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Intrinsic priors for hypothesis testing in normal regression
models

Elı́as Moreno, F. Javier Gir ón and Francisco Torres

Abstract. Testing that some regression coefficients are equal to zero is an important problem in many
applications. Homoscedasticity is not necessarily a realistic condition in this setting and, as a conse-
quence, no frequentist test there exist. Approximate tests have been proposed.

In this paper a Bayesian analysis of this problem is carried out, from a default Bayesian model choice
perspective. Explicit expressions for intrinsic priors are provided, and it is shown that the corresponding
Bayes factor is computed with the help of very simple numerical computations.

Distribuciones a priori intrı́nsecas para modelos de regresi ón normales

Resumen. En muchas aplicaciones es frecuente enfrentarse con el problema de contrastar si algunos
coeficientes de regresión son nulos. Dicho problema se resuelve, bajo el punto de vista frecuentista,
imponiendo la hiṕotesis de homocedasticidad. Sin embargo esta suposición no es asumible en general,
proporciońandose en tales casos tests aproximados.

En este artı́culo se realiza un análisis bayesiano de este problema a partir de la perspectiva bayesiana
de seleccíon de modelos. Se obtienen expresiones explı́citas para las distribuciones a priori intrı́nsecas
y se comprueba que los factores Bayes asociados se reducen a expresiones fácilmente calculables con
métodos nuḿericos.

1. Introduction

Suppose that the observable random variableY follows a normal regression model withk covariates
x1, . . . , xk. That is, the density of a sample(yi, xi1, . . . , xik), i = 1, . . . , n, is Nn(y|Xα, σ2In), where
y = (y1, . . . , yn)t, α is the column vector made up with the interceptα0 and the regression coefficients
α1, . . . , αk of the covariatesx1, . . . , xk, In is the identity matrix of sizen × n, andX is then × (k + 1)
design matrix

X =




1 x11 . . . x1k

1 x21 . . . x2k

...
...

...
...

1 xn1 . . . xnk


 .

The nuisance parameterσ is unknown. The data is denoted asD = (y,X).
The main motivation in considering this model comes from the analysis of matched pairs in Girón et

al. [5]. In the matched pairs problem the vectory is typically a difference between a posttreatment and
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the pretreatment measure drawn from each individual of a population ofn individuals and each of them
receives a dose of a treatment, possibly multidimensional, that here might be represented by a subvector of
the covariates vector. Furthermore, the population is assumed to be a nonhomogeneous group, so that the
treatment effect may depend on the dose levels of the treatment and on some characteristics of the patients
measured by a set of values of a certain set of covariates. In that paper was shown that testing the null
hypothesis that a subvectorα0 of α of lengthk0 has all its components equal to zero plays a central role in
the matched pairs problem.

Let us consider the partition ofα asα = (αt
0, α

t
1)

t and letX = (X0|X1) be the corresponding partition
of the columns of the design matrixX. Thus,X0 is a n × k0 matrix andX1 a n × k1 matrix, where
k1 = k + 1− k0. Then, the above testing problem can be formulated as

H0 : α0 = 0 versusH1 : α0 6= 0. (1)

We remark that whenα0 = 0 the meaning of the remaining coefficients inα changes and, thus, we will
denote them asγ1. It is also clear that the nuisance parameterσ under the null and under the alternative
is not necessarily the same. Therefore, homoscedasticity of the sampling models underH0 andH1 should
not be imposed. Hence, under the null the sampling model fory is a multivariate normal distribution with
mean vectorX1γ1 and covariance matrixσ2

0In, that isy v Nn(y|X1γ1, σ
2
0In), and under the alternative

the sampling model fory is aNn(y|Xα, σ2
1In). As a consequence no frequentist test does exist, although

some approximations are available (see, for instance, Chow (1960)).
Assuming vague prior information on(γ1, σ0) and(α, σ1) the testing problem 1 can be formulated as a

model selection problem between the two conventional Bayesian models

M0 : Nn(y|X1γ1, σ
2
0In), πN

0 (γ1, σ0) = c0/σ2
0 ,

and
M1 : Nn(y|Xα, σ2

1In), πN
1 (α, σ1) = c1/σ2

1 ,

wherec0 andc1 are arbitrary positive constant that cannot be determined because the priors are improper.
For the usual0 − 1 loss function, modelM0 is chosen ifP (M0|D) > P (M1|D). The model posterior
probabilities are computed assuming the conventional default priorP (M0) = P (M1) = 1/2 on the set of
models{M0, M1}. Then, we can write

P (M0|D) =
1

1 + BN
10(D)

,

whereBN
10(D) represents the Bayes factor for comparing modelM1 andM0, and is given by

BN
10(D) =

∫
Nn(y|Xα, σ2

1In)πN
1 (α, σ1)dαdσ1∫

Nn(y|X1γ1, σ2
0In)πN

0 (γ1, σ0)dγ1dσ0
.

The latter expression shows that the usual reference priors cannot be used for model choice because they
leave the Bayes factor defined up to the arbitrary multiplicative constantc1/c0. The goal of this paper is
to derive sensible priors for computing a well-defined Bayes factor for comparing modelsM1 andM0.
In section 2 it is shown that the intrinsic methodology can be applied to deriving intrinsic priors from the
conventionalπN

0 (γ1, σ0) andπN
1 (α, σ1) considered above. In section 3 the Bayes factor for intrinsic priors

is found and we observe that it requires very few computational efforts. Some conclusions are stated in the
final section 4.

2. Intrinsic priors

The intrinsic prior methodology was introduced by Berger and Pericchi [1] to overcome the difficulty aris-
ing with the conventional prior in model selection problems. The difficulty arises because the conventional
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priors for the candidate models are typically improper and then the Bayes factor is defined up to a multi-
plicative constant, as occurs in testing regression coefficients considered above. Further developments of
the method were given by Moreno, Bertolino and Racugno [7].

Justifications for the use of intrinsic priors for model selection have been given by Berger and Pericchi
([1], [2], [3], [4]), Moreno [6], and Moreno Bertolino and Racugno [7]. The method has proven to provide
sensible prior for a wide variety of model selection problems involving nested models; see, for instance,
Berger and Pericchi ([1], [4]), Girón et al. [5], Moreno, Bertolino and Racugno ([7], [8], [9]), Moreno and
Liseo [10]), Moreno, Torres and Casella [11].

We note that the sampling modelNn(y|X1γ1, σ
2
0In) is nested inNn(y|Xα, σ2

1In). This allows for
the application of the intrinsic methodology. Following Moreno, Bertolino and Racugno [7], the intrinsic
priors for modelM0 and M1 can be derived as follows. Let us consider a theoretical training sample
of minimal size for the full model, say{(zj , x1j , . . . , xkj), j = 1, . . . , k + 1}. Hence, we havez v
Nk+1(z|Zα, σ2

1Ik+1), wherez = (z1, . . . , zk+1)t, and

Z =




x11 . . . x1k

x21 . . . x2k

...
...

...
xk+1,1 . . . xk+1,k


 .

Then, the intrinsic prior forα, σ1 conditional on an arbitrary but fixed pointγ1, σ0 is given by

πI(α, σ1|γ1, σ0) = πN
1 (α, σ1)Ez|α,σ1B

N
01(z), (2)

where the expectation is taken with respect to the densityNk+1(z|Zα, σ2
1Ik+1).

By constructionπI(α, σ1|γ1, σ0) is a probability density for any pointγ1, σ0. The unconditional intrin-
sic prior forα, σ1 is obtained by integrating outγ1 andσ0 with respect to the conventional priorπN

0 (γ1, σ0),
that is

πI(α, σ1) =
∫

πI(α, σ1|γ1, σ0)πN
0 (γ1, σ0)dγ1dσ0.

The pair(πN
0 (γ1, σ0), πI(α, σ1)) is called the intrinsic priors for comparingM0 andM1 and although they

are improper, (i) they are well calibrated since both depend on the same arbitrary constantc0, and (ii) they
are a well established limit of proper priors.

In what follows, the moment generating function of ap-variate normal distributionNp(y|θ,Σ) will be
denoted asMy,θ,Σ(t).

Lemma 1 LetX be ap× q matrix of rankq (q ≤ p) andΣ a p× p positive definite matrix. Then

∫

Rq

Np(y|θ,Σ)dθ =
exp

(− 1
2y

t
[
Σ−1 −Σ−1X(XtΣ−1X)−1XtΣ−1

]
y
)

(2π)
p−q
2 |Σ| 12 |XtΣ−1X| 12

.

PROOF. Expanding the quadratic form inNp(y|θ,Σ), it is immediate to see that

∫

Rq

Np(y|θ,Σ)dθ =
exp

(− 1
2y

tΣ−1y
) |XtΣ−1X|− 1

2

(2π)
p−q
2 |Σ| 12

∫

Rq

exp
(
ytΣ−1Xθ

)
Nq(θ|0, (XtΣ−1X)−1)dθ

=
exp

(− 1
2y

tΣ−1y
) |XtΣ−1X|− 1

2

(2π)
p−q
2 |Σ| 12

Mθ,0,(XtΣ−1X)−1(XtΣ−1y),

and the result follows. ¥
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Corollary 1 LetX be ap× q matrix of rankq (q ≤ p), h a natural number andP = Ip−X(XtX)−1Xt.
Then

∫

Rq

∫

R+

1
σh

Np(y|Xθ, σ2Ip)dθdσ =
2

h−3
2 Γ

(
p+h−q−1

2

)

π
p−q
2 |XtX| 12 (ytPy)

p+h−q−1
2

.

PROOF. From lemma 1 the double integral becomes
∫

R+

exp
(− 1

2σ2 ytPy
)

(2π)
p−q
2 (σ2)

p+h−q
2 |XtX| 12

dσ.

Using the transformationt = ytPy
2σ2 , the preceding integral becomes

2
h−3

2

π
p−q
2 |XtX| 12 (ytPy)

p+h−q−1
2

∫

R+
t

p+h−q−1
2 −1e−tdt =

2
h−3

2 Γ
[

p+h−q−1
2

]

π
p−q
2 |XtX| 12 (ytPy)

p+h−q−1
2

.

This proves corollary 1. ¥

Lemma 2 LetK be ap× p symmetric matrix, and fori = 1, 2, let Xi bep× qi matrices of rankqi, with
qi ≤ p, θi vectors of lengthqi andAi symmetric positive definite matrices of dimensionsp× p, then

∫

Rp

(
ytKy

2∏

i=1

Np(y|Xiθi,Ai)

)
dy =

[
tr(E−1K) + DtE−1KE−1D

]
Np [X2θ2|X1θ1,A1 + A2] ,

whereD =
∑2

i=1 A−1
i Xiθi andE = A−1

1 + A−1
2 .

PROOF. SinceA1 andA2 are positive definite matrices, thenE is positive definite and hence there exists
a p × p lower triangular matrixC (the Cholesky decomposition) with non zero elements in the diagonal
such thatE = CCt. Furthermore, we have that:

1. |C| = |E| 12 .

2. (A1 + A2)−1 = A−1
1 E−1A−1

2 .

3. |A1 + A2| = |A1||A2||E|.
Using the identity,

(y −X1θ1)tA−1
1 (y −X1θ1) + (y −X2θ2)tA−1

2 (y −X2θ2)

=ytEy − 2yt(A−1
1 X1θ1 + A−1

2 X2θ2) + θt
1X

t
1A

−1
1 X1θ1 + θt

2X
t
2A

−1
2 X2θ2

=
[
Cty −C−1D

]t [
Cty −C−1D

]
+ (X2θ2 −X1θ1)t(A1 + A2)−1(X2θ2 −X1θ1),

along with the change of variablesu = Cty −C−1D, we conclude that

∫

Rp

ytKy
2∏

i=1

Np(y|Xiθi,Ai)dy =
exp

(− 1
2 (X2θ2 −X1θ1)t(A1 + A2)−1(X2θ2 −X1θ1)

)

(2π)
p
2 |A1| 12 |A2| 12 |E| 12

×
∫

Rp

[
utC−1K(Ct)−1u + Dt(CCt)−1K(CCt)−1D + 2Dt(CCt)−1K(Ct)−1u

]
Np(u|0, Ip)du

=
[
tr(C−1K(Ct)−1) + Dt(CCt)−1K(CCt)−1D

]
Np(X2θ2|X1θ1,A1 + A2).

To obtain the last equality we have used the fact that ifx has ak dimensional distribution with mean vector
µ and covariance matrixΣ, thenE [xtAx] = tr [AΣ] + µtAµ. This proves the assertion.¥

The following corollary is an immediate consequence of lemma 2.
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Corollary 2 Let K be ap × p symmetric matrix andX a p × q matrix of rankq, (q ≤ p) such that
KX = 0. Then, ifθi, i = 1, 2 are q dimensional vectors, we have

∫

Rp

ytKy
2∏

i=1

Np(y|Xθi, σ
2
i Ip)dy =

σ2
2 tr(K)|XtX|− 1

2

(2πσ2
1)

p−q
2

(
1 + σ2

2
σ2
1

) p−q+2
2

Nq(θ2|θ1, (σ2
1 + σ2

2)(XtX)−1).¤

Theorem 1 The intrinsic prior forα, σ1 conditional on an arbitrary but fixed pointγ1, σ0, turns out to be

πI(α, σ1|γ1, σ0) = Nk+1(α|γ, (σ2
0 + σ2

1)W−1)
1
σ0

(
1 +

σ2
1

σ2
0

)−3/2

, (3)

whereγ = (0t, γt
1)

t andW = ZtZ.

PROOF. Let z be a theoretical training sample of minimal size, andZ the corresponding matrix of re-
gressors. Consider forZ the same partition as in the design matrixX, that isZ = [Z0|Z1]. Note that
Zγ = Z1γ1, so that we can write

πI(α, σ1|γ1, σ0) = πN
1 (α, σ1)Ez|α,σ1

Nk+1(z|Zγ, σ2
0Ik+1)∫

Rk

∫
R+ Nk+1(z|Zα, σ2

1Ik+1)πN
1 (α, σ1)dαdσ1

=
c1

σ2
1

Ez|α,σ1

Nk+1(z|Zγ, σ2
0Ik+1)∫

Rk

∫
R+ Nk+1(z|Zα, σ2

1Ik+1) c1
σ2
1
dαdσ1

.

¿From corollary 2, we obtain

πI(α, σ1|γ1, σ0) =
(2π)

1
2 |W| 12
σ2

1

Ez|α,σ1z
tQzNk+1(z|Zγ, σ2

0Ik+1)

=
(2π)

1
2 |W| 12
σ2

1

∫

Rk+1
ztQzNk+1(z|Zγ, σ2

0Ik+1)Nk+1(z|Zα, σ2
1Ik+1)dz,

whereQ = Ik+1 − ZW−1Zt. The result follows from corollary 2 and the fact that tr(Q) = 1. ¥

For the particular case of testing the null hypothesisH0 : α = 0 versusH1 : α 6= 0, the intrinsic prior
for parametersα andσ1, conditional onσ0 turns out to be

πI(α, σ1|σ0) = Nk(α|0, (σ2
0 + σ2

1)W−1)
1
σ0

(
1 +

σ2
1

σ2
0

)−3/2

.

It is interesting to note that in the intrinsic prior above, the marginal density of the regression coefficient
vectorα is centered at the null, a claim made by Morris [12] for sharp null hypothesis.

Remark 1 From equation 3, it follows that the marginal intrinsic prior forσ1 conditional onγ1, σ0 is the
square root of an Inverted-Beta-2 density with parameters 1/2, 1 andσ2

0 (Raiffa and Schlaifer, [13], p. 221).
The marginal distribution ofα conditional onγ1, andσ0 is an elliptical multivariate distribution with mean
vectorγ. However, second and higher order moments do not exist since the mean of the mixing distribution
is infinite. This implies that the marginal conditional intrinsic prior forα has very heavy tails as expected
for a default prior. ¥
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3. Design considerations

Matrix W−1 in 3 depends on the theoretical regressors of a training sample of sizek + 1. A way to asses
W−1 is by using the underlying idea in the origin of the Arithmetic Intrinsic Bayes Factor (Berger and
Pericchi [1]) of averaging over all possible training samples of minimal size contained in the observed
sample. This would give the matrix

W−1 =
1
L

L∑

`=1

(Zt(`)Z(`))−1,

where{Z(`), ` = 1, . . . , L} is the set of all submatrices ofX of order(k+1)×k such that|Zt(`)Z(`)| 6= 0.

4. Bayes factor for intrinsic priors

For the dataD, the Bayes factor for testingH0 versusH1 with the intrinsic priorsπN
0 (γ1, σ0), πI(α, σ1),

say

B10(D) =
∫

Nn(y|Xα, σ2
1In)πI

1(α, σ1)dαdσ1∫
Nn(y|X1γ1, σ2

0In)πN
0 (γ1, σ0)dγ1dσ0

,

is given in theorem 2. First, we consider a previous result.

Lemma 3 LetX be ap× q matrix of rankq (q ≤ p). If θ1 andθ2 are vectors of lengthq andAi, i = 1, 2
are positive definite matrices, then

∫

Rq

Np(y|Xθ1,A1)Nq(θ1|θ2,A2)dθ1 = Np(y|Xθ2,A1 + XA2Xt).

PROOF. Consider the identity

(y −Xθ1)tA−1
1 (y −Xθ1) + (θ1 − θ2)tA−1

2 (θ1 − θ2)

=(θ1 − θ2)tB(θ1 − θ2) + (y −Xθ2)tA−1
1 (y −Xθ2)− 2(y −Xθ2)tA−1

1 X(θ1 − θ2),

whereB = A−1
2 + X′A−1

1 X. Using this identity, we have
∫

Rq

Np(y|Xθ1,A1)Nq(θ1|θ2,A2)dθ1

=
exp

(− 1
2 (y −Xθ2)tA−1

1 (y + Xθ2)
)

(2π)
p
2 |A1| 12 |A2| 12 |B| 12

∫

Rq

exp
(
(y −Xθ2)tA−1

1 Xθ1

)
Nq(θ1|θ2,B−1)dθ1

=
exp

(− 1
2 (y −Xθ2)tA−1

1 (y + Xθ2)
)

(2π)
p
2 |A1| 12 |A2| 12 |B| 12

Mθ1,θ2,B−1(XtA−1
1 (y −Xθ2))

=
exp

(− 1
2 (y −Xθ2)t

[
A−1

1 −A−1
1 XB−1XtA−1

1

]
(y −Xθ2)

)

(2π)
p
2 |A1| 12 |A2| 12 |B| 12

= Np(y|Xθ2,A1 + XA2Xt).

The last equality follows from the standard matrix results:

1. If P = A + CBD, thenP−1 = A−1 −A−1C
(
B−1 + DA−1C

)−1
DA−1.

2. LetA andB be matrices of dimensionp×q andq×p, respectively. Then, it follows that|Ip+AB| =
|Iq + BA|. ¥
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Theorem 2 The Bayes factor for comparing models

M0 : {Nn(y|X1γ1, σ
2
1In), πN

0 (γ1, σ0)}
and

M1 : {Nn(y|Xα, σ2
1In), πI

1(α, σ1)},
turns out to be

B10(D) = |Xt
1X1|1/2(yt(In −H1)y)(n−k1+1)/2I0,

whereH1 = X1(Xt
1X1)−1Xt

1,

I0 =
∫ π/2

0

dϕ

|A(ϕ)|1/2 |B(ϕ)|1/2 E(ϕ)(n−k1+1)/2
,

and
B(ϕ) = (sin2 ϕ)In + XW−1Xt; A(ϕ) = Xt

1B(ϕ)−1X1,

E(ϕ) = yt(B(ϕ)−1 −B(ϕ)−1X1A(ϕ)−1Xt
1B(ϕ)−1)y.

PROOF. From corollary 1, the marginal of the data under modelM0 is

m0(D) =
∫

Rk1

∫

R+
Nn(y|X1γ1, σ

2
0In)πN

0 (γ1, σ0)dγ1dσ0

=
c0Γ

(
n−k1+1

2

)
√

2π
n−k1

2 |Xt
1X1| 12 (yt(In −H1)y)

n−k1+1
2

.

The marginal ofD under modelM1 is formally written as

m1(D) =
∫

Rk1

∫

R+

∫

Rk

∫

R+
Nn(y|Xα, σ2

1In)πI
1(α, σ1|γ1, σ0)πN

0 (γ1, σ0)dαdγ1dσ1dσ0.

To evaluate the multiple integral we note thatXγ = X1γ1, and from lemmas 3 and 1, we obtain
∫

Rk

∫

Rk1

Nn(y|Xα, σ2
1In)Nk(α|γ, (σ2

0 + σ2
1)W−1)dαdγ1

=
∫

Rk1

Nn(y|X1γ1,Σ) dγ1 =
exp

(− 1
2y

tAΣy
)

(2π)
n−k1

2 |Σ| 12 |Xt
1Σ−1X1| 12

,

whereΣ = σ2
0In + (σ2

0 + σ2
1)XW−1Xt and

AΣ = Σ−1 −Σ−1X1(Xt
1Σ

−1X1)−1Xt
1Σ

−1.

Therefore,

m1(D) = c0

∫

R+

∫

R+

exp
(− 1

2y
tAΣy

)

(2π)
n−k1

2 |Σ| 12 |Xt
1Σ−1X1| 12 σ3

0

(
1 + σ2

1
σ2
0

) 3
2
dσ0dσ1.

Changingσ0 andσ1 to polar coordinates, after some tedious but simple computations, renders

m1(D) =
c0Γ

(
n−k1+1

2

)
√

2π
n−k1

2

∫ π
2

0

dϕ

|B(ϕ)| 12 |A(ϕ)| 12 E(ϕ)
n−k1+1

2

.

The Bayes factorB10(D) is now obtained as the ratiom1(D)/m0(D) and this proves theorem 2.¥
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For the particular case of testing the null hypothesisH0 : α = 0 versusH1 : α 6= 0, the Bayes factor
turns out to be

B10(D) = (yty)(n+1)/2

∫ π/2

0

dϕ

|B(ϕ)|1/2E1(ϕ)(n+1)/2
,

where
E1(ϕ) = ytB(ϕ)−1y.

5. Conclusions

Theorem 2 provides an automatic simple tool for the solution of the problem of testing general hypothesis of
the form given by equation 1. In particular, this methodology can be applied to investigating the influence
of some subsets of regressors in normal linear models, as is the case of matched pairs data, where the
effectiveness of a treatment is under test.

Simulation results show that the performance of the Bayes Factor for intrinsic priors is very satisfactory
(Girón, et al., [5]). Further, this methodology is easily interpretable, takes into account the sample size
and the design matrix automatically, which represents an important improvement over existing competing
methods.
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