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Intrinsic priors for hypothesis testing in normal regression
models

Elias Moreno, F. Javier Gir 6n and Francisco Torres

Abstract. Testing that some regression coefficients are equal to zero is an important problem in many
applications. Homoscedasticity is not necessarily a realistic condition in this setting and, as a conse-
quence, no frequentist test there exist. Approximate tests have been proposed.

In this paper a Bayesian analysis of this problem is carried out, from a default Bayesian model choice
perspective. Explicit expressions for intrinsic priors are provided, and it is shown that the corresponding
Bayes factor is computed with the help of very simple numerical computations.

Distribuciones a priori intrinsecas para modelos de regresi on normales

Resumen. En muchas aplicaciones es frecuente enfrentarse con el problema de contrastar si algunos
coeficientes de regrési son nulos. Dicho problema se resuelve, bajo el punto de vista frecuentista,
imponiendo la hiptesis de homocedasticidad. Sin embargo esta supnsici es asumible en general,
proporcior@ndose en tales casos tests aproximados.

En este aitulo se realiza un alisis bayesiano de este problema a partir de la perspectiva bayesiana
de selecd@n de modelos. Se obtienen expresionesieitpb para las distribuciones a priori imsecas
y se comprueba que los factores Bayes asociados se reducen a expreésidmente calculables con
métodos nuraricos.

1. Introduction

Suppose that the observable random varidbléollows a normal regression model with covariates

r1,...,2,. Thatis, the density of a sample;, xi1, ..., 2i), i = 1,...,n, is N,(y|Xa, 0?L,), where
y = (y1,...,yn)t, a is the column vector made up with the interceptand the regression coefficients
a1, ..., q Oof the covariates:, . . ., z, I, is the identity matrix of size x n, andX is then x (k + 1)
design matrix

1 11 .. Tk

1 T21 e T2k

X =
1 Tnl e Ipk

The nuisance parameteris unknown. The data is denotedBs= (y, X).
The main motivation in considering this model comes from the analysis of matched pair&meBir
al. [5]. In the matched pairs problem the veciois typically a difference between a posttreatment and
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the pretreatment measure drawn from each individual of a populatianirdividuals and each of them
receives a dose of a treatment, possibly multidimensional, that here might be represented by a subvector of
the covariates vector. Furthermore, the population is assumed to be a nonhomogeneous group, so that the
treatment effect may depend on the dose levels of the treatment and on some characteristics of the patients
measured by a set of values of a certain set of covariates. In that paper was shown that testing the null
hypothesis that a subvectay of « of lengthkq has all its components equal to zero plays a central role in
the matched pairs problem.

Let us consider the partition efasa = (af, of)* and letX = (X,|X) be the corresponding partition
of the columns of the design matriX. Thus,X, is an x kg matrix andX; an x k; matrix, where
k1 =k + 1 — ko. Then, the above testing problem can be formulated as

Hy:ap =0 versusHy : ag # 0. (1)

We remark that whenyy = 0 the meaning of the remaining coefficientsdarchanges and, thus, we will
denote them as;. It is also clear that the nuisance parametemder the null and under the alternative
is not necessarily the same. Therefore, homoscedasticity of the sampling model$iyraaet H, should
not be imposed. Hence, under the null the sampling modet fera multivariate normal distribution with
mean vectoiX;v; and covariance matrix?L,,, that isy «~ N, (y|X171,021,), and under the alternative
the sampling model foy is a N, (y|Xa, 0%1,,). As a consequence no frequentist test does exist, although
some approximations are available (see, for instance, Chow (1960)).

Assuming vague prior information dh:, 0g) and(a, o1) the testing problem 1 can be formulated as a
model selection problem between the two conventional Bayesian models

My : N, (y| X171, 081,), 73 (71, 00) = co/og,

and
M : Nn(y\Xa,a%In), W{V(a,al) = 01/0%,

wherecy ande; are arbitrary positive constant that cannot be determined because the priors are improper.
For the usuab — 1 loss function, modeM, is chosen ifP(My|D) > P(M;|D). The model posterior
probabilities are computed assuming the conventional default pidf,) = P(M;) = 1/2 on the set of
models{ My, M1}. Then, we can write

1

P(My|D) = T+ BY(D)’

whereB{Y (D) represents the Bayes factor for comparing mddeland M, and is given by

BN /(D) = fNn(}’|on,U%In)wg(a,ol)dadol .
an(lelfYLU%I”)TFO (7170-0)d'71d0'0

The latter expression shows that the usual reference priors cannot be used for model choice because they
leave the Bayes factor defined up to the arbitrary multiplicative constdng. The goal of this paper is

to derive sensible priors for computing a well-defined Bayes factor for comparing mbgletnd M.

In section 2 it is shown that the intrinsic methodology can be applied to deriving intrinsic priors from the
conventionalr} (v1, o9) andn¥ (o, o1 ) considered above. In section 3 the Bayes factor for intrinsic priors

is found and we observe that it requires very few computational efforts. Some conclusions are stated in the
final section 4.

2. Intrinsic priors

The intrinsic prior methodology was introduced by Berger and Pericchi [1] to overcome the difficulty aris-
ing with the conventional prior in model selection problems. The difficulty arises because the conventional
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priors for the candidate models are typically improper and then the Bayes factor is defined up to a multi-
plicative constant, as occurs in testing regression coefficients considered above. Further developments of
the method were given by Moreno, Bertolino and Racugno [7].

Justifications for the use of intrinsic priors for model selection have been given by Berger and Pericchi
(111, 121, [3], [4]), Moreno [6], and Moreno Bertolino and Racugno [7]. The method has proven to provide
sensible prior for a wide variety of model selection problems involving nested models; see, for instance,
Berger and Pericchi ([1], [4]), Gan et al. [5], Moreno, Bertolino and Racugno ([7], [8], [9]), Moreno and
Liseo [10]), Moreno, Torres and Casella [11].

We note that the sampling modal, (y|X1v1,021,) is nested inN,, (y|Xa, 071,,). This allows for
the application of the intrinsic methodology. Following Moreno, Bertolino and Racugno [7], the intrinsic
priors for modelM, and M; can be derived as follows. Let us consider a theoretical training sample

of minimal size for the full model, say(z;,z1;,...,2x;), 5 = 1,...,k + 1}. Hence, we have -
Nii1(z|Za, 031441), Wwherez = (21, ..., zx41)%, and
T11 Tik
T21 Tk
Z = .
Tk+1,1  --- Tk+1,k

Then, the intrinsic prior fotv, o1 conditional on an arbitrary but fixed point, oq is given by
(o, 01|11, 00) = 7} (@, 01) Byja,0, BY (), (2

where the expectation is taken with respect to the dedéity; (z|Za, 03154 1).

By constructiont! (a, o1|v1, 00) is a probability density for any point, . The unconditional intrin-
sic prior fora, oy is obtained by integrating ogt ando with respect to the conventional prigg (1, o),
that is

(o, 01) = /WI(OZ,01|717Uo)ﬂé\’(%,ao)d’hd(’&

The pair(7¥ (v1, 00), 71 (a, 01)) is called the intrinsic priors for comparing, and)/; and although they
are improper, (i) they are well calibrated since both depend on the same arbitrary cogsaact (i) they
are a well established limit of proper priors.

In what follows, the moment generating function gf-&ariate normal distributiodV, (y|¢, ) will be
denoted ad/y ¢ 5 (1).

Lemma 1l LetX be ap x ¢ matrix of rankq (¢ < p) andX ap x p positive definite matrix. Then

xp (—iyt [B71 - EIX(XIEIX)IXIS ] y)

e
N, (y|0,)do = i :
/]Rq r(vl ) (2m) 2 |22 Xt 21X 2

PrRoOF Expanding the quadratic form iN,(y|0, ), it is immediate to see that

exp (—3y'S~ly) [(X!E1X| "3
(2m) 5 3]
exp (—%ytﬁ_ly) |Xt2_1X|_%

= M, R B thfl ;
(2m) 5 3| 0,0, (xtz-1%)-1 ( y)

N,(y|0,%)do = / exp (y'Z7'X0) N, (00, (X'="'X)"")do
R4 Ra

and the result follows. W
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Corollary 1 LetX be ap x ¢ matrix of rankg (¢ < p), h a natural number an® = I, — X(X'X) X"
Then
D) hga 1'\ (p-‘rh;q—l)
/ / — Np(y[X, 0’1,)dfdo = — - -
wo S 0 XX (y'Py)

PROOE From lemma 1 the double integral becomes

/ exp (—5zy'Py)
(2m) 7" (02) "= [X!X]|2

Using the transformation= Py , the preceding integral becomes

- h=3 +h—q—1
2}23 pihog |, 2= T |:p 24 :|
— - P t 2 e 'dt = — — - T
w2 |XtX[2 (y'Py) Rt 2 | XIX][2 (y'Py) 2

This proves corollary 1. B

Lemma 2 LetK be ap x p symmetric matrix, and far= 1, 2, let X; bep x ¢; matrices of ranky;, with
q; < p, 0; vectors of lengtly; and A; symmetric positive definite matrices of dimensipnsp, then

2
/ (ytKyH Np(y|Xi9i7AZ-)> dy = [tr((E"'K) + D'E"'KE"'D] N, [X205|X161, A1 + As],
RP X

whereD = 32 A7'X,0; andE = AT + AL

PROOF SinceA; andA. are positive definite matrices, th&his positive definite and hence there exists
ap x p lower triangular matrixC (the Cholesky decomposition) with non zero elements in the diagonal
such thatt = CCt. Furthermore, we have that:

1. |C| = [E|=.
2. (AL +Ay) L= AT'ETTASL
3. [A1 4 Asf = [A4]|A|[E].
Using the identity,
(y — X161) AT (y — X161) + (y — Xo62)'AS ' (y — Xa6s)
=y'Ey — 2y' (AT X160, + AS'X00,) + 01 XTAT X0, 4 05X5AS X0,
—[C'y — C7'D]" [C'y — C7'D] + (Xas — X161) (A1 + Az) " (Xab — X,6),

along with the change of variables= C'y — C~'D, we conclude that

2 1 t -1

€xXp _*(X2'92 - X191) (Al + Ag) (X292 — X191)

/ YKy [ No(y|Xibs, Ai)dy = 2 T — )
R i=1 (2m)2|A1|2|Ag]Z [E|2

X / [w'CT'K(C") 'u+ D*(CC")"'K(CC")"'D + 2D*(CC")'K(C")"u] N,(ul0,1,)du
RP
= [tr(CT'K(C")™") + DY(CC")'K(CC") 'D] N, (X262 X161, A1 + As).

To obtain the last equality we have used the fact thathifis ak dimensional distribution with mean vector
w and covariance matrix, thenF [x! Ax| = tr [AX] + p! Au. This proves the assertion

The following corollary is an immediate consequence of lemma 2.
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Corollary 2 LetK be ap x p symmetric matrix andX a p x ¢ matrix of rankq, (¢ < p) such that
KX = 0. Then, if¢;, : = 1, 2 are ¢ dimensional vectors, we have

2 2 t _1
ostr(K) | X'X| ™2 _
[ 'y T Mtyixos, oy = — ZEIEEL o, o + o) x%) ) 0
RP

=1 (2mo?)*=z" (1 + Z—%) ’

Theorem 1 The intrinsic prior fora, o conditional on an arbitrary but fixed point, , g, turns out to be

B 1 0_2 —3/2
(ao1hna) = Nia(abi (@ + AW L (145 ) @
0

wherey = (0%,~4})! andW = Z'Z.

PROOFE Let z be a theoretical training sample of minimal size, &tthe corresponding matrix of re-
gressors. Consider fd& the same partition as in the design mafRx that isZ = [Zy|Z,]. Note that
Z~ = 77, so that we can write

Niy1(2z|Zry, 03151 1)

I N k+1 Y, 004k+1

7 (o, 01|71, 00) = 7 (0, 01)Eqja 0
( | ) v VB ' ek Jor Nes1(2|Zo, 031 1) 7] (@, 01)dadoy

_ap Ni11(2|Zv, 0815 41)
o7 fo Jor Niewt (22, 07y 41) Shdadoy

¢ From corollary 2, we obtain

27)3 (W3
(o, 01|71, 00) = %Ezw,althZNk—o—l(ﬂz’%0(2)1k+1)

= BEE [ o QaNi (012, T Vi (2120, 03T
R c

whereQ = I, — ZW ~'Z!. The result follows from corollary 2 and the factthai@) = 1. H

For the particular case of testing the null hypothdgis: o = 0 versusH; : « # 0, the intrinsic prior
for parametersr ando, conditional oo turns out to be

- 1 0_2 —3/2
! (o, 01]00) = Ni,(a]0, (0§ +oF)W 1) — (1 + 5) :
oo gg

It is interesting to note that in the intrinsic prior above, the marginal density of the regression coefficient
vectora is centered at the null, a claim made by Morris [12] for sharp null hypothesis.

Remark 1 From equation 3, it follows that the marginal intrinsic prior far conditional ony,, o is the
square root of an Inverted-Beta-2 density with parameters 1/2, tf(Raiffa and Schlaifer, [13], p. 221).

The marginal distribution ofr conditional orry;, andoy is an elliptical multivariate distribution with mean
vectory. However, second and higher order moments do not exist since the mean of the mixing distribution
is infinite. This implies that the marginal conditional intrinsic prior fohas very heavy tails as expected

for a default prior. W
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3. Design considerations
Matrix W' in 3 depends on the theoretical regressors of a training sample of size A way to asses
W1 is by using the underlying idea in the origin of the Arithmetic Intrinsic Bayes Factor (Berger and

Pericchi [1]) of averaging over all possible training samples of minimal size contained in the observed
sample. This would give the matrix

where{Z(¢),¢ = 1,..., L} is the set of all submatrices & of order(k+1) x k such thatZ* (¢)Z(¢)| # 0.

4. Bayes factor for intrinsic priors

For the dateD, the Bayes factor for testing, versusH; with the intrinsic priorst’ (1, 00), 7! (a, o1),
say

f Nn(Y|Xa7 O—%In)ﬂf (Oé, Ul)dOédUl
B1o(D) = 2 N )
J Na(y|Xa71, 08L) 76 (71, 00)dyidor
is given in theorem 2. First, we consider a previous result.

Lemma 3 LetX be ap x ¢ matrix of rankg (¢ < p). If ; andf, are vectors of length andA;,i = 1,2
are positive definite matrices, then

/ Np(y|X01, A1)Ny(01]602, As)dfy = N, (y| X602, A; + XAXH).
Ra

PROOFE Consider the identity

(y — X01) AT (y — X01) + (01 — 02) Ay (01 — 02)
=(01 — 02)"B(01 — 02) + (y — X02) AT (y — X62) — 2(y — X62) AT X(6; — 62),

whereB = A; ' + X’A['X. Using this identity, we have

Nyp(y X1, A1) Ny(01]02, Ag)dt:
R4

_exp (—3(y — X62)' AT (y + X62))
- (27)%|A1|2|Ag|3|B]2

1 tA—1
N = (22(7ry)5|f162;|j21§?]};: X0 My, o, -1 (X'AT ! (y — X6,))
_exp (—5(y — X6)' [AT — ATTXBTIXIA T (y — X6s))
- (27)%|A1|7|Ao|3|B]2
= Np(y|X927A1 + X.A.Q:X.t)

/ exp ((y — X92>tA;1X91) Nq(€1\92, B_l)d91
Ra

The last equality follows from the standard matrix results:
1. fP=A+CBD,thenP~' =A~' - A"!C (B! + DA*lc)f1 DAL

2. Let A andB be matrices of dimensianx g andg x p, respectively. Then, it follows thal, + AB| =
I, + BA|. N
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Theorem 2 The Bayes factor for comparing models

Mo : {N,,(y| X171, 07L,), 7 (71, 00)}

and
My : {N,(y|Xa, UfIn), 71'{(0[, o1)},

turns out to be
Bio(D) = XX Y2 (y! (I, — Hy)y) " R HD/2 ],

whereH; = X (X{X;)"1X?,

w/2 d@
I = / |
o A2 B(p)|1/2 E(p)n—kit1)/2

and
B(p) = (sin? o)L, + XWX A(p) = XiB(p) Xy,

E(p) =y'(B(p) ' —B(p) ' X1A(p) ' XIB(p) y.

PROOF From corollary 1, the marginal of the data under matlglis
mo(D) = / / No(y|X171,05L,) 70 (71, 00)dyidog
R*1 JRT

ol (2=l
n—kq t 1 t n—ky+1 °
Ver = (XX [ (vH(T, - Hy)y) 2
The marginal oD under model\/; is formally written as

ml(D):/ / / Nn(y|on,crfln)ﬂ'{(a,alhl,Ug)ﬂév('yl,ao)dad'yldaldao.
Rk JR+ JRE JRF

To evaluate the multiple integral we note tB& = X,+,, and from lemmas 3 and 1, we obtain
[ [ NalyXa. ot Nulaly, (0 + o)W dady,
RF JR*1

1.,t
exp (—5y ' Asy
== Nn(y‘Xlrylvz) d’Yl = n—kq ( 21 ) L0
R (2m) 2 B IX{E1X )2

whereX = 631, + (02 + 0?)XW X" and

Ay =3 - 37IX; (X! Z 71X, IXiz~h

Therefore,

n— 2

K N -
) SRXEEX o (14 5 )
0

_1ytA
m1(D) = co/ / exp( 2 Ey) Fdogdo.
Rt JRT (2

Changingry ando; to polar coordinates, after some tedious but simple computations, renders

col (=5) % dp
n—ky1+1 °

m1(D) = n—k; : 1 1
) Vo /0 IB(o)Iz|A(p)|2E(p) 2

The Bayes factoB;(D) is now obtained as the ratin; (D)/m( (D) and this proves theorem 21
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For the particular case of testing the null hypothéd$js: a = 0 versusH, : a # 0, the Bayes factor
turns out to be

/2 d
Bio(D) = (y' <”+”/2/ -
10( ) (y Y) 0 |B((p)|1/2E1(<p)(n+1)/2’

where
Ei(p) =y'B(p)ly.

5. Conclusions

Theorem 2 provides an automatic simple tool for the solution of the problem of testing general hypothesis of
the form given by equation 1. In particular, this methodology can be applied to investigating the influence
of some subsets of regressors in normal linear models, as is the case of matched pairs data, where the
effectiveness of a treatment is under test.

Simulation results show that the performance of the Bayes Factor for intrinsic priors is very satisfactory
(Girbn, et al, [5]). Further, this methodology is easily interpretable, takes into account the sample size
and the design matrix automatically, which represents an important improvement over existing competing
methods.
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