RACSAM

Rev. R. Acad. Cien. Serie A. Mat. VOL. **97** (1), 2003, pp. 37–40 Análisis Matemático / Mathematical Analysis Comunicación Preliminar / Preliminary Communication

On suprabarrelledness of $c_0(\Omega, X)$

M. López Pellicer and S. Moll

Abstract. Assuming that Ω is a non-empty set and X is a real or complex normed space, we show that the linear space $c_0(\Omega,X)$ of all functions $f:\Omega\to X$ such that for each $\varepsilon>0$ the set $\{\omega\in\Omega:\|f(\omega)\|>\varepsilon\}$ is finite, endowed with the supremum norm, is suprabarrelled if and only if X is suprabarrelled.

Supratonelación en $c_0(\Omega, X)$

Resumen. Si Ω es un conjunto no vacío y X es un espacio normado real o complejo, se tiene que, con la norma supremo, el espacio $c_0(\Omega,X)$ formado por las funciones $f:\Omega\to X$ tales que para cada $\varepsilon>0$ el conjunto $\{\omega\in\Omega:\|f(\omega)\|>\varepsilon\}$ es finito es supratonelado si y sólo si X es supratonelado.

1. Preliminaries

Along this paper Ω will denote a non-empty set and X a normed space over the field $\mathbb K$ of real or complex numbers. We represent by $c_0(\Omega,X)$ the linear space over $\mathbb K$ of all those functions $f:\Omega\longrightarrow X$ such that for each $\varepsilon>0$ the set $\{\omega\in\Omega:\|f(\omega)\|>\varepsilon\}$ is finite or empty, equipped with the supremum norm $\|f\|_\infty=\sup\{\|f(\omega)\|:\omega\in\Omega\}$. Since the support of f is $\bigcup_{n=1}^\infty \{\omega\in\Omega:\|f(\omega)\|>\frac{1}{n}\}$, each $f\in c_0(\Omega,X)$ is countably supported.

If Γ is a (possibly empty) subset of Ω , we denote by $c_0(\Gamma, X)$ the linear subspace of $c_0(\Omega, X)$ consisting of all those functions f with $f(\Omega - \Gamma) = \{0\}$.

If Ω is countable infinite, then we shall write $c_0(X)$ instead of $c_0(\Omega, X)$ ([10]). Hence $c_0(X)$ is the linear space of all sequences in X convergent to zero, endowed with the supremum norm.

Let us recall that a (Hausdorff) locally convex space E is barrelled if each barrel (*i.e.* each absorbing closed absolutely convex set) in E is a neighbourhood of the origin (see [11], 3.1.2).

An increasing p-web in a set Y (see [1]) is a family $\mathcal{W} = \{E_t : t \in T_p\}$, with $T_p = \bigcup_{k=1}^p \mathbb{N}^k$, such that $Y = \bigcup_{n \in \mathbb{N}} E_n$, $E_n \subset E_{n+1}$, $E_t = \bigcup_{n \in \mathbb{N}} E_{t,n}$ and $E_{t,n} \subset E_{t,n+1}$, for $t \in T_{p-1}$ and $n \in \mathbb{N}$. If Y is a vector space and every E_t is a linear subspace of Y, we say then that \mathcal{W} is a linear increasing p-web.

A (Hausdorff) locally convex space E is called p-barrelled if given in E a linear increasing p-web $\mathcal{W} = \{E_t : t \in T_p\}$ there is a $t \in \mathbb{N}^p$ such that E_t is barrelled and dense in E (see [4], [6], [8], [12] and [13]). The 1-barrelled spaces were introduced by Valdivia ([18]) with the name of suprabarrelled spaces, called (db) in [14] and [16].

Presentado por Manuel Valdivia.

Recibido: 20 de Diciembre de 2002. Aceptado: 15 de Enero de 2003.

Palabras clave / Keywords: Barrelled space, suprabarrelled space, Baire-like spaces.

Mathematics Subject Classifications: 46A08, 46B25

© 2003 Real Academia de Ciencias, España.

In [7] it is proved that $c_0(\Omega,X)$ is either barrelled, ultrabornological, or unordered Baire-like (UBL for short, [17]) if and only if X is, respectively, barrelled, ultrabornological or UBL. The case of real or complex continuous functions spaces defined on a locally compact space and vanishing at infinity is considered in [3]. Before [7] there were only a few examples of vector valued functions spaces which were UBL whenever X is (non-complete) UBL. It is natural to ask whether or not the preceding considerations are also true in the class of suprabarrelled spaces, because UBL spaces are suprabarrelled ([6], 3.1 and 3.2.2) and suprabarrelled spaces enjoy useful properties, for instance it is well known that the linear mappings with closed graph from a suprabarrelled space into a (LB)-space have strong localizations properties (see, for instance, [5], [9], [15], [17], [18] and [20]). In this paper we shall prove that $c_0(\Omega, X)$ is suprabarrelled if and only if X is suprabarrelled. Also a new property about linear increasing 1—webs in $c_0(\Omega, X)$ will be obtained. In what follows $\langle V \rangle$ means the linear hull of V. We are going to use the classical notation given, for instance, in [2] and [19].

2. Suprabarrelledness in $c_0(\Omega, X)$

Let us suppose that $c_0(\Omega,X)$ is the union of an increasing sequence $\{F_n\}_{n=1}^{\infty}$ of subspaces. Let T_n be a barrel in F_n , $V_n = \overline{T_n}^{c_0(\Omega,X)}$, $Z_n = \langle V_n \rangle$ and $S_n = \bigcap \{Z_m : m \geq n\}$. From $F_n \subset S_n$ it follows that $c_0(\Omega,X) = \bigcup_{n=1}^{\infty} S_n$.

Lemma 1 If F is a suprabarrelled subspace of $c_0(\Omega, X)$ there exists $n \in \mathbb{N}$ such that $F \subset S_n$.

PROOF. $\{F \cap S_n : n \in \mathbb{N}\}$ is an increasing covering of F. The suprabarrelledness implies that there is an $F \cap S_n$ which is barrelled and dense in F. Then, if $m \geq n$ we have that $\overline{T_m}^{c_0(\Omega,X)}$ contains a neighbourhood of 0 in $F \cap S_n$. By density we have that $\overline{T_m}^{c_0(\Omega,X)}$ also contains a neighbourhood of 0 in F. This implies that $F \subset Z_m$ when $m \geq n$. It follows that $F \subset \bigcap \{Z_m : m \geq n\} = S_n$.

The preceding lemma has the following obvious extension which will be useful in the end of Proposition 1.

Lemma 2 Let F be a subspace of $c_0(\Omega, X)$ and \mathcal{T} a locally convex topology in F finer than the induced by $c_0(\Omega, X)$. If (F, \mathcal{T}) is suprabarrelled there exists $n \in \mathbb{N}$ such that $F \subset S_n$.

PROOF. Since $\{F \cap S_n : n \in \mathbb{N}\}$ is an increasing covering of (F,\mathcal{T}) there exists an $(F \cap S_n, \mathcal{T}_{F \cap S_n})$ which is barrelled and dense in (F,\mathcal{T}) . If $n \leq m$, then $F \cap S_n \cap \overline{T_m}^{c_0(\Omega,X)}$ is a barrel in $F \cap S_n$ endowed with the topology induced by \mathcal{T} . Therefore $\overline{T_m}^{c_0(\Omega,X)}$ contains a neighbourhood of 0 in (F,\mathcal{T}) , implying that $F \subset Z_m$ when $m \geq n$. Then $F \subset \bigcap \{Z_m : m \geq n\} = S_n$.

Proposition 1 There exists a finite set Δ (possibly empty) and a natural n such that $c_0(\Omega \setminus \Delta, X) \subset S_n$.

PROOF. First step: We are going to prove that there exists a countable set Δ and a natural number n such that $c_0(\Omega \setminus \Delta, X) \subset S_n$. If this were not true, there would be a $f_1 \in c_0(\Omega, X)$ with $||f_1||_{\infty} = 1$ and $f_1 \notin S_1$

The set $\Delta_1 = \operatorname{supp}(f_1)$ is countable and from $c_0(\Omega \setminus \Delta_1, X) \nsubseteq S_2$ we deduce the existence of a $f_2 \in c_0(\Omega \setminus \Delta_1, X)$ with $\|f_2\|_{\infty} = 1$ and $f_2 \notin S_2$. The set $\Delta_2 = \operatorname{supp}(f_2)$ is countable and we choose $f_3 \in c_0(\Omega \setminus \{\Delta_1 \cup \Delta_2\}, X)$ with $\|f_3\|_{\infty} = 1$ and $f_3 \notin S_3$.

By induction we would obtain a bounded sequence $\{f_n:n\in\mathbb{N}\}$ in $c_0(\Omega,X)$ and a pairwise disjoint sequence $\{\Delta_n:n\in\mathbb{N}\}$ of countable subsets of Ω such that $\Delta_n=\operatorname{supp}(f_n),$ $\|f_n\|_{\infty}=1$ and $f_n\notin S_n$ for each $n\in\mathbb{N}$.

The mapping φ from c_0 into $c_0(\Omega,X)$ defined by $\varphi\left(\{\xi_n:n\in\mathbb{N}\}\right)=\sum_{n=1}^\infty \xi_n f_n$ is well-defined since $\{\xi_n:n\in\mathbb{N}\}\in c_0,\,\{f_n:n\in\mathbb{N}\}$ is bounded and for $\omega\in\Omega$ we have that $\sum_{n=1}^\infty \xi_n f_n(\omega)$ has at most one

non-null term. It is also obvious that φ is an isometry onto and then, by Lemma 1, we have that there exists an $n \in \mathbb{N}$ such that $\varphi(c_0) \subset S_n$. Then the relation $f_n \in \varphi(c_0) \subset S_n$ contradicts the choice $f_n \notin S_n$ and with this contradiction concludes the first part of the proof. Without loss of generality we may suppose that $\Lambda = \mathbb{N}$.

Second step: We are going to prove that there is a natural number i such that $c_0(\mathbb{N}\setminus\{1,2,3,\ldots,i\},X)$ $\subset S_i$.

In fact, if $c_0(\mathbb{N}\setminus\{1,2,3,\ldots,i\}\,,X)\nsubseteq S_i$, for $i=1,2,3,\ldots$ then there exists a sequence $\{f_i:i\in\mathbb{N}\}$ such that $f_i\in c_0(\mathbb{N}\setminus\{1,2,3,\ldots,i\}\,,X)-S_i$ and $\|f_i\|_\infty=1$ for $i=1,2,3,\ldots$. Then the mapping φ from l_1 into $c_0(\mathbb{N},X)$ defined by

$$\varphi\left(\left\{\xi_n:n\in\mathbb{N}\right\}\right)=\sum_{n=1}^{\infty}\xi_nf_n$$

is well-defined since $\sum_{n=1}^{\infty} \xi_n f_n(i)$ has at most i-1 non-null terms, and $\sum_{n=1}^{\infty} \xi_n f_n \in c_0(\mathbb{N},X)$ because if $\varepsilon > 0$ there is a k such that $\sum_{n=k}^{\infty} |\xi_n| < \frac{\varepsilon}{2}$, implying that $\left\|\sum_{n=k}^{\infty} \xi_n f_n\right\|_{\infty} < \frac{\varepsilon}{2}$. Since $\sum_{n=1}^{k-1} \xi_n f_n \in c_0(\mathbb{N},X)$ there exists a $p \in \mathbb{N}$ such that $\left\|\sum_{n=1}^{k-1} \xi_n f_n(i)\right\| < \frac{\varepsilon}{2}$ when $i \geq p$. Therefore $\left\|\sum_{n=1}^{\infty} \xi_n f_n(i)\right\| \leq \left\|\sum_{n=1}^{k-1} \xi_n f_n(i)\right\| + \left\|\sum_{n=k}^{\infty} \xi_n f_n(i)\right\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ for $i \geq p$, which proves that $\sum_{n=1}^{\infty} \xi_n f_n \in c_0(\mathbb{N},X)$. If $\xi \in l_1$ we have that $\|\varphi(\xi)\| \leq \|\xi\|_1$. The continuity of φ enables us to consider in $\varphi(l_1)$ the finest

If $\xi \in l_1$ we have that $\|\varphi(\xi)\| \leq \|\xi\|_1$. The continuity of φ enables us to consider in $\varphi(l_1)$ the finest locally convex topology \mathcal{T} such that $\varphi: l_1 \to (\varphi(l_1), \mathcal{T})$ is continuous. Then \mathcal{T} is finer than the topology induced by $c_0(\mathbb{N}, X)$ and $(\varphi(l_1), \mathcal{T})$ is suprabarrelled because it is isometric to a quotient of l_1 . Then, by Lemma 2, there exists an $n \in \mathbb{N}$ such that $\varphi(l_1) \subset S_n$, giving the contradiction $f_n \in \varphi(l_1) \subset S_n$. This establishes this second step.

The two steps give directly the proposition.

Theorem 1 If X is suprabarrelled there is a natural n such that $c_0(\Omega, X) = S_n$.

PROOF. By the preceding proposition we only need to prove that if Δ is a finite set there is a $n \in \mathbb{N}$ such that $c_0(\Delta, X) \subset S_n$. This follows from the Lemma 1, the isomorphism $c_0(\Delta, X) = X^{\Delta}$ and the fact that the product of suprabarrelled spaces is suprabarrelled (see Proposition 3.2.10 in [6])

Theorem 2 X is suprabarrelled if and only if $c_0(\Omega, X)$ is suprabarrelled, being Ω a non-void set.

PROOF. For $p \in \Omega$, the spaces X and the quotient $c_0(\Omega, X) / c_0(\Omega \setminus \{p\}, X)$ are isometric. Then, if $c_0(\Omega, X)$ is suprabarrelled we have that X is suprabarrelled by Proposition 3.2.12 in [6].

Conversely, if X is suprabarrelled we have that $c_0(\Omega, X)$ is Baire-like [15] by Proposition 2.2 in [7] and Proposition 1.2.1 in [6]. Then, if $\{F_n : n \in \mathbb{N}\}$ is a linear increasing 1—web of $c_0(\Omega, X)$ there is an $p \in \mathbb{N}$ such that F_m is dense in $c_0(\Omega, X)$ for $m \geq p$.

Therefore, if $c_0(\Omega,X)$ were not suprabarrelled we could find an increasing covering $\{F_n:n\in\mathbb{N}\}$ of $c_0(\Omega,X)$, such that each F_n is non-barrelled and dense in $c_0(\Omega,X)$. Let T_n be a barrel in F_n which is not neighbourhood of 0 in F_n . If $V_n=\overline{T_n}^{c_0(\Omega,X)}$ and $S_n=\bigcap_{m\geq n}\langle V_m\rangle$ we have by Theorem 1 that there is an n such that $c_0(\Omega,X)=S_n$.

Then $S_n = \langle V_n \rangle$ and, by Proposition 2.2 in [7], we have that V_n is a neighbourhood of 0 in S_n , implying that T_n is a neighbourhood of 0 in F_n . This contradiction proves the theorem.

References

- [1] de Wilde, M. (1978). Closed Graph Theorem and Webbed Spaces. Pitman. London, .
- [2] Diestel, J. (1984). Sequences and Series in Banach Spaces. Springer. GTM 92. Berlin, Heidelberg and New York.

- [3] Ferrando, J. C., Kakol, J. and López Pellicer, M. (2004) On a problem of Horváth. *Bull. Belg. Math. Soc. Simon Stevin* Accepted (January, 30, 2003).
- [4] Ferrando, J. C. and López Pellicer, M. (1990). Strong barrelledness properties in $l_0^{\infty}(X, A)$ and bounded finite additive measures. *Math. Ann.* **287**, 727-736.
- [5] Ferrando, J. C. and López Pellicer, M. (1992). A note on a theorem of J. Diestel and B. Faires. *Proc. Amer. Math. Soc.* 115, 1077-1081.
- [6] Ferrando, J. C., López Pellicer, M. and Sánchez Ruiz, L. M. (1995). Metrizable Barrelled Spaces. Longman. Pitman RNMS 332. New York.
- [7] Ferrando, J. C., and Ludkovsky, S. V. (2002). Some barrelledness properties of $c_0(\Omega, X)$. J. Math. Anal. Appl. **274**, 515-523.
- [8] Ferrando, J. C. and Sánchez Ruiz, L. M. (1992). A maximal class of spaces with strong barrellednes conditions. *Proc. Roy. Irish Acad.* **92A**, **n**° **1**, 69-75.
- [9] López Pellicer, M. (1997). Webs and bounded additive measures. J. Math. Anal. Appl. 210, 257-267.
- [10] Mendoza, J. (1983). A barrelledness criterion for $c_0(E)$. Arch. Math. 40, 156-158.
- [11] Pérez Carreras, P. and Bonet, J. (1987). Barrelled Locally Convex Spaces. North-Holland. Math Studies 131. Amsterdam, New York and Oxford.
- [12] Rodríguez Salinas, B. (1980). Sobre la clase del espacio tonelado $l_0^{\infty}(\Sigma)$ (On the class of the barrelled space $l_0^{\infty}(\Sigma)$). Rev. Real Acad. Cienc. Fís. Natur. Madrid, 74, 827-829.
- [13] Rodríguez Salinas, B. (1995). On suprabarrelled spaces. Closed graph theorems. Rev. Real Acad. Cienc. Fís. Natur. Madrid, 89, 7-10.
- [14] Robertson, W. J., Tweddle, I. and Yeomans, F. E. (1980). On the stability of barrelled topologies III. *Bull. Austral. Math. Soc.* 22, 99-112.
- [15] Saxon, S. A. (1972). Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. 197, 87-106.
- [16] Saxon, S. A. and Narayanaswani, P. P. (1981). Metrizable (LF)-spaces, (db)-spaces and the separable quotient problem. *Bull. Austral. Math. Soc.* 23, 65-80.
- [17] Todd, A. R. and Saxon, S. A. (1973). A property of locally convex Baire spaces. Math. Ann. 206, 23-34.
- [18] Valdivia, M. (1979). On certain barrelled normed spaces. Ann. Inst. Fourier 29, 39-56.
- [19] Valdivia, M. (1982) Topics in Locally Convex Spaces. North-Holland. Math. Studies 67. Amsterdam, New York and Oxford.
- [20] Valdivia, M. (1981). On suprabarrelled spaces, in Func. Anal. Holomorphy and Approximation Theory. Springer-Verlag LNM 843, 572-580. Berlin, Heidelberg and New York

M. López Pellicer and S. Moll. E.T.S.I.A. (Depto. Matemática Aplicada) Universidad Politécnica de Valencia.Camino de Vera s/n. E-46022 Valencia. Spain. mlopezpe@mat.upv.es