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Bounded Linear Maps between (LF)–spaces

Angela A. Albanese

Abstract. Characterizations of pairs(E, F ) of complete (LF)–spaces such that every continuous linear
map fromE to F maps a 0–neighbourhood ofE into a bounded subset ofF are given. The case of
sequence (LF)–spaces is also considered. These results are similar to the ones due to D. Vogt in the case
E andF are Fŕechet spaces. The research continues work of J. Bonet, A. Galbis, S.Önal, T. Terziŏglu
and D. Vogt.

Aplicaciones lineales acotadas entre espacios (LF)

Resumen. Se dan caracterizaciones de pares(E, F ) de espacios (LF) tales que toda aplicación deE
enF que aplica un intervalo de 0 deE en un subconjunto acotado deF . Se considera también el caso
de una sucesión de espacios (LF). Los resultados son similares a los obtenidos por D. Vogt para el caso
en queE y F son espacios de Fréchet. Esta investigación continua el trabajo de J. Bonet, A. Galbis, S.
Önal, T. Terziŏglu and D. Vogt.

The problem of the characterization of those pairs of locally convex spacesE andF such that every
continuous linear map fromE to F maps a 0–neighbourhood into a bounded subset ofF (denoted by
L(E, F ) = LB(E,F )) has been extensively considered in the literature with different purposes (e.g., see
[1, 4, 5, 6, 10, 9, 12, 13]). Pairs of Fréchet spacesE andF for which the identity holds have been completely
characterized by D. Vogt in [12]. For pairs of barrelled (DF)–spaces a similar result has been provided by
A. Galbis in [6] (for further characterizations see also [1, 4]).

It is worth noting that the theory of pairs of Fréchet spaces between which every continuous linear map
is bounded turned to be a powerful tool in the study of the topological structure of Fréchet spaces: for
example, it is strongly related to the important topological invariants(DN) and(Ω) introduced by D. Vogt
(see [12]). On the other hand, in [2, 3] J. Bonet and P. Domaǹski used such a theory to clarify the relation
between the various notions of vector–valued real analytic functions.

Motivated by these facts, we continue here the research on this topic, in particular giving a complete
characterization of the pairs of (LF)–spacesE andF such that the identityL(E, F ) = LB(E,F ) holds.
Our characterization is similar to the one given in [12] for the case of Fréchet spaces.

The article is divided in three sections. In section 1 we collect some general results onL(E,F ) =
LB(E,F ) with E andF locally convex spaces. In section 2 we characterize the pairs of (LF)–spacesE
andF for which L(E, F ) = LB(E, F ). As consequences, we derive similar results for other cases, for
example withE (LF)–space andF (LB) or DF–space, withE (LB) or Fréchet space andF (LF)–space,
etc. Finally, in section 3 we apply our results to concrete sequence (LF)–spaces.
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Our notation is standard. If E is a locally convex space, the family of all bounded absolutely convex sets
in E is denoted byB(E). If B ∈ B(E), EB denotesspanB equipped with the gauge functional ofB as a
norm. The inclusion mapEB ↪→ E is clearly linear and continuous. The family of all absolutely convex
0–neighbourhoods inE is denoted byU(E).

If E andF are locally convex spaces, a linear mapT : E → F is calledboundedif there isU ∈ U(E)
so thatT (U) ∈ B(F ). Of course, every bounded map is continuous. The space of all linear and continuous
maps (the space of all linear and bounded maps, resp.) fromE intoF is denoted byL(E,F ) (byLB(E,F ),
resp.). ClearlyLB(E,F ) ⊂ L(E, F ). Lb(E, F ) denotes the spaceL(E, F ) endowed with the topology of
uniform convergence on the bounded sets ofE.

We refer the reader to [7, 8, 11] for other undefined notations and for the general theory of locally
convex spaces.

1. General Results

In the sequel(En)n always denotes a sequence of locally convex spaces. PutE = ⊕nEn (the locally
convex direct sum of(En)n), the mapim : Em → E, x → (xδmn)n, is an isomorphism onto its range for
everym ∈ N. On the other hand, the mappm : E → Em, (xn)n → xm, is an homomorphism onto and
pm ◦ im = idEm

for everym ∈ N.

Proposition 1 Let (En)n be a sequence of locally convex spaces and letF be a Fŕechet space. Then the
following conditions are equivalent:

(i) L(⊕nEn, F ) = LB(⊕nEn, F );

(ii) L(En, F ) = LB(En, F ), ∀n ∈ N.

PROOF. (i)⇒(ii). Let m ∈ N andT ∈ L(Em, F ). ThenT ◦pm ∈ L(⊕nEn, F ) = LB(⊕nEn, F ); hence
there isU ∈ U(⊕nEn) such thatT (pm(U)) ∈ B(F ). Sincepm is an homomorphism onto,pm(U) is also
a 0–neighbourhood inEm and henceT ∈ LB(Em, F ).

(ii)⇒(i). Let T ∈ L(⊕nEn, F ). ThenT ◦ in ∈ L(En, F ) = LB(En, F ) for all n ∈ N; hence, for
eachn ∈ N, there isUn ∈ U(En) such thatT (in(Un)) ∈ B(F ). SinceF is a Fŕechet space, we can find a
sequence of scalars(λn)n such that∪nλnT (in(Un)) = T (∪nλnin(Un)) is also a bounded set inF , where
Γ(∪nλnin(Un)) ∈ U(⊕nEn). Then the result follows. ¥

Proposition 2 Let (En)n be a sequence of locally convex spaces and letF be a Fŕechet space. Then the
following conditions are equivalent:

(i) L(F,⊕nEn) = LB(F,⊕nEn);

(ii) L(F, En) = LB(F,En), ∀n ∈ N.

PROOF. (i)⇒(ii). Let m ∈ N andT ∈ L(F, Em). Thenim ◦ T ∈ L(F,⊕nEn) = LB(F,⊕nEn); hence,
there isU ∈ U(F ) such thatim(T (U)) is a bounded set of⊕nEn. Sinceim is an isomorphism into,T (U)
is also a bounded set inEm and the result follows.

(ii)⇒(i). Let T ∈ L(F,⊕nEn). Then:

∃k ∈ N T (Uk) ⊂ ⊕n≤kEn, (1)

where(Uk)k is a decreasing basis of 0-neighbourhoods inF .
Suppose that (1) is not true. Then, for eachk ∈ N, there isxk ∈ Uk such thatT (xk) 6∈ ⊕n≤kEn.

Clearly, (xk)k converges to 0 inF and hence(T (xk))k converges to 0 in⊕nEn too. Thus(T (xk))k ⊂
⊕n≤mEn for somem ∈ N, obtaining a contradiction.
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Bounded Linear Maps between (LF)–spaces

By (1), T (F ) ⊂ ⊕n≤kEn and henceT ∈ L(F,⊕n≤kEn). Now, for eachn ≤ k pn ◦ T ∈ L(F,En) =
LB(F, En) and hence there iskn ∈ N such thatBn = pn(T (Ukn

)) is a bounded set ofEn. PutU =
∩n≤kUkn

, thenU ∈ U(F ) andT (U) ⊂ ⊕n≤kBn. This completes the proof. ¥

Remark 1 It is clear from the above proofs that implication (i)⇒(ii) in Propositions 1 and 2 always holds
for any locally convex spaceF . But the converse generally does not hold as the following example shows.
Let F = (`p)(N), 1 ≤ p ≤ ∞, and letE = (ω)(N). Clearly, the inclusion mapF ↪→ E is linear and
continuous, but not bounded.

On the other hand,L(F, ω) = LB(F, ω) andL(`p, (ω)(N)) = LB(`p, (ω)(N)). ¥

Next, putE =
∏

n En, for eachm ∈ N the mapjm : Em → E, x → (xδmn)n, is an isomorphism onto
its range and the maprm : E → Em, (xn)n → xm, is an homomorphism onto such thatrm ◦ jm = idEm .

Proposition 3 Let (En)n be a sequence of locally convex spaces and letF be a DF–space. Then the
following conditions are equivalent:

(i) L(
∏

n En, F ) = LB(
∏

n En, F );

(ii) L(En, F ) = LB(En, F ), ∀n ∈ N.

PROOF. (i)⇒(ii). Let m ∈ N andT ∈ L(Em, F ). ThenT ◦ rm ∈ L(
∏

n En, F ) = LB(
∏

n En, F );
hence there isU ∈ U(

∏
n En) such thatT (rm(U)) ∈ B(F ). Sincerm is an homomorphism onto,rm(U)

is also a 0–neighbourhood ofEm and the result follows.
(ii)⇒(i). Let T ∈ L(

∏
n En, F ). Then:

∃k ∈ N T ({0}k ×
∏

n>k

En) ⊂ Bk, (2)

where(Bk)k is a fundamental increasing sequence of bounded sets ofF .
Suppose that (2) is not true. Then, for eachk ∈ N there isxk ∈ {0}k×∏

n>k En such thatT (xk) 6∈ Bk.
Clearly, (xk)k converges to 0 in

∏
n En and hence(T (xk))k converges to 0 inF too. Since(Bm)m is a

fundamental system of bounded subsets ofF , (T (xk))k ⊂ Bm for somem ∈ N, obtaining a contradiction.
Condition (2) implies thatT ({0}k × ∏

n>k En) = {0}, being it a bounded subspace ofF . On the
other hand, for eachn ≤ k, T ◦ jn ∈ L(En, F ) = LB(En, F ) and hence there isUn ∈ U(En) such that
T (jn(Un)) ∈ B(F ).

PutU =
∏

n≤k Un ×
∏

n>k En, thenU is a 0–neighbourhood of
∏

n En andT (U) is a bounded set of
F because

U =
∏

n≤k

Un ×
∏

n>k

En ⊂
∑

n≤k

jn(Un) + {0}k ×
∏

n>k

En

and hence
T (U) ⊂

∑

n≤k

T (jn(Un)),

where
∑

n≤k T (jn(Un)) is a bounded subset ofF . Then the result follows. ¥

Proposition 4 Let (En)n be a sequence of locally convex spaces and letF be a DF–space. Then the
following conditions are equivalent:

(i) L(F,
∏

n En) = LB(F,
∏

n En);

(ii) L(F, En) = LB(F,En), ∀n ∈ N.
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PROOF. (i)⇒(ii). Let m ∈ N andT ∈ L(F, Em). Thenjm ◦ T ∈ L(F,
∏

n En) = LB(F,
∏

n En); thus
there isU ∈ U(F ) such thatjm(T (U)) ∈ B(

∏
n En). Sincejm is an isomorphism into,T (U) is also a

bounded set ofEm and the result follows.
(ii)⇒(i). Let T ∈ L(F,

∏
n En). Then, for eachn ∈ N, rn ◦ T ∈ L(F, En) = LB(F,En) and

hence there isUn ∈ U(F ) such thatrn(T (Un)) ∈ B(En). SinceF is a DF–space, there is a sequence
of scalars(λn)n such thatU = ∩nλnUn is also a 0–neighbourhood ofF . On the other hand, for each
n ∈ N rn(T (U)) is bounded inEn, implying thatT (U) is a bounded subset of

∏
n En. Then the result

follows. ¥

Remark 2 It is clear from the above proofs that implication (i)⇒(ii) in Propositions 3 and 4 always holds
for any locally convex spaceF . In general the converse is not true as the following example shows.

Let F = (`p)N andE = (`q)N, 1 ≤ p < q ≤ ∞. Clearly, the inclusion mapF ↪→ E is linear and
continuous, but not bounded. On the other hand,L(F, `q) = LB(F, `q) andL(`p, E) = LB(`p, E). ¥

Let (En, in+1,n)n be a sequence of locally convex spaces and linear and continuous inclusion maps
in+1,n : En ↪→ En+1. Let E := indn En, i.e. E = ∪nEn and it is endowed with the finest locally convex
topology for which all the inclusion mapsin : En ↪→ E are continuous. Then

Proposition 5 Let E = indn En be an inductive limit of locally convex spaces and letF be a Fŕechet
space. Then:

(i) L(En, F ) = LB(En, F ), ∀n ∈ N⇒ L(E, F ) = LB(E, F );

(ii) E is regular andL(F,En) = LB(F,En), ∀n ∈ N⇒ L(F, E) = LB(F,E).

PROOF. (i). Let T ∈ L(E, F ). Then, for eachn ∈ N, T ◦ in ∈ L(En, F ) = LB(En, F ) and hence
there isUn ∈ U(En) such thatT (in(Un)) ∈ B(F ). SinceF is a Fŕechet space, there is a sequence of
scalars(λn)n for which T (∪nλnin(Un)) = ∪nλnT (in(Un)) is also a bounded set ofF . On the other
hand,Γ(∪nλnin(Un)) ∈ U(E) and thenT ∈ LB(E, F ).

(ii). Let T ∈ L(F,E). Then:

∃m ∈ N T (F ) ⊂ Em andT : F → Em is continuous. (3)

To prove (3) it suffices to repeat the same proof of Gronthendieck– Floret’s factorization theorem [11,
8.5.38] . For the sake of completeness, we give here the proof of (3).

Let F be the filter generated by(T (Uk))k, where(Uk)k is a decreasing basis of 0–neighbourhoods in
F . For eachn ∈ N letFn be the filter generated by a basis of 0–neighbourhoods inEn.

Let (xk)k be aF–convergent sequence inE. Then there is(yk)k ⊂ F so thatT (yk) = xk and(yk)k

is also a convergent sequence inF . SinceF is a Fŕechet space, there is an unbounded sequence of positive
scalars(λk)k such that(λkyk)k is bounded inF . It follows that(λkxk)k = (T (λkyk))k is a bounded set
of E. SinceE is a regular inductive limit, there isn ∈ N such that(λkxk)k ⊂ En and bounded here. Thus
(xk)k converges to 0 inEn and(xk)k is aFn–convergent sequence. By [11, 8.5.35], there ism ∈ N such
thatFm is coarser thanF and then (3) follows.

By (3), T ∈ L(F,Em) = LB(F, Em) and henceT ∈ LB(F, E). ¥

Remark 3 The converse of Proposition 5–(i) does not hold in general as the following example shows.
For eachn ∈ N we defineEn :=

∏
k<n ω × ∏

k≥n s, wheres is the Fŕechet space of all rapidly
decreasing sequences. PutE = indn En. By [11, 8.7.2]E is a dense topological subspace ofωN. If
T ∈ L(E, s), there is then a unique linear continuous extensionS ∈ L(ωN, s). ThereforeS, and hence
T , is bounded becauseωN is a quojection ands has a continuous norm. On the other hand, it is plain that
L(En, s) 6= LB(En, s) for everyn ∈ N. ¥
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Let (En, rn,n+1)n be a sequence of locally convex spaces andrn,n+1 : En+1 → En linear and con-
tinuous maps. LetE := projn En. Then all the mapsrm : E → Em, (xn)n → xm, are continuous. We
have

Proposition 6 LetE = projn En be a projective limit of locally convex spaces and letF be a DF–space.
Then:

L(F, En) = LB(F, En), ∀n ∈ N⇒ L(F, E) = LB(F, E).

PROOF. Let T ∈ L(F, E). Then, for eachn ∈ N rn ◦ T ∈ L(F, En) = LB(F,En) and hence there
is Un ∈ U(F ) such thatBn = rn(T (Un)) ∈ B(En). SinceF is a DF–space, there is a sequence of
scalars(λn)n such thatU = ∩nλnUn is a 0–neighbourhood inF , whereT (U) ⊂ ∏

n λnBn; thusT (U) is
bounded in E. ¥

2. The case of (LF)–spaces

In this section we consider the equalityL(E,F ) = LB(E,F ) in caseE is a regular (LF)–space andF is a
complete (LF)–space or a DF–space. We find a characterization similar to the one given by Vogt [12] when
E andF are Fŕechet spaces. Applications of our results for particular cases will be given.

Let (Em, im+1,m)m be a sequence of Fréchet spaces andim+1,m : Em ↪→ Em+1 linear and continuous
inclusion maps. LetE = indm Em so that all inclusion mapsim : Em ↪→ E are continuous andim+1 ◦
im+1,m = im. We always assume that, for eachm ∈ N, Em = projk(Emk, pm

k ) is the reduced projective
limit of the sequence(Emk, pm

k )k of Banach spaces and linear and continuous mapssm
k,k+1 : Emk+1 →

Emk with dense range. Letsm
k : Em → Emk be the canonical projection such thatsm

k,k+1 ◦ sm
k+1 = sm

k .
PutUm

k = {x ∈ Em : pm
k (sm

k (x)) ≤ 1}. Then(Um
k )k is a basis of 0–neighbourhoods inEm. Without loss

of generality, we can also suppose thatUm
k ⊂ Um+1

k for everym andk ∈ N. Consequently, for eachm
andk ∈ N there is a linear and continuous mapikm+1,m : Emk → Em+1k such that the following diagram
commutes

Em
sm

k→ Emk

sm
k−1,k→ Emk−1

im+1,m ↓ ↓ ikm+1,m ↓ ik−1
m+1,m

Em+1
sm+1

k→ Em+1k

sm+1
k−1,k→ Em+1k−1 .

(4)

We denote byp′mk the gauge functional of
◦

Um
k (the polar ofUm

k with respect to the duality< Em, E′
m >).

Let (Fr, jr+1,r)r be another sequence of Fréchet spaces and linear and continuous inclusion maps
jr+1,r : Fr ↪→ Fr+1. Let F = indr Fr so that all inclusion mapsjr : Fr ↪→ F are continuous and
jr+1 ◦ jr+1,r = jr. We always assume that, for eachr ∈ N, Fr = projh(Frh, qr

h) is the reduced projective
limit of the sequence(Frh, qr

h)h of Banach spaces and linear and continuous mapstrh,h+1 : Frh+1 → Frh

with dense range. Lettrh : Fr → Frh be the canonical projection so thattrh,h+1 ◦ trh+1 = trh. Put
V r

h = {x ∈ Fr : qr
h(trh(x)) ≤ 1}. Then (V r

h )h is a basis of 0-neighbourhoods inFr. We observe
that:

Remark 4 (i) For eachr ∈ N we defineJr+1,r : Lb(E, Fr) → Lb(E,Fr+1) by Jr+1,r(T ) := jr+1,r ◦ T .
Clearly, Jr+1,r is an injective, linear and continuous map. We can then consider the inductive limit
indr Lb(E,Fr) of the sequence(Lb(E,Fr))r of locally convex spaces. If for anyr ∈ N we define
Jr : Lb(E, Fr) → Lb(E, F ) by Jr(T ) := jr ◦ T , Jr is also an injective, linear and continuous map and
Jr+1◦Jr+1,r = Jr. Thus there is an injective, linear and continuous mapJ : indr Lb(E, Fr) → Lb(E,F ).

On the other hand, if for anyr ∈ Nwe defineIr
m,m+1 : Lb(Em+1, Fr) → Lb(Em, Fr) by Ir

m+1,m(T ) :=
T ◦ im+1,m, Ir

m,m+1 is linear and continuous. We can then consider the projective limitprojm Lb(Em, Fr)
of the projective sequence(Lb(Em, Fr), Ir

m,m+1). Thus the mapIr : Lb(E,Fr) → projm Lb(Em, Fr)
defined byIr(T ) := (T ◦ im)m is an isomorphism onto. Moreover, ifJ ′r+1,r : projm Lb(Em, Fr) →
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projm Lb(Em, Fr+1) is the map given byJ ′r+1,r((Tm)m) := (jr+1,r ◦ Tm)m, J ′r+1,r is injective, linear
and continuous and the following diagram is commutative

Lb(E, Fr)
Ir

→ projm Lb(Em, Fr)
Jr+1,r ↓ ↓ J ′r+1,r

Lb(E, Fr+1)
Ir+1

→ projm Lb(Em, Fr+1) .

Consequently, we can consider the inductive limitindr projm Lb(Em, Fr) and the map

I : ind
r

proj
m

Lb(Em, Fr) → ind
r

Lb(E, Fr)

given by ((Ir)−1)r (i.e., I((Tm)m) := (Ir)−1((Tm)m) if (Tm)m ∈ projm Lb(Em, Fr)), which is an
isomorphism onto.

Now, given anyr andm in N, for eachk ∈ N we defineSm,r
k+1,k : Lb(Emk, Fr) → Lb(Emk+1, Fr) by

Sm,r
k+1,k(T ) := T ◦ sm

k,k+1. Sincesm
k,k+1 has dense range,Sm,r

k+1,k is injective, linear and continuous. We
can then consider the inductive limitindk Lb(Emk, Fr) of the inductive sequence(Lb(Emk, Fr), S

m,r
k+1,k).

If for k ∈ N we defineSm,r
k : Lb(Emk, Fr) → Lb(Em, F ) by Sm,r

k (T ) := T ◦ sm
k , Sm,r

k is also an
injective, linear and continuous map. Moreover,Sm,r

k+1 ◦ Sm,r
k+1,k = Sm,r

k . Then there is an injective, linear
and continuous mapSm,r : indk Lb(Emk, Fr) → Lb(Em, Fr).

Also, if Ik,r
m,m+1 : Lb(Em+1k, Fr) → Lb(Emk, Fr) is the map given byIk,r

m,m+1(T ) := T ◦ ikm+1,m,

Ik,r
m,m+1 is linear and continuous and turns to be commutative the following diagram because of (4)

Lb(Emk−1, Fr)
Sm,r

k+1,k→ Lb(Emk, Fr)
Sm,r

k→ Lb(Em, Fr)
Ik−1,r
m,m+1 ↑ ↑ Ik,r

m,m+1 ↑ Ir
m,m+1

Lb(Em+1k−1, Fr)
Sm+1,r

k+1,k→ Lb(Em+1k, Fr)
Sm+1,r

k→ Lb(Em+1, Fr).

Therefore the mapI ′rm,m+1 : indk Lb(Em+1k, Fr) → indk Lb(Emk, Fr), given byI ′rm,m+1(T ) := T ◦
ikm+1,m for T ∈ Lb(Em+1k, Fr), is well–defined, linear and continuous and such that the following diagram
also commutes

indk Lb(Emk, Fr)
Sm,r

→ Lb(Em, Fr)
I ′rm,m+1 ↑ ↑ Ir

m,m+1

indk Lb(Em+1k, Fr)
Sm+1,r

→ Lb(Em+1, Fr) .

This means that the mapSr : projm indk Lb(Emk, Fr) → projm Lb(Em, Fr) defined bySr((Tm)m) :=
(Sm,r(Tm))m is linear and continuous. SinceSm,r is injective for everym ∈ N, Sr is also injective.

Moreover, if J ′′r+1,r : projm indk Lb(Emk, Fr) → projm indk Lb(Emk, Fr+1) is the map such that
J ′′r+1,r((Tm)m) = (jr,r+1 ◦ Tm)m, thenJ ′′r+1,r is injective, linear and continuous and turns to be commu-
tative the following diagram

projm indk Lb(Emk, Fr+1)
Sr+1

→ projm Lb(Em, Fr+1)
J ′′r+1,r ↑ ↑ J ′r+1,r

projm indk Lb(Emk, Fr)
Sr

→ projm Lb(Em, Fr) .

The mapS : indr projm indk Lb(Emk, Fr) → indr projm Lb(Em, Fr), given byS((Tm)m) := Sr((Tm)m)
if (Tm)m ∈ projm indk Lb(Emk, Fr), is then well-defined, injective, linear and continuous.

Finally, givenk, m andr ∈ N, if for any h ∈ N we defineTm,r
h,h+1 : Lb(Emk, Frh+1)→ Lb(Emk, Frh)

by Tm,r
h,h+1(T ) := trh,h+1 ◦ T , Tm,r

h,h+1 is also linear and continuous. Letprojh Lb(Emk, Frh) be the pro-
jective limit of the projective sequence(Lb(Emk, Frh), Tm,r

h,h+1)h. Then the mapTm,r
h : Lb(Emk, Fr) →

Lb(Emk, Frh) defined byTm,r
h (T ) = (trh ◦ T )h is an isomorphism onto.
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Now, proceeding exactly as we did before, one shows that we can consider the space

ind
r

proj
m

ind
k

proj
h

Lb(Emk, Frh)

and define in a canonical way an injective, linear and continuous mapT from this space to

ind
r

proj
m

ind
k

Lb(Emk, Fr).

Thus we have proved that the map

R := J ◦ I ◦ S ◦ T : ind
r

proj
m

ind
k

proj
h

Lb(Emk, Frh) → Lb(E,F )

is well–defined, injective, linear and continuous.
(ii) Suppose thatF is a regular (LF)–space. Then, as it is easy to see, the image of the mapR above

constructed is the spaceLB(E,F ) of all linear bounded maps fromE into F .
(iii) Suppose thatE is a regular (LF)–space andF is a complete (LF)–space. Let((k(n, j))j)n be a

countable set of increasing sequences of positive integers and let(r(n))n be another increasing sequence
of positive integers. Then the space

H := {T ∈ L(E,F ) : ||T ||j,n := sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) < +∞ ∀n, j ∈ N}

is a Fŕechet space with respect to the topology generated by the sequence(|| ||j,n)j,n of seminorms.
To see this, it suffices to show that the inclusion mapH ↪→ Lb(E, F ) is continuous.
Let B ∈ B(E) andV ∈ U(F ). SinceE is a regular (LF)–space, there isn0 ∈ N such thatB ⊂ En0

and bounded here. Now,V ∩ Fr(n0) is a 0–neighbourhood inFr(n0) and henceV ∩ Fr(n0) ⊃ µV
r(n0)
j0

for
somej0 ∈ N andµ > 0. SinceB is a bounded set ofEn0 , we find aλ > 0 such thatB ⊂ λUn0

k(n0,j0)
. Then

W = {T ∈ H : T (Un0
k(n0,j0)

) ⊂ V
r(n0)
j0

}
⊂ µ−1λ{T ∈ L(E, F ) : T (B) ⊂ V } = µ−1λM,

whereW andM are 0–neighbourhoods inH and inLb(E,F ), respectively. In fact, ifT ∈ W , then
T (Un0

k(n0,j0)
) ⊂ V

r(n0)
j0

and henceT (B) ⊂ λT (Un0
k(n0,j0)

) ⊂ λV
r(n0)
j0

⊂ λµ−1V ∩ Fr(n0) ⊂ λµ−1V :

thereforeT ∈ µ−1λM .
SinceLb(E,F ) is complete and the inclusion mapH ↪→ Lb(E, F ) is continuous, we obtain thatH is

a Fŕechet space. ¥

Now, we are ready to state and prove:

Theorem 1 Let E = indm Em be a regular (LF)–space and letF = indr Fr be a complete (LF)–space.
Then the following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

(ii) for each sequence((k(n, j))j)n of increasing sequences of positive integers and for each increasing
sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃k ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (5)

sup
x∈Um

k

qr
h(T (x)) ≤ C max

1≤n≤n0
1≤j≤j0

sup
x∈Un

k(n,j)

q
r(n)
j (T (x)),

for everyT ∈ L(E,F ) with supx∈Un
k(n,j)

q
r(n)
j (T (x)) < +∞ for eachj, n ∈ N.
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PROOF. (i)⇒(ii). Let (k(n, j))j)n be a sequence of increasing sequences of positive integers and let
(r(n))n be another increasing sequence of positive integers. We consider the space

H = {T ∈ L(E, F ) : ||T ||j,n = sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) < +∞, ∀j, n ∈ N}.

By Remark 4–(iii) ,H is a Fŕechet space with respect to the topology generated by the sequence(|| ||j,n)j,n

of seminorms and the inclusion mapH ↪→ Lb(E,F ) is continuous.
On the other hand, by hypothesisL(E, F ) = LB(E, F ) ; thus, by Remark 4–(i) and (ii), the linear map

R : ind
r

proj
m

ind
k

proj
h

Lb(Emk, Frh) → Lb(E, F )

is a continuous algebraical isomorphism onto.
Endowed the spaceL(E, F ) with the topology induced via the mapR, it follows that the inclusion map

H ↪→ L(E, F ) = ind
r

proj
m

ind
k

proj
h

Lb(Emk, Frh)

has closed graph. SinceH is a Fŕechet space and

L(E, F ) = ind
r

proj
m

ind
k

proj
h

Lb(Emk, Frh)

is a strictly webbed, we can apply the Wilde’s closed graph theorem [7, 5.4.1] to conclude that this in-
clusion map is continuous. Thus, by the Localization Theorem [7, 5.6.3], there isr ∈ N such that
H ⊂ projm indk projh Lb(Emk, Frh) and the mapH ↪→ projm indk projh Lb(Emk, Frh) is also con-
tinuous. Therefore for eachm ∈ N the map

H → ind
k

proj
h

Lb(Emk, Frh), T → T ◦ im,

is continuous. Finally, by Grothendieck’s factorization theorem [11, 8.5.38], there isk ∈ N such that

H → proj
h

Lb(Emk, Frh) = Lb(Emk, Fr), T → T̃ ,

is also continuous, wherẽT ◦ sm
k = T ◦ im.

We have shown that

∃r ∈ N ∀m ∈ N ∃k ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 :

sup
x∈Um

k

qr
h(T (x)) ≤ C max

1≤n≤n0
1≤j≤j0

sup
x∈Un

k(n,j)

q
r(n)
j (T (x)),

for everyT ∈ H. This completes the proof.
(ii)⇒(i). Let T ∈ L(E,F ). ThenT ◦ in ∈ L(En, F ) for all n ∈ N. By Grothendieck’s factorization

theorem [11, 8.5.38], we can find an increasing sequence(r(n))n of positive integers such thatT ◦ in ∈
L(En, Fr(n)) for all n ∈ N. SinceT ◦ in ∈ L(En, Fr(n)), we can find another increasing sequence
(k(n, j))j of positive integers such that, for eachj ∈ N,

sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = dnj < +∞.

On the other hand, by assumption there isr ∈ N so that (5) holds. Consequently, we get:

∀m ∈ N ∃km ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 :
sup

x∈Um
km

qr
h(T (x)) ≤ C max

1≤n≤n0
1≤j≤j0

dnj < +∞.
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This implies thatT (Um
km

) is a bounded subset ofFr for all m ∈ N. SinceFr is a metrizable space,
there is a sequence of scalars(λm)m such thatT (∪mλmUm

km
) = ∪mλmT (Um

km
) is bounded inFr, where

Γ(∪mλmUm
km

) is a 0–neighbourhood inE. Then the proof is complete.¥
With obvious changes the previous characterization holds for other cases, e.g., takingE (LF)–space

or (LB)–space andF Fréchet space or complete DF–space. To obtain this, it is enough to do only some
remarks.

Consider first the case whereE is a regular (LF)–space andF is a Fŕechet space.
Let F be a Fŕechet space. Assume thatF = projh(Fh, qh) is the reduced projective limit of the

projective sequence(Fh, qh)h of Banach spaces and linear and continuous mapsth,h+1 : Fh+1 → Fh with
dense range. Letth : F → Fh be the canonical projection such thatth,h+1 ◦ th+1 = th. PutVh = {x ∈ F :
qh(th(x)) ≤ 1}. Then(Vh)h is a basis of 0–neigbourhoods inF .

For eachr ∈ N putFr = F andjr+1,r = jr = idF . Clearly,F = indr Fr. Therefore:

Remark 5 (i) Let E = indm Em be an (LF)–space and letF be a Fŕechet space. By Remark 4–(i) and
(ii), the mapR turns to be a linear and continuous map from the spaceprojm indk projh Lb(Emk, Fh) into
the spaceLb(E,F ) and its image is exactly the spaceLB(E, F ) of all linear bounded maps fromE into
F .

(ii) Let E be a regular (LF)–space and letF be a Fŕechet space. Let(k(n))n be an increasing sequence
of positive integers. Proceeding exactly as we did in Remark 4–(iii), one shows that the space

H := {T ∈ L(E, F ) : ||T ||n = sup
x∈Un

k(n)

qn(T (x)) < +∞, ∀n ∈ N}

is a Fŕechet space with respect to the topology generated by the sequence(|| ||n)n of seminorms and the
inclusion mapH ↪→ Lb(E, F ) is continuous. ¥

Proceeding as we did to prove Theorem 1, we easily get:

Proposition 7 Let E = indm Em be a regular (LF)–space and letF be a Fŕechet space. Then the
following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

(ii) for each increasing sequence(k(n))n of positive integers and for eachm ∈ N

∃k ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (6)

sup
x∈Um

k

qh(T (x)) ≤ C max
1≤n≤n0

sup
x∈Un

k(n)

qn(T (x)),

for everyT ∈ L(E,F ) with supx∈Un
k(n)

qn(T (x)) < +∞ for eachn ∈ N. ¤

Next, consider the case whereE is a Fŕechet space andF is a regular (LF)–space.
Let E be a Fŕechet space. Assume thatE = projk(Ek, pk) is the reduced projective limit of the

projective sequence(Ek, pk)k of Banach spaces and linear and continuous mapssk,k+1 : Ek+1 → Ek

with dense range. Letsk : E → Ek be the canonical projection such thatsk,k+1 ◦ sk+1 = sk. Put
Uk = {x ∈ E : pk(sk(x)) ≤ 1}. Then(Uk)k is a basis of 0–neighbourhoods inE.

For eachm ∈ N let Em = E andim+1,m = im = idE . Clearly,E = indm Em. We have:

Remark 6 (i) Let E be a Fŕechet space and letF = indr Fr be a regular (LF)–space. By Remark 4–(i)
and (ii), the mapR turns to be a linear and continuous map from the spaceindr indk projh Lb(Ek, Frh)
into the spaceLb(E, F ) and its image is the spaceLB(E,F ) of all linear and bounded maps fromE into
F .
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(ii) Let E be a Fŕechet space and letF = indr Fr be a complete (LF)–space. Let(k(n))n be an
increasing sequence of positive integers andr ∈ N. Proceeding as we did in Remark 4–(iii), one shows that
the space

H := {T ∈ L(E, F ) : ||T ||n = sup
x∈Uk(n)

qr
n(T (x)) < +∞, ∀n ∈ N}

is a Fŕechet space with respect to the topology generated by the sequence(|| ||n)n of seminorms and the
inclusion mapH ↪→ Lb(E, F ) is continuous.¥

Argumenting as we did to prove Theorem 1, we then obtain:

Proposition 8 Let E be a Fŕechet space and letF = indr Fr be a complete (LF)–space. Then the
following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

(ii) for each increasing sequence(k(n))n of positive integers and for eachr ∈ N

∃k, r0 ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (7)

sup
x∈Uk

qr0
h (T (x)) ≤ C max

1≤n≤n0
sup

x∈Uk(n)

qr
n(T (x)),

for everyT ∈ L(E,F ) with supx∈Uk(n)
qr
n(T (x)) < +∞ for eachn ∈ N. ¤

Suppose thatF is a complete DF–space. Let(Br)r be a fundamental system of absolutely convex
closed bounded sets ofF with Br ⊂ Br+1. Denote byqr the gauge ofBr and byFr the linear span of
Br. Then(Fr, qr) is a normed space and the inclusion mapjr : (Fr, qr) ↪→ F is continuous. Actually,
also the inclusion mapsjr+1,r : Fr ↪→ Fr+1 are continuous. LetFi := indr(Fr, qr). Thus the inclusion
mapFi ↪→ F is continuous (algebraicallyFi = F ). SinceF is a complete DF–space,(Fr, qr) is a Banach
space andFi is a complete (LB)–space. Moreover, ifE is a locally convex space, the inclusion map
Lb(E, Fi) ↪→ Lb(E, F ) is linear and continuous andLB(E, Fi) = LB(E, F ). We have:

Remark 7 (i) Let E = indm Em be an (LF)–space and letF = indr Fr be a regular (LB)–space (F is the
inductive limit of the inductive sequence(Fr, jr+1,r) of Banach spaces and linear and continuous inclusion
mapsjr+1,r : Fr ↪→ Fr+1 so that all inclusion mapsjr : Fr ↪→ F are continuous) or letF be a complete
DF–space. By Remarks 4–(i) and (ii), the mapR turns to be a linear and continuous map from the space
indr projm indk Lb(Emk, Fr) into the spaceLb(E, F ) and its image is the spaceLB(E, F ).

(ii) Let E = indm Em be a regular (LF)–space and letF = indr Fr be a complete (LB)–space or let
F be a complete DF–space. Let(k(n))n and (r(n))n be two increasing sequences of positive integers.
Proceeding again as we did in Remark 4–(iii), one shows that the space

H = {T ∈ L(E, F ) : ||T ||n := sup
x∈Un

k(n)

qr(n)(T (x)) < +∞, ∀n ∈ N}

is a Fŕechet space with respect to the topology generated by the sequence(|| ||n)n of seminorms and the
inclusion mapH ↪→ Lb(E, F ) is continuous. ¥

Repeating the proof of Theorem 1 with obvious changes, we get:

Proposition 9 Let E = indm Em be a regular (LF)–space. LetF = indr Fr be a complete (LB)–space
or let F be a complete DF–space. Then the following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

22



Bounded Linear Maps between (LF)–spaces

(ii) for each pair of increasing sequences((k(n))n, (r(n))n) of positive integers

∃r ∈ N ∀m ∈ N ∃k, n0 ∈ N ∃C > 0 : (8)

sup
x∈Um

k

qr(T (x)) ≤ C max
1≤n≤n0

sup
x∈Un

k(n)

qr(n)(T (x)),

for everyT ∈ L(E,F ) with supx∈Un
k(n)

qr(n)(T (x)) < +∞ for eachn ∈ N. ¤

It also holds a result similar to the previous ones in caseE is a regular (LB)–space andF a complete
(LF) or (LB)–space.

Let E = indm(Em, pm) be the inductive limit of the sequence(Em, im+1,m) of Banach spaces (Um =
{x ∈ Em : pm(x) ≤ 1} denotes the closed unit ball ofEm) and linear and continuous inclusion maps
im+1,m : Em ↪→ Em+1, where all inclusion mapsim : Em ↪→ E are continuous. Then:

Remark 8 (i) Let E = indm Em be an (LB)–space and letF = indr Fr be a regular (LF)–space (let
F = indr Fr be a regular (LB)–space or letF be a complete DF–space, resp.). By Remarks 4–(i) and (ii),
the mapR turns to be a linear and continuous map from the spaceindr projm projh Lb(Em, Frh) (from
the spaceindr projm Lb(Em, Fr), resp.) into the spaceLb(E,F ) and its image is the spaceLB(E,F ).

(ii) Let E = indm Em be a regular (LB)–space and letF = indr Fr be a complete (LF)–space (letF
be a complete (LB) or DF space, resp.). Let(r(n))n be an increasing sequence of positive integers. Then

H = {T ∈ L(E,F ) : ||T ||j,n := sup
x∈Un

q
r(n)
j (T (x)), ∀j, n ∈ N}

(the space
H = {T ∈ L(E,F ) : ||T ||n := sup

x∈Un

qr(n)(T (x)), ∀n ∈ N},

resp.) is a Fŕechet space with respect to the topology generated by the sequence(|| ||j,n)j,n ((|| ||n)n, resp.)
of seminorms and the inclusion mapH ↪→ Lb(E,F ) is continuous. ¥

By repeating again the same proof of Theorem 1 with simple changes, we obtain:

Proposition 10 Let E = indm Em be a regular (LB)–space and letF = indr Fr be a complete (LF)–
space. Then the following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (9)

sup
x∈Um

qr
h(T (x)) ≤ C max

1≤n≤n0
1≤j≤j0

sup
x∈Un

q
r(n)
j (T (x)),

for everyT ∈ L(E,F ) with supx∈Un
q

r(n)
j (T (x)) < +∞ for eachj andn ∈ N. ¤

Proposition 11 Let E = indm Em be a regular (LB)–space and letF = indr Fr be a complete (LB)–
space or letF be a complete DF–space. Then the following conditions are equivalent:

(i) L(E, F ) = LB(E, F );

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃n0 ∈ N ∃C > 0 : (10)

sup
x∈Um

qr(T (x)) ≤ C max
1≤n≤n0

sup
x∈Un

qr(n)(T (x)),

for everyT ∈ L(E,F ) with supx∈Un
qr(n)(T (x)) < +∞ for eachn ∈ N. ¤
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3. The case of sequence (LF)–spaces

In this section we consider concrete sequence (LF)–spaces which were introduced by Vogt [13,§5] and we
apply our results of§ 2.

Let (ak
i,m)i,m,k be a matrix with non negative real valued entries and with the following properties:

∀i, k, m ∈ N ak
i,m ≤ ak+1

i,m ,

∀i, k, m ∈ N ak
i,m+1 ≤ ak

i,m,
∀i, m ∈ N ∃k ∈ N ak

i,m > 0.

For eachm ∈ N putAm = (ak
i,m)i,k and

λ1(Am) = {x = (x1, x2, . . .) : pm
k (x) =

∑

i

|xi|ak
i,m < +∞, ∀k ∈ N}.

Thenλ1(Am) is a Fŕechet space with fundamental system of seminorms(pm
k )k and the inclusion map

im+1,m : λ1(Am) ↪→ λ1(Am+1) is continuous for everym ∈ N. Following [13, § 5], we setE1 =
∪mλ1(Am) endowed with the finest topology for which all the inclusion mapsim : λ1(Am) ↪→ E1 are
continuous, i.e.E1 = indm λ1(Am) is an (LF)–space. In the sequel,ei always denotes thei–th unit vector
of E1. Recall that in [13, 5.14] it has been shown thatE1 is a complete (LF)–space if, and only if, it is
a regular (LF)–space if, and only if, the matrix(ak

i,m)i,m,k is of type (WQ), i.e.(ak
i,m)i,m,k satisfies the

following condition:

∀µ ∈ N ∃n, k ∈ N ∀m, K ∈ N ∃N ∈ N, S > 0 ∀i ∈ N : am
i,n ≤ S(ak

i,µ + aN
i,K).

We have:

Theorem 2 LetF be a complete (LF)–space. Suppose thatE1 is a regular (LF)–space. Then the following
conditions are equivalent:

(i) L(E1, F ) = LB(E1, F );

(ii) for each sequence((k(n, j))j)n of increasing sequences of positive integers and for each increasing
sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃k ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (11)

(ak
i,m)−1qr

h(y) ≤ C max
1≤n≤n0
1≤j≤j0

(ak(n,j)
i,n )−1q

r(n)
j (y),

for everyy ∈ Fr(1) andi ∈ N.

PROOF. (i)⇒(ii). Let ((k(n, j))j)n be a countable set of increasing sequences of positive integers. Let
(r(n))n be another increasing sequence of positive integers. SinceL(E, F ) = LB(E,F ), we can apply
Theorem 1 to conclude that condition (5) holds. Accordingly, we show that condition (11) holds too.

Let y ∈ Fr(1) and leti ∈ N. We defineT : E1 → F by T (x) := xiy. Clearly,T is a linear and
continuous map. Moreover, for eachj andn ∈ N, we have:

sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = sup

x∈Un
k(n,j)

(ak(n,j)
i,n )−1a

k(n,j)
i,n |xi|qr(n)

j (y)

≤ (ak(n,j)
i,n )−1q

r(n)
j (y) < +∞.

24



Bounded Linear Maps between (LF)–spaces

Therefore, by (5) we obtain that

(ak
i,m)−1qr

h(y) = qr
h(T ((ak

i,m)−1ei)) ≤ sup
x∈Um

k

qr
h(T (x))

≤ C max
1≤n≤n0
1≤j≤j0

sup
x∈Un

k(n,j)

q
r(n)
j (T (x))

≤ C max
1≤n≤n0
1≤j≤j0

(ak(n,j)
i,m )−1q

r(n)
j (y).

Then (ii) holds.
(ii)⇒(i). Let T ∈ L(E1, F ). ThenT ◦ in ∈ L(λ1(An), F ) for everyn ∈ N; hence, by Grothendieck’s

factorization theorem [11, 8.5.38] we can find an increasing sequence(r(n))n of positive integers such that
T ◦ in ∈ L(λ1(An), Fr(n)) for everyn ∈ N. It follows that, for eachn ∈ N, we can find another sequence
(k(n, j))j of positive integers such that

∀j ∈ N sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = dnj < +∞. (12)

By (ii), condition (11), accordingly there isr ∈ N such that

∀m ∈ N ∃km ∈ N ∀h ∈ N∃j0, n0 ∈ N ∃C > 0 : (13)

(akm
i,m)−1qr

h(y) ≤ C max
1≤n≤n0
1≤j≤j0

(ak(n,j)
i,n )−1q

r(n)
j (y),

for everyy ∈ Fr(1) andi ∈ N.
This implies thatT (Um

km
) ⊂ Fr and bounded here. Indeed, ifx ∈ Um

km
and x =

∑
i xiei, then

T (x) =
∑

i xiT (ei); hence, by (12) and (13) we get:

qr
h(T (x)) ≤

∑

i

|xi|qr
h(T (ei)) =

∑

i

|xi|akm
i,m(akm

i,m)−1qr
h(T (ei))

≤
∑

i

|xi|akm
i,mC max

1≤n≤n0)
1≤j≤j0

(ak(n,j)
i,n )−1q

r(n)
j (T (ei))

≤
∑

i

|xi|akm
i,mC max

1≤n≤n0
1≤j≤j0

dnj = Lmhpm
km

(x) ≤ Lmh

(because(ei)i ⊂ λ1(A1), (T (ei))i ⊂ Fr(1)). This means thatT (Um
km

) ⊂ Fr and bounded here. SinceFr

is a metrizable space, there is a sequence of scalars(λm)m such thatT (∪mλmUm
km

) = ∪mλmT (Um
km

) is
also bounded inFr, whereΓ(∪mλmUm

km
) is a 0–neighbourhood ofE1. Now, the proof is complete. ¥

Now, let(bh
j,r)j,h,r be another matrix with nonnegative real valued entries and with the following prop-

erties:
∀j, h, r ∈ N bh

j,r ≤ bh+1
j,r ,

∀j, h, r ∈ N bh
j,r+1 ≤ bh

j,r,
∀j, r ∈ N ∃h ∈ N bh

j,r > 0.

For eachr ∈ N putBr := (bh
j,r)j,h and

λ∞(Br) = {x = (x1, x2, . . .) : qr
h(x) := sup

j
|xj |bh

j,r < +∞,∀h ∈ N}.

Then the spaceλ∞(Br) is a Fŕechet space with fundamental system of seminorms(qr
h)h and the inclusion

mapjr+1,r : λ∞(Br) ↪→ λ∞(Br+1) is continuous for everyr ∈ N. Following [13,§ 5], we setE∞ =
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∪rλ∞(Br) endowed with the finest topology for which all the inclusion mapsjr : λ∞(Br) ↪→ E∞ are
continuous, i.e.E∞ = indr λ∞(Br). As before, we denote byej thej–th unit vector ofE∞. Moreover,
in [13, 5.14] it has been shown thatE∞ is a complete (LF)–space if, and only if, it is a regular (LF)–space
if, and only if, the matrix(bh

j,r)j,h,r is of type (WQ), i.e.(bh
j,r)j,h,r satisfies the following condition:

∀µ ∈ N ∃n, k ∈ N ∀m, K ∈ N ∃N ∈ N, S > 0 ∀i ∈ N : bm
i,n ≤ S(bk

i,µ + bN
i,K).

We have:

Theorem 3 LetE = indm Em be a regular (LF)–space. Suppose thatE∞ = indr λ∞(Br) is a complete
(LF)–space. Then the following conditions are equivalent:

(i) L(E, E∞) = LB(E, E∞);

(ii) for each sequence((k(n, j))j)n of increasing sequences of positive integers and for each increasing
sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃k ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (14)

bh
l,rp

′m
k (u) ≤ C max

1≤n≤n0
1≤j≤j0

bj
l,r(n)p

′n
k(n,j)(u),

for everyl ∈ N andu ∈ E′ with p′nk(n,j)(u) < +∞ for eachj andn ∈ N.

PROOF. (i)⇒(ii). Let (k(n, j))j)n be a countable set of increasing sequences of positive integers. Let
(r(n))n be another increasing sequence of positive integers. SinceL(E, E∞) = LB(E,E∞), we can
apply Theorem 1 to conclude that condition (5) holds. Accordingly, we show that condition (14) holds too.

Let u ∈ E′ with p′mk(n,j)(u) < +∞ for everyj andn ∈ N. Let l ∈ N. Consider the mapT : E → E∞

defined byT (x) := u(x)el. Clearly,T is linear and continuous. In particular, for eachj andn ∈ N:

sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = sup

x∈Un
k(n,j)

|u(x)|qr(n)
j (el)

= sup
x∈Un

k(n,j)

|u(x)|bj
l,r(n)

= p′nk(n,j)(u)bj
l,r(n) < +∞

Therefore, by condition (5) we obtain that:

bh
l,rp

′m
k (u) = sup

x∈Um
k

qr
h(T (x)) ≤ C max

1≤n≤n0
1≤j≤j0

sup
x∈Un

k(n,j)

q
r(n)
j (T (x))

= C max
1≤n≤n0
1≤j≤j0

bj
l,r(n)p

′n
k(n,j)(u).

This complete the proof.
(ii)⇒(i). Let T ∈ L(E, E∞). ThenT ◦ in ∈ L(En, E∞) for everyn ∈ N. SinceEn is a Fŕechet

space andE∞ is a (LF)–space, we can apply Grothendieck’s factorization theorem [11, 5.8.38] to find an
increasing sequence(r(n))n of positive integers such thatT ◦ in ∈ L(En, λ∞(Br(n))) for everyn ∈ N.
Thus, for eachn ∈ N there is another increasing sequence(k(n, j))j of positive integers such that

∀j ∈ N sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = dnj < +∞. (15)
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By condition (14), accordingly there isr ∈ N such that

∀m ∈ N ∃km ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (16)

bh
l,rp

′m
km

(u) ≤ C max
1≤n≤n0
1≤j≤j0

bj
l,r(n)p

′n
k(n,j)(u),

for everyl ∈ N andu ∈ E′ with p′nk(n,j)(u) < +∞ for eachj andn ∈ N.
This implies thatT (Um

km
) ⊂ λ∞(Br) and bounded here. To see this we proceed as follows.

Let gl : E∞ → K, x → xl. Putul = gl ◦ T . ThenT (x) = (ul(x))l. Moreover, for eachj andn ∈ N,
by (15) we get:

sup
l

bj
l,r(n)p

′n
k(n,j)(ul) = sup

l
bj
l,r(n) sup

x∈Un
k(n,j)

|ul(x)| = sup
x∈Un

k(n,j)

sup
l

bj
l,r(n)|ul(x)|

= sup
x∈Un

k(n,j)

q
r(n)
j (T (x)) = dnj < +∞

which assures us thatp′nk(n,j)(ul) < +∞ for all l ∈ N. Therefore, we can apply (16) to obtain that:

sup
x∈Um

km

qr
h(T (x)) = sup

x∈Um
km

sup
l
|ul(x)|bh

l,r ≤ sup
x∈Um

km

sup
l

pm
km

(x)p′mkm
(ul)bh

lr

≤ sup
l

p′mkm
(ul)bh

lr ≤ sup
l

C max
1≤n≤n0
1≤j≤j0

bj
l,r(n)p

′n
k(n,j)(ul)

= C max
1≤n≤n0
1≤j≤j0

sup
l

bj
l,r(n)p

′n
k(n,j)(ul)

= C max
1≤n≤n0
1≤j≤j0

dnj < +∞.

It follows that T (Um
km

) ⊂ λ∞(Br) and bounded here. Sinceλ∞(Br) is a metrizable space, there is a
sequence of scalars(λm)m such thatT (∪mλmUm

km
) = ∪mλmT (Um

km
) is also a bounded set ofλ∞(Br),

whereΓ(∪mλmUm
km

) is clearly a 0–neighbourhood inE. Now, the proof is complete. ¥
Consequently, it is easily to prove:

Theorem 4 Suppose thatE1 is a regular (LF)–space and thatE∞ is a nuclear (LF)–space. Then the
following conditions are equivalent:

(i) L(E1, E∞) = LB(E1, E∞);

(ii) for each sequence((k(n, j))j)n of increasing sequences of positive integers and for each increasing
sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃k ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (17)

∀i, l ∈ N (ak
i,m)−1bh

l,r ≤ C max
1≤n≤n0
1≤j≤j0

(ak(n,j)
i,n )−1bj

l,r(n). ¤

We now observe that, if the matrixAm = A = (ak
i )i,k for everym ∈ N, then the spaceE1 turns to be

the Fŕechet spaceλ1(A), where the sets defined by

Uk := {x = (x1, x2, . . .) :
∑

i

|xi|ak
i ≤ 1}

form a basis of 0–neighbourhoods inλ1(A). Then, argumenting as we did to prove Theorem 2 and using
Proposition 8, we obtain:
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Proposition 12 LetF be a complete (LF)–space. Then the following condition are equivalent:

(i) L(λ1(A), F ) = LB(λ1(A), F );

(ii) for each increasing sequence(k(n))n of positive integers and for eachr ∈ N

∃k, r0 ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (18)

(ak
i )−1qr0

h (y) ≤ C max
1≤n≤n0

(ak(n)
i )−1qr

n(y),

for everyy ∈ Fr(1) andi ∈ N. ¤

On the other hand, if(ak
i,m)i = (ai,m)i = am for everyk andm ∈ N, the spaceλ1(Am) turns to

be the Banach spacel1(am) = {x = (x1, x2, . . .) : ||x||m =
∑

i |xi|ai,m < +∞} and henceE1 =
k1 = indm l1(am) is an (LB)–space. Then, argumenting again as we did to prove Theorem 2 and using
Proposition 10, we get:

Proposition 13 Let k1 = indm l1(am) be a regular (LB)–space and letF = indr Fr be a complete
(LF)–space. Then the following conditions are equivalent:

(i) L(k1, F ) = LB(k1, F );

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∀h ∈ N ∃j0, n0 ∈ N ∃C > 0 : (19)

(ai,m)−1qr
h(y) ≤ C max

1≤n≤n0
1≤j≤j0

(ai,n)−1q
r(n)
j (y),

for everyy ∈ Fr(1) andi ∈ N. ¤

Clearly, we can obtain results similar to the ones of Propositions 7, 9 and 11 in caseE = E1 andF is
a Fŕechet space or in caseE = E1 andF is a complete (LB) or DF–space, or in caseE = k1 andF is a
complete (LB) or DF–spaces respectively. To prove this facts it suffices to argument as we did in the proof
of Theorem 2 and to use Proposition 7, 9 and 11, respectively. Actually, one gets:

Proposition 14 LetF be a Fŕechet space. Suppose thatE1 is a regular (LF)–space. Then the following
conditions are equivalent:

(i) L(E1, F ) = LB(E1, F );

(ii) for each increasing sequence(k(n))n of positive integers and for eachm ∈ N

∃k ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (20)

(ak
i,m)−1qh(y) ≤ C max

1≤n≤n0
(ak(n)

i,n )−1qn(y),

for everyy ∈ F andi ∈ N. ¤

Proposition 15 LetF be a complete (LB) or DF–space. Suppose thatE1 is a regular (LF)–space. Then
the following conditions are equivalent:

(i) L(E1, F ) = LB(E1, F );
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(ii) for each pair((k(n))n, (r(n))n) of increasing sequences of positive integers

∃r ∈ N ∀m ∈ N ∃k ∈ N ∃n0 ∈ N ∃C > 0 : (21)

(ak
i,m)−1qr(y) ≤ C max

1≤n≤n0
(ak(n)

i,n )−1qr(n)(y),

for everyy ∈ Fr(1) andi ∈ N. ¤

Proposition 16 Let k1 = indm l1(am) be a regular (LB)–space and letF be a complete (LB) or DF–
space. Then the following conditions are equivalent:

(i) L(k1, F ) = LB(k1, F );

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃n0 ∈ N ∃C > 0 : (22)

(ai,m)−1qr(y) ≤ C max
1≤n≤n0

(ai,n)−1qr(n)(y),

for everyy ∈ Fr(1) andi ∈ N. ¤

Next, if the matrixBr = B = (bh
j )j,h for all r ∈ N, then the spaceE∞ turns to be a Fŕechet space, i.e.

E∞ = λ∞(B), where the sets so defined

Vh = {x = (x1, x2, . . .) : sup
j
|xj |bh

j ≤ 1}

form a basis of 0–neighbourhoods inλ∞(B). Then, a proof similar to the one of Theorem 3 togheter with
Proposition 7 gives:

Proposition 17 LetE be a regular (LF)–space. Then the following conditions are equivalent:

(i) L(E, λ∞(B)) = LB(E, λ∞(B));

(ii) for each increasing sequence(k(n))n of positive integers and for eachm ∈ N
∃k ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (23)

bh
j p′mk (u) ≤ C max

1≤n≤n0
bn
j p′nk(n)(u),

for everyu ∈ E′ with p′nk(n)(u) < +∞ for all n ∈ N andj ∈ N. ¤

On the other hand, if(bh
j,r)j = (bj,r)j = br for all r ∈ N, the spaceλ∞(Br) turns to be the Banach

spacel∞(br) = {x = (x1, x2, . . .) : |x|r = supj |xj |bj,r < +∞} and hence the spaceE∞ = k∞ =
indr l∞(br) is an (LB)–space. Then, by repeating the same argument used in the proof of Theorem 3 and
by using Proposition 9, we get:

Proposition 18 Let E be a regular (LF)–space. Suppose thatk∞ is a complete (LB)–space. Then the
following conditions are equivalent:

(i) L(E, k∞) = LB(E, k∞);

(ii) for each pair((k(n))n, (r(n))n) of increasing sequences of positive integers

∃r ∈ N ∀m ∈ N ∃k, n0 ∈ N ∃C > 0 : (24)

bj,rp
′m
k (u) ≤ C max

1≤n≤n0
bj,r(n)p

′n
k(n)(u),

for everyj ∈ N andu ∈ E′ with p′nk(n)(u) < +∞ for all n ∈ N. ¤
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Finally, we can also obtain results similar to the ones of Propositions 8, 10 and 11 in caseE is a Fŕechet
space andF = E∞ or in caseE is a regular (LB)–space andF = E∞, or in caseE is a regular (LB)–space
andF = k∞, respectively. The proof of this facts is based upon the same argument used in the proving
Theorem 3 and upon Propositions 8, 10 and 11, respectively. Actually, we have:

Proposition 19 LetE be a Fŕechet space. Suppose thatE∞ is a complete (LF)–space. Then the follow-
ing conditions are equivalent:

(i) L(E, E∞) = LB(E, E∞);

(ii) for each increasing sequence(k(n))n of positive integers and for eachr ∈ N

∃k, r0 ∈ N ∀h ∈ N ∃n0 ∈ N ∃C > 0 : (25)

bh
j,r0

p′k(u) ≤ C max
1≤n≤n0

bn
j,rp

′
k(n)(u),

for everyj ∈ N andu ∈ E′ with p′k(n)(u) < +∞ for all n ∈ N. ¤

Proposition 20 Let E be a regular (LB)–space. Suppose thatE∞ is a complete (LF)–space. Then the
following conditions are equivalent:

(i) L(E, E∞) = LB(E, E∞);

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∀h ∈ N∃j0, n0 ∈ N ∃C > 0 : (26)

bh
l,rp

′
m(u) ≤ c max

1≤n≤n0
1≤j≤j0

bj
l,r(n)p

′
n(u),

for everyu ∈ E′ andl ∈ N. ¤

Proposition 21 Let E be a regular (LB)–space. Suppose thatk∞ is a complete (LB)–space. Then the
following conditions are equivalent:

(i) L(E, k∞) = LB(E, k∞);

(ii) for each increasing sequence(r(n))n of positive integers

∃r ∈ N ∀m ∈ N ∃n0 ∈ N ∃C > 0 : (27)

bj,rp
′
m(u) ≤ C max

1≤n≤n0
bj,r(n)p

′
n(u),

for everyj ∈ N andu ∈ E′. ¤

We also note that, by combining the various casesE1, λ1(A) andk1 together with the casesE∞, k∞
andλ∞(B) (the latter spaces all have to be taken nuclear), we can obtain results similar to the one of
Theorem 4. It is left to the reader the easy duty to find the appropriate characterizations in every possible
and significant case.
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13–36.
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