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Bounded Linear Maps between (LF)—spaces

Angela A. Albanese

Abstract. Characterizations of paifgZ, F') of complete (LF)—spaces such that every continuous linear

map fromE to F' maps a O—neighbourhood @f into a bounded subset @ are given. The case of
sequence (LF)—spaces is also considered. These results are similar to the ones due to D. Vogt in the case
FE andF are FEchet spaces. The research continues work of J. Bonet, A. Gallmas. T. Terziglu

and D. Vogt.

Aplicaciones lineales acotadas entre espacios (LF)

Resumen. Se dan caracterizaciones de parBs F') de espacios (LF) tales que toda apliecde

en F' que aplica un intervalo de 0 d& en un subconjunto acotado @ Se considera tamén el caso

de una suceén de espacios (LF). Los resultados son similares a los obtenidos por D. Vogt para el caso
en queE y F son espacios de &chet. Esta investigam continua el trabajo de J. Bonet, A. Galbis, S.
Onal, T. Terzigjlu and D. Vogt.

The problem of the characterization of those pairs of locally convex spaaesd ' such that every
continuous linear map fronk’ to ' maps a 0—neighbourhood into a bounded subsdt ¢flenoted by
L(E,F) = LB(E, F)) has been extensively considered in the literature with different purposes (e.g., see
[1,4,5,6,10,9,12,13)). Pairs of&échet spaceB andF for which the identity holds have been completely
characterized by D. Vogt in [12]. For pairs of barrelled (DF)—spaces a similar result has been provided by
A. Galbis in [6] (for further characterizations see also [1, 4]).

It is worth noting that the theory of pairs of&het spaces between which every continuous linear map
is bounded turned to be a powerful tool in the study of the topological structureéch&tr spaces: for
example, it is strongly related to the important topological invariafia’) and(€2) introduced by D. Vogt
(see [12]). On the other hand, in [2, 3] J. Bonet and P. Dskiaused such a theory to clarify the relation
between the various notions of vector-valued real analytic functions.

Motivated by these facts, we continue here the research on this topic, in particular giving a complete
characterization of the pairs of (LF)-spadésind F' such that the identity.(E, F) = LB(E, F) holds.

Our characterization is similar to the one given in [12] for the case &fttat spaces.

The article is divided in three sections. In section 1 we collect some general resuligiol’) =
LB(E, F) with E and F' locally convex spaces. In section 2 we characterize the pairs of (LF)—spaces
and F for which L(E, F) = LB(E, F). As consequences, we derive similar results for other cases, for
example withE (LF)-space and” (LB) or DF—space, withE (LB) or Fréchet space anl (LF)—space,
etc. Finally, in section 3 we apply our results to concrete sequence (LF)—spaces.
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A. A. Albanese

Our notation is standard. If E is a locally convex space, the family of all bounded absolutely convex sets
in E is denoted byB(E). If B € B(E), Ep denotespanB equipped with the gauge functional Bfas a
norm. The inclusion mafs — FE is clearly linear and continuous. The family of all absolutely convex
0-neighbourhoods i is denoted by/(E).

If £ andF are locally convex spaces, a linear MpE — F is calledboundedf there isU € U(FE)
so thatl'(U) € B(F). Of course, every bounded map is continuous. The space of all linear and continuous
maps (the space of all linear and bounded maps, resp.) oo F' is denoted byL.(E, F') (by LB(E, F),
resp.). ClearhyLB(E, F) C L(E, F). Ly(E, F') denotes the spadg E, F') endowed with the topology of
uniform convergence on the bounded set&of

We refer the reader to [7, 8, 11] for other undefined notations and for the general theory of locally
convex spaces.

1. General Results

In the sequel E,,),, always denotes a sequence of locally convex spaces.EPudt &, E,, (the locally
convex direct sum ofE,,),,), the mapi,,: E,, — E, z — (20mn)n, iS @an isomorphism onto its range for
everym € N. On the other hand, the map,: £ — E,,, (zn)n — Tm, iS @an homomorphism onto and
Dm © iy = idg,, for everym € N.

Proposition 1 Let(E,),, be a sequence of locally convex spaces and’'lbe a Fiéchet space. Then the
following conditions are equivalent:

() L(®nE,, F) = LB(®,Ey, F);
(i) L(E,,F)=LB(E,,F),Vn€N.

PrROOF (i)=(ii). Letm € NandT € L(E,,, F). ThenT op,, € L(®,E,, F) = LB(®,E,, F); hence
there isU € U(@, E,) such thatl'(p,,,(U)) € B(F). Sincep,, is an homomorphism ontg,,,(U) is also
a 0-neighbourhood i#,,, and hencd” € LB(E,,, F).

(i)=(). LetT € L(®,Fn, F). ThenT o4, € L(E,,F) = LB(E,, F) for all n € N; hence, for
eachn € N, there isU,, € U(E,,) such thatl'(i,(U,)) € B(F'). SinceF is a Fechet space, we can find a
sequence of scalafs,, ), such that, A\, 7 (i, (U,)) = T(U, i, (U,)) is also a bounded set i, where
T(UpAnin(Un)) € U(®nEy). Then the result follows. W

Proposition 2 Let(E,),, be a sequence of locally convex spaces and’'lbe a Fiéchet space. Then the
following conditions are equivalent:

() L(F,®nEy,) = LB(F,®,Ey);
(i) L(F,E,) = LB(F,E,),Vn e N.

PROOF (i)=(ii). Let m € NandT € L(F, E,,). Theni,, o T € L(F,®,E,) = LB(F,®,E,); hence,
there isU € U(F) such that,,(T'(U)) is a bounded set ab,, E,,. Sincei,, is an isomorphism intd]’(U)
is also a bounded set i, and the result follows.

(i)=(i). LetT € L(F,®,E,). Then:

where(Uy ). is a decreasing basis of 0-neighbourhoodg'in

Suppose that (1) is not true. Then, for edcke N, there isz, € U such thatl'(zx) ¢ ©n
Clearly, (x1);, converges to 0 irf” and henceT'(z)), converges to O ifb,, E,, too. Thus(T(z
®n<m Ey, for somem € N, obtaining a contradiction.

<k
k))k
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Bounded Linear Maps between (LF)—spaces

By (1), T(F) C ®n<rE, and hencd’ € L(F, ®,<,E,). Now, foreachh < kp, oT € L(F,E,) =
LB(F, E,) and hence there i8, € N such thatB,, = p,(T'(Uy,)) is a bounded set of,,. PutU
Nn<kUp,, thenU € U(F) andT'(U) C &,,<xBy,. This completes the proof. B

Remark 1 Itis clear from the above proofs that implication=jii) in Propositions 1 and 2 always holds
for any locally convex spacE. But the converse generally does not hold as the following example shows.
Let F = (/)M 1 < p < o0, and letE = (w)™. Clearly, the inclusion mag’ — F is linear and
continuous, but not bounded.

On the other hand,(F,w) = LB(F,w) andL(¢?, (w)™) = LB, (w)™). N

Next, puttl = [],, E,, for eachm € N the mapj,,: E,,, = E, x — (2dmmn)n, IS an isomorphism onto
its range and the mag,,: E — E,,, (¥n)n — Tm, iS an homomorphism onto such that o j,, = idg,, .

Proposition 3 Let (E,, ), be a sequence of locally convex spaces and’léle a DF—space. Then the
following conditions are equivalent:

() LI, En, F) = LB(I1,, En, F);
(i) L(E,,F)=LB(E,,F),¥n€N.

PrROOF (i)=(ii). Let m € NandT € L(E,,,F). ThenT or,, € L(]], En,F) = LB([],, En, F);
hence there i§/ € U([],, E») such thatl'(r,,(U)) € B(F). Sincer,, is an homomorphism onte,,, (U)
is also a 0—neighbourhood &f,, and the result follows.

(i)=(). LetT € L([[,, En, F). Then:

3k e N T({0}* x [[ En) C By, 2)

n>k

where(By, ), is a fundamental increasing sequence of bounded séts of

Suppose that (2) is not true. Then, for each N there sz, € {0} <[], E, suchthafl(z;) & B.
Clearly, (z), converges to 0 iff[,, E, and hencéT(zy)): converges to 0 irf' too. Since(B,,)., is a
fundamental system of bounded subset8'ofT'(x))r C B,, for somem € N, obtaining a contradiction.

Condition (2) implies that"({0}* x [],,., En) = {0}, being it a bounded subspace Bf On the
other hand, foreach < k, T o j,, € L(E,,F) = LB(E,, F) and hence there §,, € U(FE,,) such that
T(jn(Upn)) € B(F).

PutlU =[], <, Un X I, En, thenU is a 0-neighbourhood 4ff,, £,, andT'(U) is a bounded set of

F because
U= ][] Unx [ EncD inUn)+{0} x [] En
n<k n>k n<k n>k
and hence
T(U)C > T(jn(Un)),
n<k

where}, ., T(jn(Ux)) is a bounded subset &f. Then the result follows. B

Proposition 4 Let (E,), be a sequence of locally convex spaces and’léle a DF—space. Then the
following conditions are equivalent:

() L(F ]I, En) = LB(F,IL,, En);

(i) L(F,E,)= LB(F,E,),Vn cN.
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PrROOF  (i)=(ii). Let m € NandT € L(F, E,,). Thenj,, o T € L(F.,[], En) = LB(F,[],, E,); thus
there isU € U(F) such thatj,,(T'(U)) € B(]], En). Sinceyj,, is an isomorphism intd]'(U) is also a
bounded set oF,,, and the result follows.

(i)=(). LetT € L(F,]], En). Then, for eacm € N, r, o T € L(F,E,) = LB(F,E,) and
hence there i¥/,, € U(F) such that-,(T'(U,,)) € B(E,). SinceF is a DF-space, there is a sequence
of scalars(\,,),, such thatU = N, \,U, is also a 0O—neighbourhood @&. On the other hand, for each
n € Nr,(T(U)) is bounded inE,,, implying that7'(U) is a bounded subset ¢f,, ,,. Then the result
follows. W

Remark 2 ltis clear from the above proofs that implication=ii) in Propositions 3 and 4 always holds

for any locally convex spacg. In general the converse is not true as the following example shows.
Let F = (/)N andE = (¢9)N, 1 < p < ¢ < co. Clearly, the inclusion mag’ — FE is linear and

continuous, but not bounded. On the other handy, ¢?) = LB(F, ¢?) andL(¢*,E) = LB(¢*,E). N

Let (E,,in+1.n)n De a sequence of locally convex spaces and linear and continuous inclusion maps
intin: En — Enyi1. LetE :=ind, E,, i.e. E = U, E, and it is endowed with the finest locally convex
topology for which all the inclusion maps : E,, — E are continuous. Then

Proposition 5 Let F = ind,, F,, be an inductive limit of locally convex spaces andAebe a Féchet
space. Then:

() L(E,,F)=LB(E,,F),YneN= L(E,F) = LB(E, F);
(i) EisregularandL(F,E,)= LB(F,E,),Vne N= L(F,E)=LB(F,E).

PROOF (i). LetT € L(E,F). Then, for eacm € N, T o4, € L(E,,F) = LB(E,, F) and hence
there isU,, € U(F,) such thatT'(i,,(U,)) € B(F). SinceF is a Fechet space, there is a sequence of
scalars(\,),, for which T (U, A\i,(Uy)) = U AT (i, (Uy,)) is also a bounded set df. On the other
hand,I'(U,Ain(Uy)) € U(E) and therl’ € LB(E, F).

(i). Let T € L(F, E). Then:

Im eN T(F) C E,, andT: F — E,, is continuous 3)

To prove (3) it suffices to repeat the same proof of Gronthendieck— Floret’s factorization theorem [11,
8.5.38] . For the sake of completeness, we give here the proof of (3).

Let F be the filter generated b§'(Uy,) ), where(Uy ), is a decreasing basis of 0—neighbourhoods in
F. For eachn € N let F,, be the filter generated by a basis of 0—neighbourhood$,in

Let (z1)r be aF—convergent sequence . Then there iy ), C F so thatT' (yx) = x and(yx )k
is also a convergent sequencefinSinceF is a Féchet space, there is an unbounded sequence of positive
scalars(\ ) such that Ayyx ) is bounded inF. It follows that(Axzx)x = (T'(Akyk))x IS @ bounded set
of E. SinceF is a regular inductive limit, there is € N such tha{ Az ) C E,, and bounded here. Thus
(zx)x converges to O itE,, and(zy)y is aF,—convergent sequence. By [11, 8.5.35], themis N such
that F,,, is coarser thadr and then (3) follows.

By 3),T € L(F,E,,) = LB(F,E,,) and hencd ¢ LB(F,E). R

Remark 3 The converse of Proposition 5—(i) does not hold in general as the following example shows.
For eachn ¢ N we defineE,, = [],_, w x [[,~, s, wheres is the Féchet space of all rapidly

decreasing sequences. Huit= ind, E,. By [11, 8.7.2]F is a dense topological subspaceudf. If

T € L(E, s), there is then a unique linear continuous extensioa L(w",s). ThereforeS, and hence

T, is bounded becausé' is a quojection and has a continuous norm. On the other hand, it is plain that

L(E,,s) # LB(E,,s)foreveryn e N. B
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Bounded Linear Maps between (LF)—spaces

Let (E,,rn n+1)n be a sequence of locally convex spacesang,,: E,+1 — E, linear and con-
tinuous maps. Let := proj,, E,. Then all the maps,,: £ — E,,, (zn)n — =, are continuous. We
have

Proposition 6 Let E = proj,, E,, be a projective limit of locally convex spaces andAdbe a DF—space.
Then:

L(F,E,) = LB(F,E,),Yn € N= L(F,E) = LB(F,E).

PROOFR LetT € L(F,E). Then, foreacm € Nr, oT € L(F,E,) = LB(F, E,) and hence there
isU, € U(F) such thatB,, = r,(T'(U,)) € B(E,). SinceF' is a DF-space, there is a sequence of
scalar\,, ), such thal/ = N, A\, U,, is a O—neighbourhood i, whereT'(U) C [[,, AnBn; thusT'(U) is
boundedinE. W

2. The case of (LF)—spaces

In this section we consider the equalityF, F) = LB(FE, F') in caseF is a regular (LF)—space arfdis a
complete (LF)-space or a DF—space. We find a characterization similar to the one given by Vogt [12] when
FE andF are Fechet spaces. Applications of our results for particular cases will be given.

Let (E,,, im+1,m)m b€ a sequence of &het spaces arig, 1, : Fn — En1 linear and continuous
inclusion maps. Le¥ = ind,, F,, so that all inclusion maps,,: F,, — E are continuous ant},,; 1 o
im+1,m = im. We always assume that, for eaehe N, E,,, = proj,(Enk, pj’) is the reduced projective
limit of the sequencéE.,,, p}*), of Banach spaces and linear and continuous BaRs  : Emkt1 —
Enk with dense range. Let": E,, — E, be the canonical projection such that, ., o si’,; = s
PutlU» = {x € E,, : p’(sp*(x)) < 1}. Then(U"); is a basis of 0—neighbourhoodsih,. Without loss
of generality, we can also suppose thet C U,;”“ for everym andk € N. Consequently, for eacte
andk € N there is a linear and continuous miipﬂ,m: Ek — Ena1k such that the following diagram
commutes

m m

Sk Sk—1,k
Em - Emk - Emk—l
. -k k—1
Im+1,m l l Zm—&-l,rn l Zm+1,m (4)
m-+1 Sm+1
Sp k—1,k
E7n+1 - Em+1k - Em+1k—1

We denote by/™ the gauge functional d¥;" (the polar ofU;”* with respect to the duality. E,,,, E/, >).

Let (F,, jr+1,-)r be another sequence ofé&éhet spaces and linear and continuous inclusion maps
Jrgir: Fr — Fryq1. Let F = ind, F, so that all inclusion mapg,: F,. — F are continuous and
Jr+1 © jry1,r = Jr. We always assume that, for eack N, F,. = proj, (F, ¢;) is the reduced projective
limit of the sequencéF;,, g}, ), of Banach spaces and linear and continuous Maps, : Frre1 — Frn
with dense range. Lef;: F,. — F; be the canonical projection so thdf, ,, o t;,, = ¢;. Put
Vi ={z € F, : q,(t;(z)) < 1}. Then(V]"), is a basis of 0-neighbourhoods .. We observe
that:

Remark 4 (i) For eachr € Nwe defineJ, 11 ,: Ly(E, F,) — Ly(E, Fr1) by Jo41 0 (T) :== Jrg1,,0T.

Clearly, J,;1, is an injective, linear and continuous map. We can then consider the inductive limit

ind, Ly(E, F,) of the sequencéL,(E, F,.)), of locally convex spaces. If for any € N we define

Jr: Ly(E,F.) — Ly(E, F) by J.(T) := j. o T, J. is also an injective, linear and continuous map and

Jr+10Jr41,» = Jp. Thus there is aninjective, linear and continuous miapnd, Ly (E, F,.) — Ly(E, F).
Onthe other hand, if for any € Nwe definel, ., .1 : Ly(Emy1, Fr) — Ly(Ey, Fr) by 17, 0 (T) i=

T 0 tmt1,ms Ly mta is linear and continuous. We can then consider the projectivetirait,, L, (E,,, F.)

of the projective sequendd.,(Em, F), I, ,,41). Thus the map”: Ly(E, F.) — proj,, Ly(Em, F;)

defined byI"(T') := (T © i)m is an isomorphism onto. Moreover, J{ ., ,.: proj,, Ly(Em, Fr) —
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Proj,, Ly(Em, Fry1) is the map given byl} ., .((Ton)m) := (Jrt1.r © Tin)ms J)4q,, 1S injective, linear
and continuous and the following diagram is commutative

L(E,F) 5 proj, Ly(Em, F)
Jr-l-l,r J, l Jr;+1,r

It .
Lb(EaFr-&-l) - proj,, Lb(Em7FT+1)

Consequently, we can consider the inductive limd, proj,,, Ly(Fy,, F,) and the map

I: indproj Ly(E,,, F,.) — ind Ly (E, F}.)

given by (I")~1),. (i.e., I(Tyn)m) == (I")"YX(T)m) if (Tyn)m € Proj,, Ly(Em, Fy)), which is an
isomorphism onto.

Now, given anyr andm in N, for eachk € N we defineS,’v’ﬁ’k: Ly(Emk, Fy) — Ly(Epnga1, Fr) by
St x(T) =T o s, Sinces}, ., has dense rangé,” , is injective, linear and continuous. We
can then consider the inductive liniitd Ly (E,,x, F;.) of the inductive sequendd.,(E, .k, F-), s;;?g;,k).

If for & € N we defineS,"": Ly(Emk, Fr) — Ly(Ey, F) by S;""(T) := T o sj*, S;"" is also an
injective, linear and continuous map. Moreowv&f,”; o S;"} , = S;"". Then there is an injective, linear
and continuous mag™" : indy Ly(Ek, F.) — Ly(Ep, Fr).

Also, if 1% . Ly(Ems1k, F,) — Lo(Emk, F,) is the map given by*"  (T) := T o ik

m,m—+1 " m,m+1 m—+1,m?
Iﬁfmﬂ is linear and continuous and turns to be commutative the following diagram because of (4)
Stk si
Lb(Emk717F’l’) - Lb(EmkyFr) - Lb(EmyFr)
k—1,r k,r
Im,m+l T T Im7m+l T I;z,m+1
m+1,r m+41,r

k+1,k
—

S
Lb(Em+1k—1aF7') Lb(Em+1k7F7') k_> Lb(Em—i-hFr)-

Therefore the mag,; ., : indg Ly(Evqir, Fr) — indg Ly(E, Fr), given by 177 1 (T) :== T o
iﬁzﬂ,m forT € Ly(Em+1k, Fr), is well-defined, linear and continuous and such that the following diagram

also commutes

gmr
—

indk Lb(EmkyFT‘) Lb(E7n7Fr)
Ig,m%»l T T Irz,erl

. S1n+1.r

lndk Lb(Em+1k7Fr) - Lb(Em+17Fr)
This means that the ma§y": proj,,, indy Ly (Enk, Fr-) — proj,,, Ly(Em, F;) defined byS”™ ((T),)m) ==
(S™"(Ty,))m is linear and continuous. Siné&™" is injective for everym € N, S™ is also injective.

Moreover, if 7{'_‘_1)T: proj,, indg Ly(Emg, Fr) — proj,, indg Ly(Emk, Fri1) is the map such that
o1 (Tn)m) = (Grr+1 © T )m, thenJ!y, | is injective, linear and continuous and turns to be commu-

tative the following diagram

.. Sl .

proj,, indg Ly(Emp, Fry1) "= proj, Lo(Em, Fri1)
J7/“l+1,r T T J7/“+1,r
proj,, indx Ly(Emi, Fy) = proj,, Ly(Em, F)

The mapS: ind, proj,, indg Ly(Ek, ) — ind, proj,, Ly(Em, F,.), given byS((T)n)m) := S"((Tm)m)
if (Ton)m € proj,, indx Ly(Emg, Fr), is then well-defined, injective, linear and continuous.

Finally, givenk, m andr € N, if forany h € N we defineT,T,;’;l: Ly(Emk, Frni1) — Lo(Emg, Fra)
by T ((T) := t}, 141 o T, T}, is also linear and continuous. Lgtoj;, Ly(Emk, Frr) be the pro-
jective limit of the projective sequendéy(Emy, Frn), T}, 4y 1 )n- Then the mady™": Ly(Ep, Fr) —
Ly(Emk, Frp) defined byI}™" (T') = (t} o T');, is an isomorphism onto.
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Bounded Linear Maps between (LF)—spaces

Now, proceeding exactly as we did before, one shows that we can consider the space

ind proj ind proj Ly (Epmk, Fri)
T m k h

and define in a canonical way an injective, linear and continuousifapm this space to

ind prOj 11]1¢d Lb(Emk'7 F’r‘)'

Thus we have proved that the map

R:=JoloSoT: iI},dproj irllvdpioj Ly(Emk, Frr) — Ly(E, F)
is well-defined, injective, linear and continuous.

(il) Suppose that' is a regular (LF)-space. Then, as it is easy to see, the image of thé&rabpve
constructed is the spadeB(E, F') of all linear bounded maps frot into F.

(iif) Suppose that is a regular (LF)—space arfd is a complete (LF)-space. Létk(n,j));). be a
countable set of increasing sequences of positive integers afg®9),, be another increasing sequence
of positive integers. Then the space

H:={T € L(E,F):|[T|jjn:= suw ¢ " (T(z))<+oc¥n, jeN}

a:EUk(n,j)

is a Fechet space with respect to the topology generated by the sequieinge);,» of seminorms.
To see this, it suffices to show that the inclusion ntap— L;(E, F') is continuous.
Let B € B(E) andV € U(F). SinceF is a regular (LF)—space, thererig € N such thatB C E,,,

and bounded here. Now, N F,.(,,,, is a 0-neighbourhood if,.,,,) and henc&’ N F.(,,) D #Vf;(%) for

somej, € Nandyp > 0. SinceB is a bounded set df,,,, we find a\ > 0 such thatB C )\U,?(On0 o) Then
W= {TeH:TUY, . )c Vi)

C p'MTeLE,F):T(B)CcV}=pu'A\M,

whereW and M are O—neighbourhoods i and in L,(E, F), respectively. In fact, ifl’ € W, then
T(UFS,. ) C Vi and hencel(B) ¢ XT(USg, ) € AVi™ € MV 0 Fynyy © Au'V:
thereforel’ € =1 AM.

SinceL,(E, F') is complete and the inclusion mdp — L;(E, F) is continuous, we obtain thaf is

a Fiechet space. B

Now, we are ready to state and prove:

Theorem 1 LetFE = ind,, F,, be aregular (LF)—space and lét = ind,. F;. be a complete (LF)—space.
Then the following conditions are equivalent:

() L(E,F) = LB(E, F);

(i) for each sequencgk(n,j));). of increasing sequences of positive integers and for each increasing
sequencér(n)),, of positive integers

IJre NVm e N3k e NVh e Ndjy, ng e NIC > 0: (5)
sup ¢;(T(xz)) <C max  sup q;(")(T(x))7
zeU™ 1<n<ng 4 Ulon iy
1<5<30 rd

foreveryT' € L(E, F) with sup,eqry, ¢;"(T(x)) < +oo for eachj, n € N.
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ProoFk (i)=(ii). Let (k(n,j));)» be a sequence of increasing sequences of positive integers and let
(r(n)), be another increasing sequence of positive integers. We consider the space

H={TeLEF):|Tlj.= sw ¢ (T(z)) <+, ¥j, neN}

€U (n.g)

By Remark 4—(iii) ,H is a Féchet space with respect to the topology generated by the sequieince); »
of seminorms and the inclusion m&p— L,(FE, F') is continuous.
On the other hand, by hypothedi$E, F') = LB(E, F') ; thus, by Remark 4—(i) and (i), the linear map

m

R: ind proj irllgdproj Ly(Emgk, Frrn) — Ly(E, F)
T h

is a continuous algebraical isomorphism onto.
Endowed the spack(E, F') with the topology induced via the mdp it follows that the inclusion map

H — L(E, F) = ind proj iIllcd proj Ly(Emk, Frin)
T m h

has closed graph. Sindé is a Féchet space and

L(E, F) = ind proj irllvdproj Ly(Epmk, Frp)
T m h

is a strictly webbed, we can apply the Wilde's closed graph theorem [7, 5.4.1] to conclude that this in-
clusion map is continuous. Thus, by the Localization Theorem [7, 5.6.3], theredsN such that

H C proj,, indy proj;, Ly (Emk, Frn) and the mapd — proj,,, indg, proj;, Ly (Emk, Frn) is also con-
tinuous. Therefore for each € N the map

H — ind proj Ly(Emp, Frp), T — T 0,
h

is continuous. Finally, by Grothendieck’s factorization theorem [11, 8.5.38], thére i¥ such that

H — proj Ly(Emg, Fyn) = Ly(Epg, Fr), T — T,
h

is also continuous, whefE o SPr =T 0 iy,
We have shown that

Ir e NVm e NIk e NVh € Ndjy, ng e NIC >0

wp GT(@) <C max  swp g(T(@))
e R
for everyT € H. This completes the proof.

(i)=(). LetT € L(E,F). ThenT o i, € L(E,, F) forall n € N. By Grothendieck’s factorization
theorem [11, 8.5.38], we can find an increasing sequénge ),, of positive integers such thato i,, €
L(E,, F,,) foralln € N. SinceT o i, € L(E,, F,)), we can find another increasing sequence
(k(n, j)); of positive integers such that, for eaglke N,

sup q;(n)(T(x)) = dp; < +00.

mGU;L(nyj)

On the other hand, by assumption there is N so that (5) holds. Consequently, we get:

Ym € N3k, € NVh € N3jg, np € NIC >0

sup ¢;(T(z))<C max dp; < +00.
U, s
) SJI=Jo
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This implies thatT(U,;’:n) is a bounded subset d@f,. for all m € N. SinceF, is a metrizable space,
there is a sequence of scalé@s,,),,, such thaﬂ“(umAmU,g?n) = um/\mT(U,;’;) is bounded inF,., where
L(Um A UpT ) is a O—neighbourhood if. Then the proof is complete.l

With obvious changes the previous characterization holds for other cases, e.g., HajtiR}}-space
or (LB)—space and” Fréechet space or complete DF—space. To obtain this, it is enough to do only some
remarks.

Consider first the case whefeis a regular (LF)—space arfdis a FEchet space.

Let F' be a Fechet space. Assume thBt = proj, (Fr,qr) is the reduced projective limit of the
projective sequenc@,, g, ), of Banach spaces and linear and continuous mapsi : Fr+1 — F}, with
dense range. Le},: F — Fj, be the canonical projection such thgl, 11 o tp+1 = t,. PutVy, = {z € F:
qn(tn(x)) < 1}. Then(V4,),, is a basis of 0—neigbourhoods fh

For each- € N put ;. = F andj,+1 , = j, = idp. Clearly,F' = ind, F,.. Therefore:

Remark 5 (i) Let F¥ = ind,, E,, be an (LF)-space and Iét be a Fechet space. By Remark 4—(i) and
(i), the mapR turns to be a linear and continuous map from the spacg,, indy, proj;, Ly(Emk, Fr) into
the spacd.,(E, F') and its image is exactly the spaf&(E, F') of all linear bounded maps fro# into
F.

(i) Let E be aregular (LF)-space and Ethe a Féchet space. L&k (n)),, be an increasing sequence
of positive integers. Proceeding exactly as we did in Remark 4—(iii), one shows that the space

H:={T e L(E,F):||T|ln = sup ¢.(T(z)) < 400, Vn € N}

weU;"(n)

is a Féchet space with respect to the topology generated by the sequefsée. of seminorms and the
inclusion mapH — L;(E, F') is continuous. W

Proceeding as we did to prove Theorem 1, we easily get:

Proposition 7 Let £ = ind,, F,, be a regular (LF)-space and Idf be a Féchet space. Then the
following conditions are equivalent:

() L(E,F)=LB(E,F);
(i) for each increasing sequenck(n)),, of positive integers and for each € N

JkeNVheNdInge N3IC >0: (6)

sup ¢n(T(z)) < C max  sup ¢,(T(z)),

; <n<
er};’L Snsno IeU;?(n)

for everyT € L(E, F') with SUgerp an(T(z)) < +oo foreachn e N. O

Next, consider the case whekeis a Féchet space anf is a regular (LF)-space.

Let £ be a Fechet space. Assume thAt = proj,(Ex,px) is the reduced projective limit of the
projective sequencéEy, py)i, of Banach spaces and linear and continuous maps.1: Ex+1 — Ex
with dense range. Let;: E — Ej be the canonical projection such thétsy; o sp11 = si. Put
Up = {z € E : pi(sr(z)) < 1}. Then(Uy)y is a basis of 0—neighbourhoods’in

Foreachm € Nlet E,, = E andiy,+1m = im = idg. Clearly,E = ind,, E,,. We have:

Remark 6 (i) Let F be a Fechet space and ¢t = ind,. F;. be a regular (LF)-space. By Remark 4—(i)
and (ii), the mapR turns to be a linear and continuous map from the spadeindy, proj, Ly(Ey, F.p)
into the spacd.,(F, F') and its image is the spadeB(F, F') of all linear and bounded maps frominto

F.

21



A. A. Albanese

(i) Let E be a Fechet space and I¢f = ind, F,. be a complete (LF)-space. Lé&t(n)), be an
increasing sequence of positive integers amN. Proceeding as we did in Remark 4—(iii), one shows that
the space

H:={T e L(E,F):||T||n= sup ¢, (T(x)) <400, ¥n € N}
€Uk (n)
is a Feéchet space with respect to the topology generated by the seqUghge, of seminorms and the
inclusion mapH — L,(E, F') is continuousll

Argumenting as we did to prove Theorem 1, we then obtain:

Proposition 8 Let E be a Fiechet space and lef' = ind,. F;. be a complete (LF)-space. Then the
following conditions are equivalent:

() L(E,F) = LB(E,F);
(i) for each increasing sequen¢k(n)), of positive integers and for eache N

E'k,?"()GNVhENHTL()GNHC>OZ (7)

sup ¢’ (T'(z)) < C max sup ¢, (T(z)),
z€Uy 1Sn<no 2 Uy (ny

foreveryl' € L(E, F) withsup,cy;, . ¢ (T(x)) < +ooforeachn e N. O

Suppose thaf” is a complete DF—space. LéB,), be a fundamental system of absolutely convex
closed bounded sets &f with B, C B,,;. Denote byg, the gauge of3,, and by F.. the linear span of
B,. Then(F,,q,) is a normed space and the inclusion mjap (F..,q,) — F' is continuous. Actually,
also the inclusion mapg.4+1,-: F, — F,4; are continuous. LeF; := ind,. (¥, ¢.). Thus the inclusion
mapF; — F is continuous (algebraicallfy; = F). SinceF is a complete DF—spacgF., ¢, ) is a Banach
space andr; is a complete (LB)—space. Moreover, iif is a locally convex space, the inclusion map
Ly(E, F;) — Ly(E, F) is linear and continuous andB(FE, F;) = LB(FE, F). We have:

Remark 7 (i) Let E = ind,, E,, be an (LF)—space and |&t = ind,. F;. be aregular (LB)—spacé(is the
inductive limit of the inductive sequen¢é’,., j, 11 ) of Banach spaces and linear and continuous inclusion
mapsj,+1.-: Fr <— Fr41 so that all inclusion mapg.: F,. — F' are continuous) or lef’ be a complete
DF—space. By Remarks 4—(i) and (ii), the mAgurns to be a linear and continuous map from the space
ind, proj,,, indg Ly(E,.1, F;) into the spacd.,(E, F') and its image is the spadeB(E, F)).

(ii) Let £ = ind,, E,, be a regular (LF)—space and IBt= ind,. F,. be a complete (LB)-space or let
F be a complete DF—space. L@i(n)), and(r(n)), be two increasing sequences of positive integers.
Proceeding again as we did in Remark 4—(iii), one shows that the space

H={T e L(E,F):||T||n:= sup gy@un)(T(r)) <+4oo, Vn € N}

zeUl )

is a Feéchet space with respect to the topology generated by the seqUghge, of seminorms and the
inclusion mapH — L;(FE, F') is continuous. W

Repeating the proof of Theorem 1 with obvious changes, we get:

Proposition 9 LetE = ind,, E,, be a regular (LF)-space. Ldf = ind,. F,. be a complete (LB)—-space
or let F' be a complete DF—space. Then the following conditions are equivalent:

() L(E,F) = LB(E, F);
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(i) for each pair of increasing sequencgé(n)),, (r(n)),) of positive integers

Jre NVm e N3k, ng e NIC >0 (8)

sup ¢-(T(z)) <C max sup gy, (T(x)),

U lsn<no zeup

for everyT € L(E, F) with SUPgerp ¢rn)(T(x)) < +ooforeachn e N. [0

It also holds a result similar to the previous ones in céise a regular (LB)-space anfd a complete
(LF) or (LB)—space.

Let E = ind,, (E,, pm) be the inductive limit of the sequen¢®,,, i,,+1.,) Of Banach spacedf,, =
{z € E,, : pn(z) < 1} denotes the closed unit ball &,,) and linear and continuous inclusion maps
tm+1,m: Em — Epy1, Where all inclusion maps,, : E,, — E are continuous. Then:
Remark 8 (i) Let £ = ind,, E,, be an (LB)-space and lét = ind, F,. be a regular (LF)—space (let
F = ind, F, be aregular (LB)-space or I&t be a complete DF—space, resp.). By Remarks 4—(i) and (ii),
the mapR turns to be a linear and continuous map from the spadeproj,, proj;, Ly(Em, Frp) (from
the spacénd, proj,,, Ly (Em, F}), resp.) into the spack,(E, F') and its image is the spadeB(E, F).

(i) Let £ = ind,, E,, be a regular (LB)-space and |[Et= ind,. F;. be a complete (LF)-space (l&t
be a complete (LB) or DF space, resp.). [&tn)),, be an increasing sequence of positive integers. Then

H={T € L(E,F): ||T||jn = sp ¢;" (T(x)), ¥j, n € N}
xzeUp,

(the space
H={TeL(EF):||T|,:= sug) ¢y (T(x)), ¥n € N},
xeUp

resp.) is a Fechet space with respect to the topology generated by the sequiengg) ;.. (|| )=, resp.)
of seminorms and the inclusion m&p— L,(E, F') is continuous. W
By repeating again the same proof of Theorem 1 with simple changes, we obtain:

Proposition 10 Let £ = ind,, E,, be a regular (LB)-space and lét = ind, F;. be a complete (LF)
space. Then the following conditions are equivalent:

() L(E,F)=LB(E, F);

(i) for each increasing sequen¢e(n)),, of positive integers
IJre NVm e NVh e N3jg, ngo e NIC' > 0: (9)
sup ¢;(T(z)) <C max sup q;(n) (T(z)),
2€Um 1<n<no 4eU,
1<5<5j0

foreveryT € L(E, F) withsup,c;. g™

i (T'(z)) < oo foreachjandn € N. [

Proposition 11 Let F = ind,, E,, be a regular (LB)—space and lét = ind, F}. be a complete (LB)
space or letF" be a complete DF—space. Then the following conditions are equivalent:

() L(E,F) = LB(E,F);

(ii) for each increasing sequen¢e(n)),, of positive integers

IreNVmeNIngeNIC>0: (10)

sup ¢-(T(z)) <C max sup ¢, (T(z)),
€U, 1<n<no zeU,

foreveryl’ € L(E, F) withsup,c; ¢r(n)(T(x)) < +oc foreachn e N. [
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3. The case of sequence (LF)—spaces

In this section we consider concrete sequence (LF)—spaces which were introduced by Vefgit §bh8l, we
apply our results o 2.
Let (ay,,,)i,mx be @ matrix with non negative real valued entries and with the following properties:

Vi, k,meN af,, < ak
Vi, k, meN aﬁmﬂ < a7 s
Vi, me N3k eN ay,, > 0.

For eachn € N put A,, = (af,, )i, and

M(Am) = {z = (x1,22,...) 1 pp* () = »_ |wilaf,, < +00,Vk € N}.

i

Then X1 (4,,) is a Féchet space with fundamental system of seminofp$);, and the inclusion map
ima1,m: M(Am) — M (Aps1) is continuous for everyn € N. Following [13, § 5], we setE! =
UmA1(4,,) endowed with the finest topology for which all the inclusion maps \;(4,,) — E' are
continuous, i.eE* = ind,, A\;(4,,) is an (LF)-space. In the seque},always denotes the-th unit vector
of E'. Recall that in [13, 5.14] it has been shown tiilt is a complete (LF)-space if, and only if, it is
a regular (LF)—space if, and only if, the matl@xﬁm)i’m,k is of type (WQ), i.e.(af”m)mh;C satisfies the
following condition:

VueN3n, ke NVm, K eNINeN,S>0Vi e N: o, < S(af, +aly).

[T

We have:

Theorem 2 LetF be a complete (LF)—space. Suppose fats a regular (LF)—space. Then the following
conditions are equivalent;

() L(E',F) = LB(E',F);

(i) for each sequencgk(n,j));)» of increasing sequences of positive integers and for each increasing
sequencér(n)),, of positive integers

Jre NVm e NJk e NVh € NJjg, np e NIC' > 0: (12)
k=1, < k(n,j)y—1_r(n)
(a5m) " an(y) < C | max (@ ") a5 (y),
1<5<jo

foreveryy € F,.;) andi € N.

PrRoOOF  (i)=(ii). Let ((k(n,J));)» be a countable set of increasing sequences of positive integers. Let
(r(n)), be another increasing sequence of positive integers. SitEeF) = LB(E, F), we can apply
Theorem 1 to conclude that condition (5) holds. Accordingly, we show that condition (11) holds too.

Lety € F,) and leti € N. We defineT": E' — F by T'(z) := x;y. Clearly,T is a linear and
continuous map. Moreover, for eaglandn € N, we have:

r(n k(n,g)\—1 _k(n,j r(n
sup )" (T(x)) = sup (af )T hal ) g} (y)
2€UL 5 €U )
k(n,j)y—1 _r(n
< (ai,(n J)) lqj( )<y) < +00.
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Therefore, by (5) we obtain that

(@) ) = G (T () e) < sup i (T ()

< C max  sup ¢ (T(x))
1<n<no gepn
1<5<j0 k(n.4)

k(n,j)\—1 _r(n)

< . .

= C 1%2%‘); ( i,m ) q] (y)
1<5<50

Then (i) holds.

(i)=-(). LetT € L(E',F). ThenT o, € L(\(Ay), F) for everyn € N; hence, by Grothendieck’s
factorization theorem [11, 8.5.38] we can find an increasing sequyete®),, of positive integers such that
T oy € L(A1(An), Fr(n)) for everyn € N. It follows that, for eac € N, we can find another sequence
(k(n, j)); of positive integers such that

V5 eN  sup qT(") (T(x)) = dpn; < +00. (12)

zeUkL(n P

By (ii), condition (11), accordingly there is€ N such that

vm € N3k, € NVh € Ndjy, no e NIC >0 (13)

1 k(ri)
(ai%) 1q;;(y> <C im?; (ai,(r? J)) 1q;(n)(
1<5<50

Y),

for everyy € F,.;) andi € N.
This implies thatT(U,zjn) C F, and bounded here. Indeed,if € U;" andz = >, Tie;, then
T(z) =, z;T(e;); hence, by (12) and (13) we get:

G(T@) < D |wlgn(T(e) =D |wilaly, (afn) " g7 (T(e:)
oy km k(n,j)\—1_r(n) )
< lezla mC | mmax (™)™ (T (er)
v 1<5<50
< Z|xi|a C max dyj = Lynpp () < L

- 1<n<ng
¢ 1<j<]0

(becausée;); C A\i1(A1), (T(ei))i C Fr(1y)- This means thal'(U;" ) C F,. and bounded here. Sindg
is a metrizable space, there is a sequence of scglars,, such thatT(umAmUk ) = UnAm T(Uk ) is
also bounded i}, wherel (U, A, Uy ) is @ O—neighbourhood af'l. Now, the proof is complete. ‘m

Now, let(b”,); ». be another matrix with nonnegative real valued entries and with the following prop-
erties:

Vj, h,reN ph <ol
Vi, h,reN b <l
Vj,re NIheN bt > 0.

For eachr € N put B, := (b%,),,» and
Ao (Br) ={z = (z1,22,...) 1 g4 () := sup \a:j|b§b,T < +00,Vh € N}.
j

Then the spaca (Br) is a Fchet space with fundamental system of semindigf)s, and the inclusion
Mapjr+1,r: Aoo(Br) < Aoo(Br41) is continuous for every € N. Following [13,§ 5], we setE>* =
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UrAso (By-) endowed with the finest topology for which all the inclusion mgps\ . (B,) — E> are
continuous, i.e E* = ind, A\ (B,). As before, we denote by; the j—th unit vector ofE>°. Moreover,

in [13, 5.14] it has been shown th&f® is a complete (LF)—space if, and only if, it is a regular (LF)—space
if, and only if, the matrix(b” .); » . is of type (WQ), i.e.(b},.);» - satisfies the following condition:

VueNIn, ke NVm, K e NIN e N, S>0Vi e N: an§S(bﬁu+bfYK).
We have:

Theorem 3 LetE = ind,, E,, be aregular (LF)—space. Suppose izt = ind, A\ (B,) is a complete
(LF)—space. Then the following conditions are equivalent:

(I) L(E,Eoo) = LB(EvEOO)-

(i) for each sequencgk(n,j));)» Of increasing sequences of positive integers and for each increasing
sequencér(n)),, of positive integers

JreNVm e N3k e NVh e N3jy,np e NIC > 0: (14)

h _Im ¥l m
bipi" () < C max b ()P (1)
1<5<j0

for everyl € Nandu € E’ with pgggn’j)(u) < 400 for eachj andn € N.

Proork (i)=(ii). Let (k(n,j));)» be a countable set of increasing sequences of positive integers. Let
(r(n)), be another increasing sequence of positive integers. SiNEe E>*) = LB(E, E*), we can
apply Theorem 1 to conclude that condition (5) holds. Accordingly, we show that condition (14) holds too.

Letu € E" with pj(’, . (u) < +oo for everyj andn € N. Let/ € N. Consider the maf": £ — E*
defined byT'(z) := u(z)e;. Clearly,T is linear and continuous. In particular, for eacandn € N:

sup ¢} (T(x)) = sup  Ju(@)lg]" ()
zeU;‘(nm rceU,:}(mj)

sup  [u(x)[b]
wEU,:"w’j) Lr(n)

Therefore, by condition (5) we obtain that:

bﬁT.pz”(u) = sup q,(T(z)) <C max  sup q;(n)(T(x))
zeU 1<n<ng c€UL, i
1<5<50 ™I

¥ m

max ~U).

C 1<n<ng blﬂ"(")pk(”v])( )
1<5<jo

This complete the proof.

(i)=(). LetT € L(E,E>). ThenT o1, € L(E,, E>~) for everyn € N. SinceFE,, is a Féchet
space andv*° is a (LF)—space, we can apply Grothendieck’s factorization theorem [11, 5.8.38] to find an
increasing sequende(n)), of positive integers such that o i, € L(E,, Ao (B, (n))) for everyn € N.

Thus, for eactn € N there is another increasing sequeficen, j)); of positive integers such that

vjeN sup ¢"(T(x)) = dn; < +oo. (15)

€U )
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By condition (14), accordingly there isc N such that

¥m € N3k, € NVh € N 3jo, ng e N3C > 0 : (16)
bl7p;::yll( )<C ma<'X bl r(?L)pk(”J)( )
1<]<]0

foreveryl € N andu € E’ with pif,, . (u) < +oc for eachj andn € N.
This implies thatl’'(U;” ) C A (B,-) and bounded here. To see this we proceed as follows.
Letg,: B — K,z — ;. Puty; = g; o T. ThenT'(z) = (w;(x)),;. Moreover, for eachj andn € N,
by (15) we get:

SUp B Py () = st swp |u(w) = sup sup], . hu(z)
l l zeU k(!L_/) weUiL("J)
= sup qj( )(T(x)) = dnj < 400
zecU

k(n.5)

which assures us thpg(n i) (u;) < +oo for all I € N. Therefore, we can apply (16) to obtain that:

sup ¢;(T(z)) = sup suplu(z)[by, < sup suppy’ (z)pil (w)bi,
vevy, vevp, 1 veup, 1
< Slllppk (ul)blrésgpc H}lag,(n bl r(n)pk(nj)(ul)
1<5<4o

0151162{ supb ()Pl (1)

C max d,; < +oo.
1<n<ng
1<J<]0

It follows that T'(U;" ) C Ao (B,) and bounded here. Since.(B,) is a metrizable space, there is a
sequence of scala(S\ )m such thatl' (U, A, U ) = U A T(US ) is also a bounded set of, (B;),
wherel' (U, A, Uy ) is clearly a 0— nelghbourhood ib. Now, the proof is complete. W

Consequently, it is easily to prove:

Theorem 4 Suppose thaF! is a regular (LF)—space and tha@> is a nuclear (LF)—space. Then the
following conditions are equivalent:

() L(E',E>®) = LB(E', E>);

(i) for each sequencgk(n,j));)n, of increasing sequences of positive integers and for each increasing
sequencér(n)),, of positive integers

Fre NVm e NIk e NVh € N3jy, np e NIC' > 0: a7
. — k(n,j)\—119
Vi, l €N (af ) 'b},. < C  Jnax (ai’g1 My 1b§7r("). O

1<7<70

We now observe that, if the matri,, = A = (af)i,k for everym € N, then the spac&’ turns to be
the Féchet spacg@; (A), where the sets defined by

Up :={x = (x1,22,...): 2:|o:l|a:C <1}

%

form a basis of 0O—neighbourhoodsia(A). Then, argumenting as we did to prove Theorem 2 and using
Proposition 8, we obtain:
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Proposition 12 Let F' be a complete (LF)—space. Then the following condition are equivalent:
() L(A(A), F) = LB(M(A), F);

(i) for each increasing sequenck(n)),, of positive integers and for eache N

3k, 7o € NVh € N3ng e N3IC > 0 (18)
k=170 (4)) < k(n)y—1 r
(a7) gy’ (y) < € max (a; 7)™ qn(v),

foreveryy € F.qyandi e N.  [J

On the other hand, i(aﬁm)i = (a;m); = an for everyk andm € N, the space\; (4,,) turns to
be the Banach spadé(a,,) = {z = (z1,22,...) : ||[z|lm = X, |®ilaim < +oo} and henceE? =
ky = ind,, (!(a,,) is an (LB)-space. Then, argumenting again as we did to prove Theorem 2 and using
Proposition 10, we get:

Proposition 13 Letk; = ind,, (!(a,,) be a regular (LB)-space and |t = ind, F, be a complete
(LF)—space. Then the following conditions are equivalent:

(ii) for each increasing sequen¢e(n)),, of positive integers
Ir e NVm € NVh € N Jjg, no e NIC >0 (19)
(as,m) "G (y) < € max (ain) g} (v),

1<n<ng
1<j<jo

foreveryy € F.jyandi e N. [
Clearly, we can obtain results similar to the ones of Propositions 7, 9 and 11 ibcasg! and F is
a Fiechet space or in cage = E' andF' is a complete (LB) or DF-space, or in caBe= k; and F is a

complete (LB) or DF—spaces respectively. To prove this facts it suffices to argument as we did in the proof
of Theorem 2 and to use Proposition 7, 9 and 11, respectively. Actually, one gets:

Proposition 14 Let I be a Flechet space. Suppose tHat is a regular (LF)—space. Then the following
conditions are equivalent:

() L(E', F) = LB(E', F);
(i) for each increasing sequen¢k(n)), of positive integers and for each € N
JkeNVheNInge NIC >0: (20)

koy-1 < k(n)y—1
(aim) ™ an(y) < € max (a; 7)™ an(y),

foreveryy € FFandi e N. O

Proposition 15 Let F' be a complete (LB) or DF—space. Suppose i#Hais a regular (LF)—space. Then
the following conditions are equivalent:

() L(EY,F)= LB(E', F);
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(i) for each pair((k(n))n, (r(n)),) of increasing sequences of positive integers

Ir e NVm e NIk eNIng e NIC > 0: (21)
k )=l < k(n)y-1
(aim) ™ ar(y) < € max (a; ;") e (),

foreveryy € F.jyandi e N. [
Proposition 16 Letk; = ind,, I!(a,,) be a regular (LB)-space and Igt be a complete (LB) or DF—
space. Then the following conditions are equivalent:
() L(k1, F) = LB(k1, F);
(i) for each increasing sequen¢e(n)),, of positive integers
JreNVm eNdngeN3IC >0: (22)

)1 < 1
(az,m) QT(y) > Cl%%%)izo(az’n) qr(n)(y)v

foreveryy € F.;yandi € N. [

Next, if the matrixB, = B = (bg)jyh for all » € N, then the spac& turns to be a Fechet space, i.e.
E> = A\ (B), where the sets so defined

W ={x = (21,22,...): sup|a:ﬂb? <1}
J
form a basis of 0—neighbourhoodsin, (B). Then, a proof similar to the one of Theorem 3 togheter with
Proposition 7 gives:
Proposition 17 Let E be a regular (LF)—space. Then the following conditions are equivalent:
() L(E,A0(B)) = LB(E, Ao (B));
(ii) for each increasing sequen¢k(n)),, of positive integers and for each € N

Jk e NVheN3Inge NIC > 0: (23)
b?pz"(u) < Clénax b?pgzn) (u),

<n<ng

for everyu € E’ with pgggn)(u) < 4ooforallneNandjeN. O

On the other hand, iqb;{,.)j = (b;r); = b, for all r € N, the space\,,(B;) turns to be the Banach
spacel™(b,) = {z = (z1,22,...) : |z|, = sup; |z;|bj» < +oo} and hence the spade™ = k., =
ind,- *°(b,.) is an (LB)—space. Then, by repeating the same argument used in the proof of Theorem 3 and
by using Proposition 9, we get:

Proposition 18 Let F be a regular (LF)-space. Suppose that is a complete (LB)-space. Then the
following conditions are equivalent:

() L(E, k) = LB(E, ko );
(i) for each pair((k(n))n, (r(n)),) of increasing sequences of positive integers
FIre NVm e N3k, np e NIC >0 (24)
bj,rpgm(u) < Olg}laX bj,r(n)szn) (u),

<’ILO

foreveryj € Nandu € E' withp;7, \(u) < +ooforalln e N. [
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Finally, we can also obtain results similar to the ones of Propositions 8, 10 and 11 if caad-Echet
space and’ = E*° orin casel is a regular (LB)—space arfd = E°°, or in caseF is a regular (LB)—space
andF' = k.., respectively. The proof of this facts is based upon the same argument used in the proving
Theorem 3 and upon Propositions 8, 10 and 11, respectively. Actually, we have:

Proposition 19 Let E be a Fiéchet space. Suppose that is a complete (LF)—space. Then the follow-
ing conditions are equivalent:

() L(E,E>) = LB(E,E>);

(i) for each increasing sequen¢k(n)),, of positive integers and for eache N

3k, 1o e NVh e NIng e NIC' >0 (25)
b?yTop;G (u) <C 1%17152510 b?,rp;f(n) (u)?

foreveryj € Nandu € E' withp; ,,\(u) < +ooforalln e N. O
Proposition 20 Let E be a regular (LB)-space. Suppose tlzf° is a complete (LF)—space. Then the
following conditions are equivalent:
() L(E, E*) = LB(E,E*);

(i) for each increasing sequen¢e(n)),, of positive integers

Ir € NVm € NVh € N3jg, ng e NIC' > 0: (26)
h ./ J /
bl,rpm(u) S c 1%171%};0 blﬁr(n)pn(u)a
1<5<jo

foreveryu € E'andl e N. [

Proposition 21 Let F be a regular (LB)—space. Suppose thgt is a complete (LB)—-space. Then the
following conditions are equivalent:

() L(E, k) = LB(E, kso);
(ii) for each increasing sequen¢e(n)),, of positive integers

IJre NVm e NdInge NIC > 0: (27)

bj#’"p;n(u) S C 1213320 bj,r(n)p;L (U),

forevery; e Nandu € E/. O

We also note that, by combining the various caBés\; (A) andk; together with the case>, k.,
and A (B) (the latter spaces all have to be taken nuclear), we can obtain results similar to the one of
Theorem 4. It is left to the reader the easy duty to find the appropriate characterizations in every possible
and significant case.
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