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On the structure of symmetric 2 ×2 gradients

Pablo Pedregal

Abstract. A way of geometrically representing symmetric 2×2-gradients is proposed, and a general
theorem characterizing sets of gradients is proved. We believe this perspective may help in understanding
the structure of gradients and visualizing it. Several non-trivial examples are discussed.

Sobre la estructura de gradientes sim étricos 2× 2

Resumen. Se propone una manera de representar geométricamente gradientes simétricos 2×2 y se
prueba un teorema que caracteriza tales conjuntos de gradientes. Creemos que esta perspectiva puede
ayudar a comprender la estructura de tales gradientes y visualizarla geométricamente. Se ilustran los
resultados con varios ejemplos interesantes.

1. Introduction

In this paper we provide some insight on some geometric properties of gradients, with the aim of better
understanding their structure as it relates to important issues for vector problems in the Calculus of Vari-
ations. Specifically, it is well-known that quasiconvexity ([2], [7]) is the key constitutive assumption for
an existence theory based on the direct method and weak lower semicontinuity. But it is also relevant for
problems where nonconvexity is the central ingredient (see for instance [1]) and the oscillatory behavior
recorded in the underlying Young measure minimizer is the true question, since there exists a duality ([3],
[4]) between quasiconvexity and gradient Young measures through Jensen’s inequality (see also [5] and
[15]). In particular, Morrey’s conjecture about the equivalence of quasiconvexity and rank-one convexity
has turned out to be false ([14]) for matricesMm×N whenm ≥ 3 but it remains open whenm = 2. The
main motivation for the analysis that follows was to further pursue this question for2 × 2 matrices. Since
the answer does not seem to be a direct generalization of Sverak’s counterexample ([12], [13]), it requires
a better understanding of the structure and geometry of gradients. Some relevant references from this point
of view are [9], [10].

To be able to rely on our intuition it is extremely convenient to “visualize” gradients. Since for2 × 2
matrices, we already have to deal with a four-dimensional space, we will restrict attention to symmetric
2 × 2 matrices which is a three-dimensional subspace. In fact, the analysis of variational problems for
functionals of the type

I(u) =
∫

Ω

ϕ(x, u(x),∇u(x),∇2u(x)) dx
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whereΩ ⊂ R2 is a regular domain, competing functionsu : Ω → R belong to appropriate spaces of
weakly differentiable functions up to second derivatives, and∇2u indicates the hessian matrix ofu, need
to address the issue of the appropriate convexity properties ensuring the applicability of the direct method.
Since∇2u = ∇ (∇u) is a symmetric gradient, the question we would like to analyze is relevant for this
type of variational problems. It is a particular case for two-dimensional, vector variational problems.

A very convenient identification of2×2-symmetric matrices withR3 was already used in [11] and [13],
namely

(x, y, z) is identified with

(
x + z z

z y + z

)
. (1)

Due to the close relationship between rank-one convexity and quasiconvexity, identifying rank-one direc-
tions in our model is important. In our situation, rank-one directions correspond to vectors(x, y, z) such
that

xy + xz + yz = 0.

In particular, the three basis vectors inR3 are rank-one directions. We would like to distinguish these three
directions given by the three basis vectors ofR3. In our identification, these correspond to the rank-one
matrices

(1, 0, 0) 7→
(

1 0
0 0

)
= (1, 0)⊗ (1, 0),

(0, 1, 0) 7→
(

0 0
0 1

)
= (0, 1)⊗ (0, 1),

(0, 0, 1) 7→
(

1 1
1 1

)
= (1, 1)⊗ (1, 1).

Notice that the “normals” associated to these three matrices are(1, 0), (0, 1) and(1, 1).
We would like to consider discrete periodic gradients with period the unit squareT = (0, 1) × (0, 1)

taking on symmetric values. In this way, after our identification the matrices involved in such gradients
can be properly identified with points inR3. Given such a periodic gradient, the set of matrices taken
on throughoutT will be a discrete set of points inR3. Moreover, we would like to use only normals
(1, 0), (0, 1) and (1, 1) in our discretizations of periodic symmetric gradients as these are the normals
corresponding to the coordinate axes in our model, as remarked earlier. It is the structure of these finite sets
of points inR3 that we would like to better understand. Therefore for a given positive integerm we consider
piecewise affine, periodic, symmetric gradients where the gradient is constant on each of the triangles of
the discretization ofT coming from subdividingT in m × m equal subsquares, and considering on each
such subsquare the two triangles along the diagonal with normal(1, 1). See Figure 1.

Figure 1. The mesh for a periodic gradient for m = 4.

Some clever, particular cases of these piece-wise affine gradients have been used throughtout the litera-
ture (see [6] and references therein, [11], [13]).
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Altogether we have, at most,2m2 symmetric matrices which will correspond to a set of2m2 points in
R3. Let Γm designate the set of all such symmetric, piecewise-affine gradients. We would like to exactly
describe the structure of sets of2m2 points inR3 corresponding, through our identification, to gradients in
Γm. The main result follows.

Theorem 1 A setAm of at most2m2 points ofR3 corresponds to a gradient inΓm if and only if there
exist at most3m numbers

r
(i)
j , i = 1, 2, 3, j = 1, 2, . . . m,

such that
1.

r
(3)
1 = 0;

2. ∑
j

r
(1)
j =

∑
j

r
(2)
j = −

∑
j

r
(3)
j ;

3.
Am =

{(
r
(1)
i , r

(2)
j , r

(3)
i+j−1

)
,
(
r
(1)
i , r

(2)
j , r

(3)
i+j

)
: 1 ≤ i, j ≤ m

}
,

where it is assumed that
r
(3)
m+j = r

(3)
j . �

If we insist in having the three families of numbers ordered in an increasing fashion then we have to ask
for the existence of suitable permutations of indecesσ(i), i = 1, 2, 3, such that
1.

r
(3)

σ(3)(1)
= 0;

2. ∑
j

r
(1)
j =

∑
j

r
(2)
j = −

∑
j

r
(3)
j ;

3.
Am =

{(
r
(1)

σ(1)(i)
, r

(2)

σ(2)(j)
, r

(3)

σ(3)(σ(1)(i)+σ(2)(j)−1)

)
,(

r
(1)

σ(1)(i)
, r

(2)

σ(2)(j)
, r

(3)

σ(3)(σ(1)(i)+σ(2)(j))

)
: 1 ≤ i, j ≤ m

}
.

The structure of such sets of points inR3 can be made even more transparent by a closer examination
of the structure of gradients.

Theorem 2 A setAm of at most2m2 points ofR3 corresponds to a gradient inΓm if and only if
1. there exist at most3m numbers

r
(i)
j , i = 1, 2, 3, j = 1, 2, . . . m, r

(3)
1 = 0,

with
r
(i)
j ≤ r

(i)
j+1,

for all i andj, such that

Am ⊂
{(

r
(1)
j1

, r
(2)
j2

, r
(3)
j3

)
: 1 ≤ j1, j2, j3 ≤ m

}
;

2. if we put

x =
(
x(1), x(2), x(3)

)
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for vectors inR3, then for each possible pairi1 6= i2 and everyi, j, we must have∣∣∣Am ∩
{

x ∈ R3 : x(i1) = r
(i1)
i , x(i2) = r

(i2)
j

}∣∣∣ = 2,

counting appropriately multiplicity when some of ther
(i)
j ’s are repeated;

3. because of the previous statement, we can define maps

Ψ(i) : Am 7→ Am, i = 1, 2, 3,

by putting

Am ∩
{

x ∈ R3 : x(i1) = r
(i1)
i , x(i2) = r

(i2)
j

}
=

{
x, Ψ(i3)(x)

}
,

if {i1, i2, i3} = {1, 2, 3}; then fori1 6= i2, we must have(
Ψ(i1) ·Ψ(i2)

)j

≡ identity

if and only ifj is a multiple ofm;
4. the baricenter ofAm, counting multiplicity of points,∑

x∈Am

x

lies in the line through the origin and direction(1, 1,−1). �

The statement of Theorem 2 may look somewhat artificial. In Section 2 we will see what it means in
plain words. There might be other easier ways of expressing those conditions that may allow to systemati-
cally build and geometrically represent symmetric gradients, but this is the formulation we have found more
convenient. By using this theorem we can provide examples of gradients like the one in Figure 2. Notice the
inner subcube. Matrices participating in the gradient correspond to black dots in the figure. The different
lines will be explained in Section 2. Any of these theorems enables us to think about2×2 gradients, at least

Figure 2. An example for m = 4.

for symmetric gradients, in terms of such sets of points in three dimensional space, facilitating the search
for counterexamples to the fact that rank-one convexity implies quasiconvexity or else looking for a proof
that every probability measure (counting appropriately multiplicity)

ν =
1

2m2

∑
x∈Am

δx

is a laminate for everym and every admissibleAm. We believe these results help in understanding the
structure of such gradients becoming more transparent and clear.

Section 3 contains the proofs of Theorems 1 and 2, while Section 2 is concerned with the visualization
of admissible sets for small values ofm. Several interesting examples are also proposed.
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2. Some examples

Before proving Theorems 1 and 2, we think it is worthwhile to investigate the structure of admissible sets
Am for small values ofm. In particular, it is quite interesting to explore the structure of such sets when
some of the numbersr(i)

j collapse and appear repeated.
One further important observation concerns the first moment of such sets of points. Without loss of gen-

erality, since the structure of gradients is invariant under translations, we can assume that the first moment
of such sets is the origin. This simplifies somewhat our discussion as we need not be concerned about the
conditionr

(3)
1 = 0. In fact, the following corollary is a direct consequence of Theorem 1.

Corollary 1 A setAm of at most2m2 points ofR3 corresponds to a translation of a gradient inΓm if and
only if
1. there exist at most3m numbers

r
(i)
j , i = 1, 2, 3, j = 1, 2, . . . m,

with
r
(i)
j ≤ r

(i)
j+1,

for all i andj, such that

Am ⊂
{(

r
(1)
j1

, r
(2)
j2

, r
(3)
j3

)
: 1 ≤ j1, j2, j3 ≤ m

}
;

2. if we put

x =
(
x(1), x(2), x(3)

)
for vectors inR3, then for each possible pairi1 6= i2 and everyi, j, we must have∣∣∣Am ∩

{
x ∈ R3 : x(i1) = r

(i1)
i , x(i2) = r

(i2)
j

}∣∣∣ = 2,

counting appropriately multiplicity when some of ther
(i)
j ’s are repeated;

3. for i1 6= i2, we must have (
Ψ(i1) ·Ψ(i2)

)j

≡ identity

if and only ifj is a multiple ofm.

Form = 2, it is elementary to check that

A2 =
{(

r
(1)
j1

, r
(2)
j2

, r
(3)
j3

)
: 1 ≤ j1, j2, j3 ≤ 2

}
,

the eight points of a prism or cube inR3 centered at the origin (Figure 3). All points have the same weight
1/8.

Figure 3. The case m = 2.
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The casem = 3 is much more interesting. Except for permutations of indeces, the only non-trivial
possibility is the one in Figure 4.

Figure 4. The case m = 3.

In all of our figures, thick lines (either continuous or dashed) indicate rank-one directions joining two
black dots. These, in turn, represent matrices participating in the symmetric gradient. Other lines have been
drawn to facilitate the understanding of the figure.

As remarked before, it is also important to realize what can be obtained by taking admissible sets when
the numbersr(i)

j are different, but some of them start to approach each other until they become the same.

One of these situations was somehow the main idea examined in [11]. For instance, if we taker
(2)
2 = r

(2)
3 ,

then we obtain the gradient in Figure 5.

Figure 5. A limit case for m = 3. Points with a 2 indicate weight 2/18.

In trying to look for a counterexample of a gradient that is not a laminate, it is important to look for sets
with as few points as possible. If form = 3 we take

r
(1)
1 = r

(1)
2 , r

(2)
1 = r

(2)
2 , r

(3)
2 = r

(3)
3 ,

we have the set with suitable weights drawn on Figure 6.

Figure 6. A limit case for m = 3. Weights are indicated.

The question is whether such gradient is a laminate or not. Notice that this time the first moment is
the point(1/3, 1/3, 2/3) if we place the origin at the most inner point of the cube. As one can see, many

124



On the structure of symmetric 2× 2 gradients

different situations are possible. Another interesting example correspond to the choice (Figure 7)

r
(1)
1 = r

(1)
2 , r

(2)
1 = r

(2)
2 , r

(3)
1 = r

(3)
2 .

Figure 7. A limit case for m = 3. Weights are indicated.

The first moment is(1/3, 1/3, 1/3) if the inner most point of the cube is taken as the origin.
Form = 4 the situation is much more complicated. One example is shown in Figure 2 in the Introduc-

tion. This case (m = 4) is the first one where condition 3 in Corollary 1 can be explained and appreciated.
If we drop such condition, the set in Figure 8 would be elligible for a symmetric gradient. However this is
not true. This will be shown in Section 3. Note the difference with Figure 2.

Figure 8. A non-admissible set.

A section of this cube through an intermediate plane would be the one in Figure 9.

Figure 9. An intermediate section of Figure 8.

This violates condition 3 in Corollary 1 as we would have(
Ψ(i1) ·Ψ(i2)

)2

≡ identity,

for appropriate choices ofi1 andi2. On the other hand the same section for Figure 2 is shown in Figure 10.
Observe the subtle difference between the two.
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Figure 10. An intermediate section of Figure 2.

If in that example we put

r
(i)
1 = r

(i)
2 , r

(i)
3 = r

(i)
4 ,

for all i, we obtain the example examined in [11] (Figure 11).

Figure 11. A limit case for m = 4.

Would it be possible to prove that all sets verifying the hypotheses of Corollary 1 correspond to lami-
nates? It is hard to say.

3. Proofs

We divide the discussion in this section in several steps.
1. Description of a2 × 2 discrete,T -periodic gradient. As pointed out in the Introduction, we will

consider the unit square
T = (0, 1)× (0, 1)

divided in2m2 subtriangles

T
(1)
i,j ∪ T

(2)
i,j = (i− 1/m, j − 1/m)× (i/m, j/m),

obtained by dividing this small square in two triangles along the diagonal with normal(1, 1).
Our gradients will be piecewise-affine,T -periodic, taking on constant values on each of the triangles

T
(k)
i,j , 1 ≤ i, j ≤ m, k = 1, 2.

Let these matrices be denotedF
(k)
i,j .

We shall prove the following lemma, which is interesting in itself.
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Lemma 1 A set of matrices
F

(k)
i,j , 1 ≤ i, j ≤ m, k = 1, 2,

are the values taken on by a piecewice-affine,T -periodic2 × 2 gradient as described above, if and only if
there exist vectors

di,j , ai, bj , 1 ≤ i, j ≤ m,

such that
m∑

k=1

dk,j =
m∑

l=1

di,l = 0,

m∑
k=1

ak =
m∑

l=1

bl = 0,

for all i, j and

F
(1)
i,j =

(
ai +

∑j−1
l=1 di,l

bj +
∑i−1

k=1 dk,j

)
,

F
(2)
i,j =

(
ai +

∑j
l=1 di,l

bj +
∑i

k=1 dk,j

)
.

PROOF. It is clear that

F
(2)
i,j − F

(1)
i,j =

(
di,j

di,j

)
, (2)

wheredij are vectors such that, due to the periodicity restriction,

m∑
k=1

dkj = 0,

m∑
l=1

dil = 0,

for all i, j. In particular, if we imagine that the these vectors are given, then we can regard (2), as providing
the passage fromF (1)

i,j to F
(2)
i,j by putting

F
(2)
i,j = F

(1)
ij +

(
di,j

di,j

)
.

Similarly,

F
(1)
i,j − F

(2)
i,j−1 =

(
0
bi,j

)
, F

(1)
i,j − F

(2)
i−1,j =

(
ai,j

0

)
,

for certain vectorsai,j , bi,j .
These rules can be interpreted in a “row-wise” fashion by saying:

1. any row ofF (2)
i,j is obtained from the same row ofF

(1)
i,j by addingdi,j ;

2. F
(2)
i,j−1 andF

(1)
i,j share the same first row;

3. F
(2)
i−1,j andF

(1)
i,j share the same second row.

If we further put, fori, j ≥ 2,

F
(1)
i,1 − F

(2)
i−1,1 =

(
ai

0

)
, F

(1)
1,j − F

(2)
1,j−1 =

(
0
bj

)
,

and

F
(1)
1,1 =

(
a1

b1

)
,
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we again have, by the periodicity, that

m∑
k=1

ak =
m∑

l=1

bl = 0.

By recursion, bearing in mind the three rules above, it is not difficult to show the statement of the lemma.�

Notice that this lemma implies that the probability measure

1
2m2

∑
i,j

(
δ
F

(1)
i,j

+ δ
F

(2)
i,j

)
where the participating matrices are constructed from any set of vectors

{di,j , ai, bj : 1 ≤ i, j ≤ m}

as in the statement, is a homogeneous gradient Young measure ([3]).
2. Imposing the symmetry constraint. We would like to impose the symmetry restriction on the form of the
gradient in Lemma 1 by requiring that all matrices involved be symmetric. This amounts to asking for the
symmetry ofF (2)

i,j and the difference

F
(2)
i,j − F

(1)
i,j ,

for everyi, j.
Since

F
(2)
i,j − F

(1)
i,j =

(
di,j

di,j

)
,

the symmetry of this matrix can only happen if

di,j = ci,j(1, 1)

where nowci,j are scalars with
m∑

k=1

ck,j =
m∑

k=1

ci,k = 0,

for all i, j. If we take this conclusion into the symmetry ofF
(2)
i,j , we must enforce

a
(2)
i +

∑
k≤j

ci,k = b
(1)
j +

∑
k≤i

ck,j ,

for all i, j. Upper indeces for vectors denote components. This condition implies that the expressions

b
(1)
j +

∑
k≤i

ck,j −
∑
k≤j

ci,k

should be independent ofj for i fixed. By equating two such sums

b
(1)
j − b

(1)
l =

∑
k≤i

ck,l −
∑
k≤l

ci,k −
∑
k≤i

ck,j +
∑
k≤j

ci,k,

for all i, j, l. In particular, this last number ought to be independent ofi. Hence by takingj = l + 1, we
must have ∑

k≤i

(ck,l − ck,l+1) + ci,l+1 =
∑

k≤i+1

(ck,l − ck,l+1) + ci+1,l+1.
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Simplifying, we get
ci,l+1 = ci+1,l,

for all i, l. It is then elementary to check that the numbersci,j are determined bym numbersCk such that∑
k

Ck = 0,

and
ci,j = Ci+j−1, Cm+k = Ck.

Since the symmetry do not pose any constraint on the first component ofai and the second component
of bj , these can be arbitrarily selected as long as their sum vanishes. If we take all this information back on
the matrices of our gradient we have the following lemma. Computations are elementary. The converse is
also an easy, direct compuation.

Lemma 2 A set of matrices

F
(k)
i,j , 1 ≤ i, j ≤ m, k = 1, 2,

are the values taken on by a piecewice-affine,T -periodic, symmetric2×2 gradient, if and only if there exist
3m numbers

Ai, Bi, Ci, 1 ≤ i ≤ m,

such that ∑
i

Ai =
∑

i

Bi =
∑

i

Ci = 0

and

F
(1)
i,j =

(
Ai +

∑
k≤j−1 Ci+k−1 −

∑
k≥i+j−1 Ck

−
∑

k≥i+j−1 Ck Bj +
∑

k≤i−1 Ck+j−1

)
,

F
(2)
i,j =

(
Ai +

∑
k≤j Ci+k−1 −

∑
k≥i+j Ck

−
∑

k≥i+j Ck Bj +
∑

k≤i Ck+j−1

)
. �

3. An alternative description inR3. Under our identification (1), the symmetric matrices of Lemma 2
become the vectors

F
(1)
i,j 7→

Ai +
∑
k≥i

Ck, Bj +
∑
k≥j

Ck,−
∑

k≥i+j−1

Ck

 ,

F
(2)
i,j 7→

Ai +
∑
k≥i

Ck, Bj +
∑
k≥j

Ck,−
∑

k≥i+j

Ck

 .

This involves easy computations.
If we now put

r
(1)
j = Aj +

∑
k≥j Ck,

r
(2)
j = Bj +

∑
k≥j Ck,

r
(3)
j = −

∑
k≥j Ck,

we can solve forAj , Bj , Cj in terms ofr(i)
j as follows

Cj = r
(3)
j+1 − r

(3)
j , 1 ≤ j ≤ m− 1,

r
(3)
1 = 0, Cm = −r(3)

m ,
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and
Aj = r

(1)
j + r

(3)
j ,

Bj = r
(2)
j + r

(3)
j ,

for all j. Notice that the constraints∑
j

Aj =
∑

j

Bj =
∑

j

Cj = 0

translates into
r(3) = 0,

∑
j

r
(1)
j =

∑
j

r
(2)
j = −

∑
j

r
(3)
j .

4. PROOF OF THEOREM 1. LetAm be the set of points corresponding to the matricesF
(k)
i,j of an

admissible symmetric gradient. By all of our previous discussion

Am =
{(

r
(1)
i , r

(2)
j , r

(3)
i+j−1

)
,
(
r
(1)
i , r

(2)
j , r

(3)
i+j

)
: 1 ≤ i, j ≤ m

}
, (3)

where ther(i)
j are given by the formulas in Step 4. Keep in mind that

r
(3)
m+j = r

(3)
j . �

5. PROOF OF THEOREM 2. The necessity is clear from Theorem 1. Notice that condition 3 in the
statement reflects the fact that in following each vertical or horizontal strip in the discretization of Figure
1, we cannot have two disjoint sets of matrices: all must be connected through the axes among themselves.
See Figure 12 and relate it to Figures 9 and 10.

Figure 12. All matrices must be connected.

For the sufficiency we could try to express a set under the conditions of Theorem 1 in the form given in
(3), for suitable permutations of indeces. However, we believe it is more transparent and intuitive to directly
build the gradient associted with such set of points. Indeed, assuming that all pointsr

(i)
j are distinct among

themselves, hypothesis 2 in the statement of Theorem 1 implies that any point inAm is “surrounded” by
another three points along the three coordinate axes. In terms of symmetric gradients, this means that the
matrices corresponding to such four points can be placed in one of the diagrams as in Figure 13.

Globally, the result is aT -periodic, symmetric gradient with the appropriate first moment. Keep in mind
the comments about translations at the beginning of Section 2.

A situation where some of the numbersr
(i)
j are repeated is a limit of the above.�

Acknowledgement. This work is supported by BFM2001-0738 (Spain) and by GC-02-001 (Castilla-
La Mancha).

130



On the structure of symmetric 2× 2 gradients

Figure 13. Four related matrices in an admissible set.
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