RACSAM

Rev. R. Acad. Cien. Serie A. Mat.

VoL. 97 (1), 2003, pp. 63-68

Estadstica e Investigaéin Operativa / Statistics and Operations Research
Comunicaobn Preliminar / Preliminary Communication

Existence of Density for The Solution to the
Three-Dimensional Stochastic Wave Equation

Lluis Quer-Sardanyons and Marta Sanz-Sol €

Abstract. We prove existence of density for the real-valued solutiondalamensional stochastic wave
equation. The noise is white in time and with a spatially homogeneous correlation whose spectral measure
p satisfies thaf,, pu(dé)(1 + [£]*) ™" < oo, for somen € (0, 3). Our appoach is based on the mild for-
mulation of the equation given by means of Dalang’s extended version of Walsh’s stochastic integration.
We use the tools of Malliavin calculus and a comparison procedure with respect to smooth approxima-
tions of the distribution-valued fundamental solution, obtained by convolution with an approximation to
the identity.

Existencia de densidad para la ecuaci 6n de ondas
estoc astica en dimensi 6n tres

Resumen. Demostramos la existencia de densidad para la smiwde la ecuadin de ondas estéastica
en dimengdn tres. Se considera un ruido blanco en tiempo y con correlacin espacialmentethemog
cuya medida espectral satisface la condion [, u(d¢)(1+ [¢]*)™7 < oo, para alginn € (0, 1).
Abordamos el problema a partir de la formufatimild de la ecuadin, basada en la extebsi de la
integral estoastica introducida por Dalang; utilizamos é@leulo de Malliavin y un procedimiento de
comparadn respecto de aproximaciones regulares de la soidcindamental de la ecuéci obtenida
mediante convoluéin con una aproximagn de la identidad.

1. Introduction

We present new results regarding the existence of density of the real-valued solution to the stochastic wave
equation

(2~ AJult.x) = olult.2) F(t.2) + butt, )
ou
u(0,2) = E(O,x) =0, (1)

where (t,z) € (0,T] x R* and A; denotes the Laplacian operator Bi. We assume that the coef-
ficientso andb are real Lipschitz functions; the noigeis a mean-zerd.?((2, F, P)—valued Gaussian
process indexed by the spaf¥R*) of test functions with covariance functional given by, ) =

Presentado por David Nualart.

Recibido 9 de Julio de 2002Aceptado 4 de Diciembre de 2002.

Palabras clave / KeyworddMalliavin calculus, stochastic partial differential equations, wave equation.
Mathematics Subject Classificatior@OH07, 60H15.

(© 2003 Real Academia de Ciencias, Hsaa

63



Ll.Quer-Sardanyons and M. Sanz-8&ol

fR+ ds [ T(dx)(p(s) * ¥(s))(x), wherey(s, ) = (s, —=) andI is a non-negative, non-negative defi-
nite tempered measure. Lebe the spectral measure Bf that means the non-negative tempered measure
F~IT, whereF denotes the Fourier transform operator.

We follow the extension of Walsh'’s approach developed in [3] and give a rigurous meaning to equation
(2) in themild form, as follows. LetSs be the fundamental solution of the wave equation in dimension
d = 3; it is well-known that for anyt > 0, S3(t) = ﬁat, whereo; is the uniform measure on ttge
dimensional sphere of radids Let M = {M,(A),t € [0,T], A € B,(R?)} be the martingale measure
extension off” and letF; be thes-field generated by the random variables(A), s € [0,t], A € B,(R%),
for anyt € [0,7]. Then, a solution to (1) is eeal-valuedprogressively measurable stochastic processes
u = {u(t,z), (t,z) € [0,T] x R} satisfying

t t
u(t,z) = / Ss(t — s, —y)o(u(s,y))M(ds, dy) + / b(u(t — s,z —y))Ss(s,dy). (2
0 JR3 0 JRr3
From Theorem 13 in [3] it follows that such a solution exists whenever the measatisfies the integra-

bility condition
p(dg)
< 00. 3

[ ©

We refer the reader to [10] for results related to [3] on the stochastic wave equation.

The approach to our problem is based on Malliavin calculus, which provides a useful tool for the analysis
of densities of functionals of Gaussian families indexed by a real separable Hilbert space. Application of
this technique to spde’s extend to the heat equation and different examples of hyperbolic spde’s, including
the stochastic wave equation in dimensibg {1,2} (see for instance [2], [5], [6], [8], [9], [11]). In all
these works the fundamental solution of the underlying partial differential equation is a real-valued function,
while in our case it is a distribution. The main issues derived from this new situation concern the equation
satisfied by the Malliavin derivative and the control of the norm of the principal term of this equation.

2. Main result

Let £ be the inner-product space consisting of functignis S(R?) -the space of rapidly decreasigg®

test functions- endowed with the inner-prodigt ¢)s := [, T'(dz)(p * ¥)(z), whereg(z) = ¢(—z).
Notice that(p,v)e = [ps u(dE)Fp(&)Fip(E). Let H denote the completion a, (-,-)¢). SetHr =
L?([0,T]; H); the space${ andH, may contain not only functions but also distributions. The spdge

is a real Hilbert separable space. FRoe Hr, setW (h) = fot Jgs B(s, z)M(ds, dx) where the stochastic
integral can be interpreted in Dalang’s sense (see [3]). THéM), h € Hr} is a Gaussian process and we
can use the differential Malliavin calculus based on it (see for instance [7]). Our main result is as follows.

Theorem 1 Assume that:
(i) the coefficients andb are C* functions with bounded Lipschitz continuous derivatives;
(i) there existsry > 0 such thatnf{|o(z)|; z € R} > oy;
(iii) there exists) € (0, 3) such that

1 1
sup /R3 I'(dx)F (W)(JJ —y) < oo.

yER3

Then, for any fixedt, z) € (0, T] x R3, the random variable:(t, z) has a density.

Owning to Bouleau’s and Hirsch’s criterium (see [1]) the preceding Theorem is a consequence of the
next Propositions.
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Proposition 1 Assume that the coefficientsand b satisfy the assumption (i) of Theorem 1. Then,
(@) forany(t,z) € [0,7] x R3, u(t, ) belongs tdD!:?;
(b) there exists arHr-valued stochastic proces¥ (¢, x), (t,z) € [0,T] x R3} satisfying

sup HZ(tvx)”LZ(Q,HT) <0
(t,0)€[0,T] xR3

such that

Du(t,x) = Z(t,x) + /0 . S3(t — 5,2 — z)o' (u(s, z)) Du(s, 2) M (ds, dz)

[ Wt = s = 2)Dute = 5.2 = 21 (s.2) @

Moreover, for any(t, z) € [0, 7] x R3,

B(|2tt.0)5) =5 ( [

S3(t — s,x — 2)o(u(s, z)) M (ds, dz))2. (5)
o Jm3

Proposition 2 Assume that the coefficientsandb are C* functions with bounded derivatives and more-
over, the assumptions (ii) and (iii) of Theorem 1 are satisfied. Tt2a(t, z)||+, > 0, a.s.

Let us make some comments on these statements. (1) The hypothesis (iii) in Theorem 1 implies the
following strengthening of (3):
(H,) There exists) € (0,1) such that/, % < o0.
In fact both conditions are nearly equivalent (see [4] for further details).
(2) Giving a precise meaning to Equation (4) requires to set up an extension of Dalang’s stochastic integral
with respect to Hilbert-valued integrators. With this ingredient, existence and uniqueness of solution to
Equation (4) can be proved by a fixed point argument.
(3) TheH-valued stochastic process

Z(t,z) + /Ot . S3(t — s, — 2)o' (u(s, z))Du(s, 2) M (ds, dz),
(t,z) € [0,T] x R3, is the Malliavin derivative of the stochastic integral
/Ot . S3(t —s,x — z)o(u(s, z))M(ds,dz).
Naively Z(t, z) = S3(t — -,z — *)o(u(-, %)).
(4) Proposition 1 can be extended to more general spde’s defined by a differential opesatdr that the

fundamental solution of.u = 0 is a function in time with values on the space of non-negative distributions
with rapid decrease. Moreover, it holds thdt, ) belongs tdD!? for anyp € [2, 00).

3. Sketch of the proofs

PROOF OFPROPOSITION1: Let ¢ be a non-negative function i (R?) with support contained in the
unit ball of R* and such thafl,, ¢ (z)dz = 1. Sety, = n?)(nx), n > 1. Define Sy (t) = 1y, * S5(t).
Consider the real-valued proces, (t, ), (t, z) € [0,7] x R?} solution to the integral stochastic equation

un (t, x) :/0 » Sg(t—s,x—z)g(un(s,z))M(ds,dz)+/O ds/Rd b(un,(t — s,z —2))Ss(s,dz). (6)
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The existence and uniqueness of such process can be easily deduced from the arguments used in the proof
of Theorem 13 of [3]. By an easy adaptation of the proof of Proposition 2.4 of [5], taking into account that
| FSZ(t)(&)] < |FS3(t)(€)|, for eacht > 0,¢ € RY, we show that, (¢, z) € D2 and that the derivative
of u,, satisfies the equation iH1
Dup(t,z) = S5t — -, — *)o(un(-, %))

+ / Sy (t—s,x — 2)0" (un(s, 2)) Dun(s, 2) M(ds, dz)
0

Rd
+ /Ot ds /]Rd S5(s,d2)b (un(t — 5,2 — 2))Duy(t — s, — 2). (7)

Using the properties of the stochastic integral we prove that

lim ( sup Eluy(t,z) — u(t,x)|2) =0, (8)
n—00  (¢,2)€[0,T]xR3
sup sup E(||Duy(t, z)|3,) < . 9)

n>1 (t,z)€[0,T]xR3

This yields the statement (a) and in addition that the sequébes, (¢, z),n > 1,(t,z) € [0,7] x R3}
converges in the weak topology 6F (2, Hr).

We next prove thaf Z,, (t, z) = S§(t—-,z—*)o(un(-, *),n > 1} is a Cauchy sequence I (Q; Hr).
Let Z(t,z) be its limit. Then, by a Gronwall’s type argument we show the covergené&(ift; Hr) of
{Du,(t,x),n > 1} asn — oo to the procesDu(t,z), (t,z) € [0,T] x R3, solution to Equation (4).
The identity (5) follows from the construction &f(t, 2-) and the isometry property of Dalang’s stochastic
integral. W

Remark 1 With a little more effort one can prove that (9) holds with th&-norm replaced by thé&?-
norm, and that the sequence of processgs > 1, is Cauchy inL?(Q2) for anyp € [2, 00). Hence (8) can
be extended to ah?-convergence and consequentlg D7, for anyp € [2,00). R

PROOF OFPROPOSITION2: We will check thatE([| Du(t, z)||3,”.) < oo for somep > 0. Equivalently, for
1o > 0 small enough and for some> 0,

no
/ 51 P{||Dut, )|, < ¢} de < oc.
0

Owning to the expression dbu(t, =) given in (4) we consider, as in [6], the decompositidn, . u(t, z)||3, =
1Zr it 0|3 + Ut 7, ).

Leter,d > 0 be such that for any € (0, €], t — € > 0. Then we obviously hav®{|| Du(t, z)3,, <
€} < Pl(e,8) + P?(e,6), with

P'(e,6) = P{| t drU(t,r,z)| > €},

t—ed

t
P%(e,0) = P{/ dr|| Z, . (t, z)|)3, < 2¢}.
t—ed

Let I1 (e, 0) = f(fs ds [s p(d€)|FSs(s)(€)[?, Ia(e,0) = fofo ds [zs S3(s,dx). Chebyhev's inequality ap-
plied to the functiory(z) = |=|, Schwarz’s inequality anfi? estimates of stochastic and pathwise integrals
involved in the ternU (¢, r, x) yield that

P1(€75) < Ce ! (11(6,5)3/2 + I (e, 5)[2(6,5)) < 06_1(6%6(3_277) + 66(5_277))7
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p_

where the very last inequality follows from the estimates (12), (15). Tﬁﬁ&(z LPY(e,8)de < < if
and only if 225 (3(3 —2n) A (5 — 21)) > 5.
The triangle inequality implie®? (¢, §) < P?!(¢, 8) 4+ P?2(e, ), with

PN (e,8) = P{[ A1 (- — ¥)o(ult - 9) 3, < 6e}.
P?2(,6) = P{|| Zi-u(t.2) = As (= $)o(ult — -, #) e, = ¢},

whereA -1 (t) = -1 * S3(t).
By assumption (ii) there exist positive universal const@nitsC, such that

A= otutt =M, > of [ dr [ dFAA )P

2oy [ dr [ naIFS©OF - [ u@lFs)©FIF(© - 1)
> 0(2)(76[ — 0266(27277)+1), (10)

where the very last lower bound follows from the inequatliBt). 1 (¢) — 1|2 < 4r|¢|e and the estimate
(13). Assume that + 27 < 3 and3§ < 1. Then, fore sufficiently small the sef||A.-1 (-, 2 — *)o (u(t —
)3, , < 6€} is empty and therefor&?! (¢, ) = 0.

As for P?2(e, 6), we apply Chebychev's inequality to the functigrspecified above. The isometry
property of the extended stochastic integral and the upper bound (14Yith:) = o(u(t — s, z)) yields

P2(e,5) < Ce9?=21)_ Therefore, [, €21 P?2(¢,5)de < oo if and only if §(2 — 2n) — £ > 0. By

summarising the restrictions encountered so far, it is easy to check that they match upgot dny 27.
Hence, the Proposition is completely provedli

4. Auxiliary results

Let S; denote the fundamental solution of the wave equation in any dimedsioih. We collect here some
estimates used in the proof of Theorem 1; they are proved using the well-known expresion of its Fourier

transform, that isF.S,;(¢)(¢) = Sm;%;g') they hold for anyt € [0, 77.
s

(A) Assume that condition (3) holds. There exists a real constant 0 such that

Cr(t A %) < / s / WAEIFSa(s)(©) (11)

This is a consequence of Lemma 5.4.3 in [4].

(B) Assume(H,). Then there exists a real constant > 0 such that

t
[ s [ naeirsaser < o, (12)
0 R3

This is an extension of Lemma 3.4 in [5].

(C) Suppose thatH,,) holds fory € (0, ). Then there exists a positive real constaptsuch that

t
/ s / W(dE)[E]|FSa(s) () < Cypt>2n, (13)
0 R3
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(D) Let{Y (t,z),(t,z) € [0,T] x R?} be a predictabld2-process with stationary covariance function,
such thabup, ,)ep0,7)xrs E([Y (t,2)[%) < c0. Setg(s, ) = E(Y (s,y)Y (s,z+y)) andl'} (dz) =
g(s,z)T(dz). Setuy = F~1(TY). Assume that the condition (iii) of Theorem 1 is satisfied. Then
there exists a positive real constansuch that

t
[as [ aaoieiFsasep < oo (14)
0 R3
(E) Letd € {1,2,3}. Adirect computation based on the expressiof pghows that

t
/ ds | Sa(s,dy) < Cst?, (15)
0 R3

where(Cj is a positive real constant which dependsion
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