RACSAM

Rev. R. Acad. Cien. Serie A. Mat.
VoL. 97 (1), 2003, pp. 83-88
Matenatica Aplicada / Applied Mathematics

The waiting time property for parabolic problems trough the
nondiffusion of support for the stationary problems

Luis Alvarez and Jesus lldefonso Diaz

Abstract. In this note we study thevaiting time phenomenofor local solutions of the nonlinear
diffusion equation through its connection with thendiffusion of the support propertyr local solutions

of the family of discretized elliptic problems. We show that, under a suitable growth condition on the
initial datum near the boundary of its support, a finite part of the family of solutions of the discretized
problem maintain unchanged its support.

Propiedad de tiempo de espera atrav és de la no difusi 6n del soporte para
los problemas elipticos discretizados.

Resumen. En esta nota estudiamos el éeremo de tiempo de espera para soluciones locales de la
ecuacbn de difusbn no lineal a trags de su cone&h con la propiedad de no difési del soporte para
soluciones locales de la ecuaeielptica resultante de la discretizanoiimplicita. Mostramos que, bajo
una adecuada condiri de crecimiento del dato inicial cerca de la frontera de su soporte, una familia
finita de las soluciones discretizadas mantiene su soporte fijo.

1. Introduction

In this note, we considdrounded local weak solutionse C([0, +o0) : L1(Q2)) N L°°(Q x (0, +00)) of
the nonlinear diffusion (sometimes called@sous medixequation

ou - m—1 .
Frin A(|ul uw)and|u| < M inQ x (0,+00), (1)
u(x,0) = up(x) onq,

where2 ¢ R¥ is an open set (not necessarily bounded),> 1, M > 0 andug(x) is a bounded
function. For the sake of the exposition we shall assumetttaidu, are nonnegative functions. Thus
\u|’”’1 u = u™. Notice that we are not specifying any boundary conditiondéh x (0, +cc0). Some
surveys containing many references on the existence of solutions for the different boundary value problems
associated to (1) are [8], [6] and [3], among many others.

It is well-known that the assumptiom > 1 implies that the equation becomes degenerate ifon
uniformly parabolic) and that one of the many consequences of this fact imiteespeed of propagation
property: if the support ofi, is a compact set strictly contained ihthen the same occurs fai-, ¢), at
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least for anyt > 0 small enough. A sharper property concerns the, so callailing time propertytypical
of flat initial data near the boundary of its support: if the initial datug() satisfies that

ug(z) < Cy | — xo|% a.e.x € Q with |z — z¢| < 0, 2

for somezxy € dsuppug, and for some positive constan®§ andd, then there exists waiting timet* > 0
such thatey € dsuppu(-,t) for anyt € [0,t*]. So, if, for instancey is continuous, them(zq,t) = 0 for
0<t< it

The main goal of this note is to prove that the waiting time property also holds for the associated discrete
solutions (and, in fact it can be proved by passing to the limit) when we consider (as for the existence theory
via accretive operatonsthe implicit discretizated in time scheme

w =Au"  and|u,| <M in Q. 3)

Notice that, again, we are not specifying any boundary conditio®$on We assume that the functions
un(x) appearing in this iterative scheme represent an approximation of the solution) at times
t, = n7.We assume that(z) := wu, (x)™ arenonnegative local bounded weak soluti@fithe semilinear
elliptic equation

—Aw + %wl/m = f(z)in Q, (4)

where f := “2=L. The compactness of the support of the solutions of (4), assyffedwith compact
support and- small enough, is, again, a consequence of the assumption1 (see [4] and many other
references in the monograph [5]). In fact it was proved in [5], by first time, that under suitable assumptions
there is the, so callediondiffusion of the support propergnsuring that the support gfcoincides with the
support of the solutiom of (4). The optimality of such assumptions was proved in [2] (see also [1]). For
the connection between other qualitative properties of solutions and their version for the solutions of some
discretized algorithms see [7].

The main result we present here is the following

Theorem 1 Letwuo(x) be a bounded non-negative function satisfying the growth condition (2) for some
xo € Q and let{u,(z)},en be any sequence of local bounded nonnegative solutions of (3). Then there
existsCy,, 7o and¢* > 0 such that ifd < 7 < 7, we have that forany, € [0,2-) NN

un(z) < Cp |z — 20 7T ae.x e Q with |z — zg| < 0. (5)

Remark 1 It is well known ([5], [8]) that by the maximum principle we have that suppC suppu.,.
Then the above result proves that, in that case, if (2) holds forgry 0 suppug then suppiy = suppu,
foranyn € [0,£)NN. W

2. Proof of Theorem 1
We need the following technical lemma

1

Lemma 1 Givenm > 1, define the functios(s) = s — s™ foranys € (0, ()™ ']. Then

1
1 m—1
lim gb”(s)nmlfl = <> ,

n—00 m—1

—_—
whereg™(s) = pogo..... o ¢(s).
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Waiting time phenomena for semidiscrete porous medium equation

ProOOFR  Firstwe note thap(s) is an increasing function on the inten(a(], (L) %} andtha{¢™(s) tnen

is a decreasing sequence converging {0 is a fixed point ofp(s)) whenn goes to infinity. We observe
that for anyk € N
limsup,, _.¢"(s)(n) 7T = limsup,, ,,¢" " (s)n7T = limsup,, 6" (s)(n + k)7

lim infnﬂooqbn(s)(n)ﬁ = lim infnﬁoo(b"'%(s)nﬁ = liminf,, . ¢"(s)(n + k)#f1

Let us show that for ang' > ( 1 )ﬁ ands € (0, ( L )mlfl]

m—1 m

lim supnﬂ)ogb”(s)(n)ﬁ <C. (6)

Indeed, lets € (O, (%)%] and letng € N be such thaCn, "' < (%)%1 and satisfying

1 1
n m1i —(n 1 T m—1
cml > n_(n:;: ) for anyn > no. (7)

We note that such a, always exists since

T — (p4 1) weT 1
lim 2 n- - <cm1, 8)

n— oo n_ m—1 m—1

Letk € N be such thap"o+#(s) < Cn, ™. Let us prove, by induction, that for amy> n,
" (s) < Cn7 I ©)

Suppose that (9) is verified by > ng, then using (7) we obtain

_ 1

IR (5) < p(Cn~ 7 T) = Cn 7T — O™~ meT < Cn+ 1) 7T,
which proves estimate (9) far > ngy. Therefore

lim sup,,_, ., ®"(s) (n)ﬁ = lim sup,_ ¢" K (s)nﬁ <C,

1

foranyC > (ﬁ) "~ and we conclude that

1

lim sup,, o, 6" (5)(n) ™7 < ( : )’"—1 ' (10)

m—1
In order to prove the reverse inequality, &t< (ﬁ) " se (0, (%)ﬁ] andn, € N be such that
Cng ™' < (%)ﬁ and satisfying (7). Let € N be such thap™ (s) > C(no + k)~ 71. Let us prove,
by induction, that for any. > ng
¢"(s) > Cln+ k)~ 7. (11)
Suppose that (11) is verified by > nq, then using (7) we get
¢" Y (s) > $(Cln+ k) 7)) = C(n+ k)~ 71 —C™(n+ k)77 > C(n+1+k) 7
which proves estimate (11) far > ng. Therefore

liminf,, 0" (s)(n + k)ﬁ = lim infnﬁoo¢"(s)nﬁ > C,
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1

foranyC < (ﬁ) "~ and we obtain

, N
liminf, . .c@" (s)nm-1 > () . 12)

m—1
This concludes the proof by taking into account inequalities (10) and (11.
PROOF OF THEOREML. Let7 > 0, and letuy be a non-negative bounded function satisfying the growth

condition (2). Without loss of generality we can assume that 0. We note that the semilinear elliptic
equation (3) applied to a radially symmetric function can be written as

£l ) = [un = () = 22 @) )| = wca 0, 19
Givenk, C' > 0, we consider théarrier function
F2\ 7T
v(r) =kC <> . (14)
T

Let {u, (z)} be any local bounded nonnegative solution of (3) and3lgt, §) C €, be the ball of radiug
and center: = 0. Let us prove that there exisg, t*, k, C > 0 such thatif0 < 7 < 79, andn < t; then

up(x) <wv(lz]) in B(0,J). (15)
We first notice that an straightforward (but tedious) computation yields to
B o M(dm = 2N(m — 1)\ (12|77
L(W)(r) = (Ck C™k m 172 . . (16)

Let us start by considering the cage — 2N (m — 1) < 0. We point out that we have that,, (z)| < M.
We take nowk = 1, 19 < 1 and¢* > 0 such that

62 m—1

a(Z)" =z an
70

whereCy, ¢ are defined in the growth condition (2). Then following (2), (16) and (17), we obtain

{ L(uy) < L(v) in B(0,0),

up <w onadB(0,d), (18)

and therefore by the maximum principle we have that< v in B(0, ). Now, by induction onn, we
obtain (15) which concludes the proof of the theorem in this case.
Let us now consider the cage: — 2N (m — 1) > 0. If we define

1

k=tko= (4m2 —(7;7;]\;2; - 1)> o

we obtain, following (16), that

r

) = oty (2) 7,

whereg(s) = s — s™. Therefore, the iterations of operatf(v) yield to
2\ m-1
o) = ko) (2) 7
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Now, givent > 0 andn = E(L) (whereE(s) is the greatest integer satisfyifitfs) < s), from the previous

t
p

lemma we obtain that i < C' < (%)+1
. n . n 7"2 m171 . 1 mal T ml—l 72 m£1
i 2 =t koo (@) () = o (5) ()T (E) T e

1 11 2 11

o
— ko [ —— r 20
0<m_1> <t> , (20)

since¢™(C) is a decreasing sequence. According (19) we can chapse 0 andt = ¢* such that if
0<7<Tandn <L

2\ m—1
Co (7> <L) <L) <<

70 -

L\ g2 i
M _— — .
n(m)" (7)

Then, by induction and using the maximum principle as in the previous case, we get that

{ L(uy) < L)  inB(0,9)
U, < v ondB(0,9),

and therefore (15) is shown. This concludes the proof of Theorenilil.

(21)

Remark 2 The above theorem is, in some sense, optimal, since in the case of general non-ling@arjties

in the nonlinear diffusion equation the waiting time property is not always preserved when we discretize in
time the equation. To explain it and to fix ideas, let us consider local nonnegative solutions of the non-linear
degenerate parabolic equation

{ % = Apu) in Q2 x (0,+00), 22)
u(z,0) =up(xz) on Q,

whereyp is a continuous nondecreasing function such #{@) = 0, and let{u, (x)},cn be any sequence
of local bounded nonnegative solutions of the associated semidiscrete iterative elliptic equation

Un U=l _ Ap(u,) in Q. (23)
-

It is well known (see references in [8], [3] or [6]) that equation (22) admits local solutidns) with
compact support solutions, at least famall enough, iff

ds
/0+ 7@*1(5) < 00 (24)

(notice thatp~!(s) is well defined, as a maximal monotone graph and as a funetios € x(RR)). On the
other hand, equation (23) admits local solutions with compact support iff

1

——ds < > 25
o VPG .
whereF(s) is defined ad’(s) = fos ¢~ 1(2)dz (see [5] and its references). Finally, it is easy to see that,
although both conditions are equivalent in the caé€) = s™ once thatn > 1, condition (24) is stronger
than (25): that is (25) implies (24) but there are nonlineariiés) which satisfy (24) but not (25): take,
for instance(s) = slns(1 + In s). In this way, we can not expect to prove the waiting time property (for
a general functionp(s) satisfying (24) through the nondiffusion of the support property of the associated
discretized family of elliptic problems. B
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Remark 3 Theorem 1 can be easily extended to the, so called, doubly nonlinear problems of the type
ou m—1 .
{ L= Al ) i 2 x (0,400), (26)

u(x,0) = ug(x) on Q,

with A,u = div(|Vu|’~* Vu) once we assume: > 0, p > 1 and, which is crucialn(p — 1) > 1. Many
references on this equation are given in the surveys [8], [3] or [6]. The consideration of the associated

stationary problems
Unp, _Tun—l — APU,ZL |n Q’ (27)
1
was carried out in the monograph [5]. For instancg;) = kC (%) »=1m=1 is now the barrier func-
tion. W

Remark 4 Theorem 1 also applies to changing sign solutions of any boundary value associated to the
equation since it is enough to apply the barrier comparison functions (and the corresponding iteration pro-
cess) to the one sign solutions corresponding to the positive and negative parts of the initial datum (this
argument is standard in this type of equations for which the maximum principle holds: see the references
mentioned in the above Remark).l
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