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Weak entropic solution to a scalar hyperbolic-parabolic
conservation law

G. Vallet

Abstract. In this paper we are interested in the Dirichlet problem of a hyperbolic-parabolic degenerate
equation. Thanks to a global entropic formulation in the sense of F. Otto, we propose a result of existence
and uniqueness of the entropic measure valued solution and of the entropic weak solution in the space
DM2.

Soluci ón d ébil entr ópica de una ley de conservaci ón escalar
hyperb ólica-parab ólica

Resumen. Abordamos en este trabajo el problema de Dirichlet en el caso de una ecuación degenerada
hyperb́olica-parab́olica mediante una formulación debil. Utilizando una formulación entŕopica en el sen-
tido de F. Otto, proponemos un doble resultado de existencia y unicidad de la solución a valor medida y
de la solucíon en el espacioDM2.

1. Introduction

After having studied, in a previous paper ([14]), a nonlinear problem of first order hyperbolic type, the
aim of this paper is to adapt the same tools to the following hyperbolic-parabolic nonlinear degenerate
problem

∂u

∂t
−∆φ(u) + div[f(t, x, u)] + g(t, x, u) = 0 in Q =]0, T [×Ω, (1)

whereφ is a, non null, non decreasing Lipschitzian function withφ(0) = 0.
We consider the formal Dirichlet boundary condition

u = 0 on Σ =]0, T [×Γ whereΓ = ∂Ω, (2)

and the initial condition
u(0, .) = u0 in Ω, (3)

whereu0 is a bounded non negative measurable function, in order to obtain non negative solutions.
In this note, we present result of existence and of uniqueness for theweak entropic solutionto the above

Cauchy-Dirichlet problem. For that type of problems, it is well-known that the Dirichlet conditionu = 0
on Σ is impossible, even if the conditionφ(u) = 0 on Σ is available since it is under-determined. Thus,
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we decide to consider that the admissible physical solution comes from the convergence of the sequence
(uε)ε>0 of evanescent viscosity solutions. Therefore, the asymptotic behaviour of(uε)ε on the parabolic
boundary would led to the weak entropic boundary condition.

One may find many papers on this subject. Without any intention to be exhaustive, let us give some
approaches. The main reference concerning uniqueness Kruzhkov’s method for that kind of problem is
Carrillo [3]. Moreover, a small modification of this technique allows us to generate the missing boundary
term of Otto [11]’s entropic formulation, needed for the uniqueness method. Therefore, one is able to pro-
pose a global entropic formulation, without having to separate interior entropic formulation and boundary
formulation, as stated in Masciaet al. [9].

Contrary to Rouvre [12] , where a Bardoset al. [1] type global entropic formulation is proposed in the
context ofBV (Q) functions, we are interested in a [11]’s type one (see Vallet [14]), in the context of Young
measure solutions and then of bounded measurable functions. Therefore, the problem of the boundary
conditions has to be set, more precisely, the existence of a trace and of the normal flux onΣ =]0, T [×∂Ω
(see A. [16] for comments about this). Rouvre [12] propose to use a result of Ph. Bénilan, written in Dautray
et al [5], to show that the normal derivative belongs toL1(Σ). Opposed to these strong solutions, Michel
[10] presents Young measure solutions, where the boundary flux is obtained via the limit in an integral onQ
(following the ideas of [11] or Szepessy [13], see [14] too), using a particular sequence. To avoid this, Chen
et al. [4] propose the functional context ofDM2, the space ofL2(Q)N+1 vectors such that the divergence
is a bounded Radon measure onQ. One may find in Burgeret al. [2] some applications of this space to
hyperbolic-parabolic problem in one dimensional space; and in Masciaet al. [9], the use of the same space
for a non homogeneous Dirichlet hyperbolic-parabolic problem inBV (Q).

The aim of our work is to prove the existence and the uniqueness of the solutionu in DM2(Q)∩L∞(Q)
(and of the Young measures solution) to the problem (1)-(2)-(3), without anyBV (Q) assumption.

2. Notations and definition of a solution

Let us set in the sequel:
• Ω is a connected bounded open subset ofRN (N ≤ 3) with a smooth boundaryΓ, an outward unit normal

η, Q =]0, T [×Ω, Σ =]0, T [×Γ anddiv =
N∑

i=1

∂

∂xi
.

• E = {l ∈ R, {l} = φ−1{φ(l)}}.
• f is continuous onRN+2 such that if one denotesh =

∂f

∂t
or h =

∂f

∂xi
,∀i ∈ {1, .., N}, then:

i) ∀M > 0, ∃hM ∈ L∞(Q), ∀λ ∈ [−M, M ], |h(., ., λ)| ≤ hM a.e. inQ,
ii) a.e. (x, t) in Q, ∀ε > 0,∃η > 0, |α− β| ≤ η ⇒ |h(t, x, α)− h(t, x, β)| ≤ ε,
- div f is a Carath́eodory function such that:
∃c1, c2 ∈ L∞(RN+1), ∀λ ∈ R, (t, x) a.e. inRN+1, | div f(t, x, λ)| ≤ c1(t, x)|λ|+ c2(t, x).
• g is a Carath́eodory function such that:g(t, x, 0) ∈ L∞(RN+1) and
∃c ∈ L∞(RN+1), ∀(α, β) ∈ R2, |g(t, x, α)− g(t, x, β)| ≤ c(t, x)|α− β|, a.e.(t, x) in Q.

• sgn(x) = −1 if x < 0, 1 if x > 0 and0 else. Andsgnη is a non decreasing Lipschitzian approximation
of sgn, such thatsgnη(0) = 0.

• F (t, x, u, v) = sgn(u− v)[f(t, x, u)− f(t, x, v)], G(t, x, u, k) = div f(t, x, k) + g(t, x, u) and

L(t, x, u, k, v) = |u− k|∂v

∂t
−∇|φ(u)− φ(k)|∇v + F (t, x, u, k).∇v − sgn(u− k)G(t, x, u, k)v.

• One sets the spacesV = H1(Q)∩L∞(Q), V + the non negative functions ofV, V +
0 = {v ∈ V +, v(t =

0) = v(t = T ) = 0 a.e. in Ω} and, following Chenet al. [4], DM2(Q) = {U = (u0, u1, ..uN ) ∈
[L2(Q)]N+1, Div(t,x) U ∈ Mesb(Q)}.
In order to take into account the boundary flux, these authors propose a trace theorem and the following
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Gauss-Green formulae: for anyU of DM2(Q) and anyv of V ,
∫

Q

U∇(t,x)v dxdt +
∫

Q

v d(Div
(t,x)

U) =< U.η, v > .

Let us give now the definition of a weak entropic solution with F. Otto’s boundary conditions:

Definition 1 A weak entropic solution to (1)-(2) and (3) is an elementu of L∞(Q) such that:

i)
∂u

∂t
∈ L2(0, T ; H−1(Ω)), φ(u) ∈ L2(0, T ; H1

0 (Ω)),

Uk = (|u− k|,−∇|φ(u)− φ(k)|+ F (t, x, u, k)) ∈ DM2(Q),
ii) u is a weak solution to (1), that is:∀v ∈ L2(0, T ; H1

0 (Ω)),

∫ T

0

<
∂u

∂t
, v >H−1,H1

0
dt +

∫

Q

{∇φ(u)∇v − f(t, x, u)∇v + g(t, x, u)v} dxdt = 0 (4)

iii) For any real k and anyv in H1
0 (Q) with v ≥ 0,

∫
Q
L(t, x, u, k, v) dxdt ≥ 0.

iv) a) lim ess
t→0+

∫
Ω
|u(t, x)− u0(x)| dx = 0,

and b)∀v ∈ V +
0 , ∀k ∈ R, − < Uk.η, v >≤< U0.η, v > − ∫

Σ
F (t, x, k, 0).ηv dHN .

The definition of an entropic measure valued solution is the following

Definition 2 An entropic measure valued solution to (1)-(2) and (3) is a bounded Young measureu (of
variables(t, x) ∈ Q andα ∈]0, 1[, if one uses Th. Galloüet’s notations in Eymard et al. [6]) such that if
one notesu(t, x) =

∫ 1

0
u(t, x, α) dα:

i) u ∈ W 1,2(0, T ;L2(Ω),H−1(Ω)), φ(u) ∈ L2(0, T ; H1
0 (Ω)),

Uk = (
∫
]0,1[

|u− k| dα, −∇|φ(u)− φ(k)|+ ∫
]0,1[

F (t, x,u, k) dα) ∈ DM2(Q),
ii) ∀v ∈ L2(0, T ;H1

0 (Ω)),

∫ T

0

<
∂u

∂t
, v >H−1,H1

0
dt +

∫

Q

∇φ(u)∇v −
∫ 1

0

f(t, x,u)∇v + g(t, x,u)v dα dxdt = 0

iii) For any real k and for any non negativev in H1
0 (Q),

∫
Q×]0,1[

L(t, x,u, k, v) dαdxdt ≥ 0.

iv) a) lim ess
t→0+

∫
Ω×]0,1[

|u(t, x, α)− u0(x)| dxdα = 0,

and b)∀v ∈ V +
0 , ∀k ∈ R, − < Uk.η, v >≤< U0.η, v > − ∫

Σ
F (t, x, k, 0).ηv dHN .

Remark 1 Thanks to the regularity ofφ(u), for a.e.(t, x) in Q, for a.e.α in ]0, 1[, φ(u) = φ(u). ¥

This definition leads to the following “global” entropic formulation in]0, T [×Ω:

Proposition 1 (F. Otto entropic formulation) Letu be a weak entropic solution andu an entropic measure
valued solution to (1)-(2) and (3). Then,

∀v ∈ V +
0 , ∀k ∈ R, −

∫

Q

L(t, x, u, k, v) dxdt ≤< U0.η, v > −
∫

Σ

F (t, x, k, 0).η v dHN ,

−
∫

Q×]0,1[

L(t, x,u, k, v) dαdxdt ≤< U0.η, v > −
∫

Σ

F (t, x, k, 0).η v dHN .

PROOF. One has to usevωn as a test-function in definition 1 & 2 iii) and pass to the limit whenn goes to
infinity, where(ωn)n is a sequence inD(Q), 0 ≤ ωn ≤ 1, that converges everywhere inQ towards1. ¥
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3. Existence of a measure valued solution

The existence of a measure valued solution is obtained by passing to the limit in a sequence of solution to a
viscous regular problem, as presented in the introduction. Let us denote byφε(x) = φ(x) + εx andfε and
gε regular approximations off andg (cf. [14]), then:

Proposition 2 For any positiveε, a uniqueuε exists inH1(Q) ∩ L2(0, T ;H1
0 (Ω)) such that for anyv in

H1
0 (Ω) and a.e.t in ]0, T [,

∫

Ω

{
∂uε

∂t
v +∇φε(uε)∇v − fε(t, x, uε)∇v + gε(t, x, uε)v

}
dx = 0 (5)

with uε(0, .) = uε
0 a.e. in Ω whereuε

0 converges towardsu0 in L1(Ω), uε
0 ∈ H1

0 (Ω) ∩ L∞(Ω) and
−||u0||∞ ≤ uε

0 ≤ ||u0||∞.
Moreover, the boundary condition of Definition 1 iv-b) is satisfied.

PROOF. Results of existence and uniqueness ofuε are classical, and the boundary condition comes from
the properties ofH1

0 (Ω)) functionsw such that∆w is a bounded Radon measure (cf. Dautrayet al. [5],
prop. 9 pp. 580–581). ¥

Let us indicate somea priori estimates of the generalised sequence(uε)ε>0:

Proposition 3 independently fromε, (uε)ε>0 is bounded inL∞(Q), (φε(uε))ε>0 and (
√

εuε)ε>0 are

bounded inL2(0, T ;H1
0 (Ω)), (

∂uε

∂t
)ε>0 is bounded inL2(0, T, H−1(Ω)) and(t, x) 7→ √

tφε(uε)(t, x) is

bounded inH1(Q).
For any realk, {Uε,k}ε = {(|uε − k|,−∇|φε(uε)− φε(k)|+ Fε(t, x, uε, k))}ε is bounded inDM2(Q).

PROOF. Most of these estimates are classical (cf. Gagneuxet al [7]). Then, for the last one, following
Burgeret al. [2]’s idea, for anyv in D+(Q), one has to prove that, uniformely with respect toε, v 7→
µε(v) = lim

η→0+

∫
Q

v sgn′η(φε(uε)− φε(k))|∇φε(uε)|2 dxdt is a bounded non negative measure onQ. ¥

Therefore, a sequence can be extracted from(uε)ε>0, still denoted by(uε)ε>0, such that:

Proposition 4 There exists:
i) u in L∞(Q) ∩ W 1,2(0, T, L2(Ω),H−1(Ω)) ∩ Cs([0, T ], L2(Ω)) such thatuε converges towardsu
in L∞(Q) weak−∗; and, if we denote byu (of variables(t, x) ∈ Q and α ∈]0, 1[) the Young mea-
sure generated by(uε)ε>0 : i.e. for any bounded Carathéodory function(t, x, λ) 7→ h(t, x, λ), one has:
lim
ε→0

∫
Q

h(t, x, uε(t, x)) dxdt =
∫

Q×]0,1[
h(t, x,u(t, x, α)) dαdxdt.

ii) Φ(t, x) =
∫
]0,1[

φ(u(t, x, α)) dα the limit in L∞(Q) weak−∗ and weakly inL2(0, T,H1
0 (Ω)) of

φε(uε(t, x)). Moreover, since{(t, x) 7→ √
tφε(uε)}ε>0 is a bounded sequence inH1(Q) and asφ is

non decreasing, one gets:Φ(t, x) = φ
(∫

]0,1[
u(t, x, α) dα

)
= φ(u(t, x)).

iii) for any realk, Uk belongs toDM2(Q) and is the weak limit inL2(Q)N+1 of Uε,k. ¤

Passing to the limit whenε goes to0, the above limit do not allows us to obtain a function-solution but
only a Young measure solution.

Proposition 5 This bounded Young measureu is an entropic measure valued solution to (1)–(2) and (3).

Let us prove that such a solution exists.
PROOF OFPROPOSITION4. Claimsi) andii) of definition 2 lead directly from the limit whenε tends
towards0. Claim iii) andiv) are obtained using [14]’s technics.¥
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4. Uniqueness of the measure valued solution, existence and
uniqueness of the weak solution

The aim of this section is to prove that the measure valued solution is unique. Moreover, thanks to the
entropic formulation, the demonstration of uniqueness of the solution leads to the existence, and the unique-
ness, of the weak solution (see [14] and references).

In order to, for two measure valued solutionsu andû, let us use the S.N. Kruzhkov uniqueness method
[8], classical for first order hyperbolic problems.

Firstly, one has to adapt the proposition (see [3]) to measure valued solutions, taking into account the
boundary conditionsi.e., for anyk in E and anyv in V +

0 ,

−
∫

Q×]0,1[

L(t, x,u, k, v) dxdtdα+ lim
η→0+

∫

Q

sgn′η(φ(u)− φ(k))|∇φ(u)|2 v dxdt

≤< U0.η, v > −
∫

Σ

F (t, x, k, 0).η v dHN .

Then, following the method proposed by Carrillo in [3] (see [12] too), the proof given in [14] for the left
hand side and Masciaet al. [9] for the right hand side, for any non negative functionγ of D(0, T ), one has:

−
∫∫

Q×]0,1[2
|u(t, x, α)− û(t, x, β)|γ′(t) dαdβdxdt

+
∫∫

Q×]0,1[2
sgn(u(t, x, α)− û(t, x, β))[g(t, x,u(t, x, α))− g(t, x, û(t, x, β))]γ(t) dαdydxdt

≤ 1
2

< U0.η, γ > +
1
2

< Û0.η, γ > −1
2

< U0.η, γ > −1
2

< Û0.η, γ > .

The conclusion is then the same as for first order hyperbolic problems (cf. [14]). In particular, thank the the
L1(Ω)− continuity in0+ (cf. initial condition), one has that

∫∫

Q×]0,1[2
|u(t, x, α)− û(t, x, β)| dαdβdxdt = 0.

So,u(t, x, α) = u(t, x) = û(t, x, β) = û(t, x), that means:

Theorem 1
i) There exists a unique entropic measure valued solution.
ii) Any entropic measure valued solution is an entropic weak solution (i.e. a measurable function),
iii) There exists a unique entropic weak solution in the sense of definition 1.¤

One may find in [15] details about the proofs.
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