1
−
∑

i,1

zair1
(15)

If zs1r1
is our third suppression, then the rank will decrease by 1, because that cell

appears in Equations (14) and (15) and it is easy to see that there is no way to use the

above equations to express that cell as a combination of the cells which have not yet

been suppressed.

If the table is released with marginals, then a set of secondary suppressions is

required to prevent primary suppressions from being computable. At this moment, it is

important to choose the necessary strategy for secondary suppressions because the rank

of the system and consequently the cell entropy will vary depending on what secondary

suppressions are made. Let us analyze what happens with the secondary suppressions

corresponding to each primary suppression:

1. Assume that, to protect za1 s1
, we choose as secondary suppressions za1 s3

, za3 s1
and

za3 s3
. Suppressing za1 s3

does not change the rank, because by Equation (11) we

have

za1 s3
=

t
∑

k=1

zs3rk
−
∑

i,1

aai s3
(16)

where the cells on the right-hand side have not yet been suppressed. Suppressing

za3 s1
does not change the rank either, because by Equation (10):

za3 s1
=

t
∑

k=1

za3rk
−
∑

j,1

za3 s j
(17)
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Suppression of za3 s3
causes the rank to decrease by 1, because there is no way

to express the suppressed cell as combination of other cells which have not

yet been suppressed: if Equation (11) is used, za1 s3
is necessary but has been

suppressed already; if Equation (10) is used, then za3 s1
is necessary which has

been suppressed; for a similar reason we cannot use Equation (13). Note also that,

once the suppression process has started, Equation (13) is not very useful to obtain

linear combinations, because it depends on nearly all cells.

2. Now assume that, to protect za1r1
, we choose as secondary suppressions za1r3

, za2r1

and za2r3
. When za1r3

is suppressed, the rank does not change, because by Equation

(12)

za1r3
=

m
∑

j=1

zs jr3
−
∑

i,1

zair3
(18)

Suppressing za2r1
does not change the rank either, because by Equation (10):

za2r1
=

m
∑

j=1

za2 s j
−
∑

k,1

za2rk
(19)

Note that, if we now choose to suppress za3r1
, the rank would decrease by 1,

because there is no way to express it as a combination of other cells not yet

suppressed (if Equation (12) was used, za1r1
would be necessary and, if Equation

(10) was used, then za3 s1
would be necessary). So, choosing for this suppression

any row in Table AR other than row 3 (which was used in Table AS) does not

decrease the rank and, consequently, adds hardly any protection. Finally, using

similar arguments, it is not difficult to see that suppression of za2r3
decreases the

rank by 1 (this suppression is inevitable in order to protect za2r1
and za1r3

).

3. As to the third primary suppression, assume that, to protect zs1r1
, we choose as

secondary suppressions zs1r2
, zs4r1

and zs4r2
. Suppressing zs1r2

does not change the

rank, because, by Equation (12):

zs1r2
=

n
∑

i=1

zair2
−
∑

j,1

zs jr2
(20)

Note that, if we chose zs1r3
, the rank would decrease by 1. So, choosing for this

suppression any column other than column 3 (which was used for Table AR) does

not decrease the rank and adds virtually no protection. Suppressing zs4r1
does not

change the rank either, because, by Equation (11):

zs4r1
=

n
∑

i=1

zai s4
−
∑

k,1

zs4rk
(21)

If we chose zs3r1
instead of zs4r1

, then the rank would decrease by 1. So, choosing

for this suppression any row other than row 3 (which was used for Table AS when

za3 s1
was suppressed) does not decrease the rank and adds no real protection.

Finally, we have to suppress zs4r2
, which causes the rank to decrease by 1.
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We have performed 12 suppressions altogether (primary and secondary), which

decrease the rank of the system by 4. From the above, it is clear that the strategy we

followed was to choose the suppression pattern which minimizes the decrease of the

system rank and consequently minimizes the increase of entropy (and of protection!).

From the previous discussion, we can infer the following general result, whose proof

is analogous to the proof of Proposition 1:

Proposition 2 The entropy increase and the disclosure risk decrease in three linked

tables are maximized if the suppression patterns are chosen so that the secondary

suppressions are in the same columns and rows for all three tables.

A weaker necessary condition for maximizing the decrease of disclosure risk in the

case of three tables is as follows:

Proposition 3 Proposition 3 The entropy increase and the disclosure risk decrease in

three linked tables are maximized if the suppression patterns are chosen so that the

secondary suppressions are in the same row for tables with the same first variable —e.g.

AS, AR—, the same column for tables with the same second variable —e.g. AR, SR—,

and the same row for tables which share a variable in a different position —e.g. AS,

SR—).

Using such optimal patterns we can decrease the rank of the system of 3 linked tables

by 3 more units (up to an overall rank decrease of 7).

4.5.4 Disclosure risk by internal intruders

Finally, a point we have to take into account here is that disclosure risk is different

for different users. Let us imagine that, when solving one LP maximization and one

LP minimization for zai s jrk
, we find that 995 6 za j s jrk

6 1004. Then, if company A is

the second largest contributor to this cell with a turnover of, say, 400, then company

A knows that the largest contributor (company B) has a turnover between 401 and

604. Thus, company A is able to estimate the turnover of company B within 50%

of its value. However, the uncertainty of an external intruder about the turnover of

company B is roughly 200% of its value: the external intruder only knows that the

turnover of the largest contributor is between ε > 0 and 1004. Therefore, for an

internal intruder (respondent contributing to the cell), the measure of disclosure risk

1/H(zai s jrk
|released tables) should be replaced by:

DR(X) = 1/H(zai s jrk
|released tables, intruder’s contribution) (22)
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5 Conclusion

Due to the limitations of a priori disclosure risk assessment, a posteriori risk assessment

has been proposed as a complement to a priori measures. That is, we propose to measure

disclosure risk not only before the application of protection methods, but also after

that. We have shown that the reciprocal of Shannon’s conditional entropy (conditioned

to the knowledge of the intruder) may be used as such a measure. While Shannon’s

entropy may not be suitable to evaluate the impact of disclosure control on table utility,

it turns out to be extremely useful to quantify disclosure risk. As shown in Section 4,

computing disclosure risk in this way can easily be done for different disclosure control

methods, both with simple tables and linked tables. In the case of cell suppression

methods applied to linked table protection, the proposed measure allows detection of

secondary suppression patterns which offer more protection than others do. The strategy

for choosing the best candidates for secondary suppressions has been outlined in the

paper.
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Resum

La protecció de dades estadı́stiques, també coneguda com a Control de Revelació Estadı́stica (SDC),
és una part de la seguretat de la informació que intenta evitar la publicació d’informació estadı́stica
(taules, registres individuals) que reveli la contribució de responents especı́fics. Aquest article tracta
de la valoració del risc de revelació associat a la difusió de dades tabulades. Les anomenades regles
de sensibilitat estan sent utilitzades actualment per tal de mesurar el risc de revelació en taules.
Aquestes regles operen sobre una base a priori: les dades són examinades i les regles s’utilitzen
per decidir si les dades poden ser difoses tal com s’han elaborat o bé han de ser protegides. En
aquest article, proposem complementar la mesura de risc a priori amb una mesura de risc a posteriori
per tal d’aconseguir un nivell de seguretat més alt, és a dir, proposem tenir en compte la informació
protegida quan es mesura el risc de revelació.
La mesura del risc de revelació a posteriori proposada és compatible amb una àmplia classe de
mètodes de protecció de revelació i pot ser aplicada al càlcul del risc de revelació d’un grup de taules
vinculades. En el cas de protecció de taules vinculades a través de la supressió de cel·les, la mesura
proposada permet la detecció de patrons de supressió secundària els quals ofereixen més protecció
que d’altres.
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