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Discrete generalized half-normal distribution and

its applications in quantile regression

Diego I. Gallardo1, Emilio Gómez-Déniz2 and Héctor W. Gómez3

Abstract

A new discrete two-parameter distribution is introduced by discretizing a generalized half-normal

distribution. The model is useful for fitting overdispersed as well as underdispersed data. The

failure function can be decreasing, bathtub shaped or increasing. A reparameterization of the

distribution is introduced for use in a regression model based on the median. The behaviour of the

maximum likelihood estimates is studied numerically, showing good performance in finite samples.

Three real data set applications reveal that the new model can provide a better explanation than

some other competitors.

MSC: 62E10, 62F10, 62P05.
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1 Introduction

Kemp (2008) introduced a discrete version of the half-normal distribution which, by

analogy with the continuous half-normal distribution, is the maximum entropy distribu-

tion with specified mean and variance and support on N0 = N∪{0}. Another way of

introducing a discrete version of a continuous model is by discretizing it as follows: if

SY (x) denotes the survival function of a continuous random variable Y with domain in

the positive line, the probability mass function (PMF) of its analogue discrete random

variable, X , is given by

P(X = k) = pk = SY (k)−SY(k+1), k ∈ N0. (1)
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A classical example is geometric distribution, which can be derived by applying

the above discretizing procedure to the negative exponential distribution. Other exam-

ples can be found in Nakagawa and Osaki (1975), which obtained the discrete Weibull

distribution, Krishna and Singh (2009), the discrete Burr distribution, Gómez-Déniz and

Calderı́n (2011), the discrete Lindley distribution, among many others. This method was

also applied by Gómez-Déniz, Vázquez-Polo and Garcı́a-Garcı́a (2014) to obtain a dis-

crete version for a generalization of the half-normal distribution based on a skew version

of the normal distribution. The resulting discrete distribution differs from that studied in

Kemp (2008). The reader can consult the work of Chakraborty (2015) in which different

methods and classification are exposed in the discretization procedure of a continuous

random variable.

The generalization of the half-normal distribution used in Gómez-Déniz et al. (2014)

is based on the idea in Marshal and Olkin (1997). Other generalizations of the half-

normal distribution have been proposed in the statistical literature. Here we consider

the one in Cooray and Ananda (2008), whose derivation follows from considerations of

the relationship between static fatigue crack extension and the failure time of a certain

specimen. Its survival function is given by

SY (x;σ,β) = 2Φ
(
−
( x

σ

)β)
, x ≥ 0, (2)

for some σ,β > 0, where Φ(·) stands for the cumulative distribution function (CDF) of

the standard normal distribution. If a positive random variable Y has survival function

(2) we will say that it has a generalized half-normal (GHN) distribution and it will be

denoted as Y ∼ GHN(σ,β). The associated discrete version X obtained by applying (1),

which will be called the discrete generalized half-normal (DGHN) distribution, has PMF

P(X = k;σ,β) = p(k;σ,β) = 2
{

Φψ

(
(k+1)β

)
−Φψ

(
kβ
)}

, x ∈ N0 (3)

for some σ,β > 0, where ψ = σβ and Φσ(x) = Φ(x/σ). If a random variable X taking

values on N0 has PMF (3), we write X ∼DGHN(σ,β). The new model is different from

the one studied in Kemp (2008); for β = 1 it coincides with that introduced in Gómez-

Déniz et al. (2014); for other parameter values, the resulting models are rather different.

Figure 1 displays the PMF of X for several parameter. Looking at this figure we see that

quite different shapes can be obtained by varying the parameter values.

The discretization of a continuous variable in order to obtain a discrete distribution

has been developed with great enthusiasm in recent decades. The simple idea is to start

from a continuous random variable that follows a certain probability distribution and for

which the distribution function (survival) has a closed form expression. Except for a few

occasions (the discretization of the exponential distribution that gives rise to the geomet-

ric discrete distribution and the discretization of the Lindley distribution (Gómez-Déniz

and Calderı́n, 2011), the mean and any other superior moment are not obtained in a

closed manner.
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Figure 1: Some examples of probability mass functions of the DGHN distribution for different

values of the parameters β and σ.

This is a great disadvantage for a researcher who wishes to carry out more in-depth

studies on the variable that he wishes to study. For example, a regression study, i.e.

explaining the effect that a series of factors can have on the dependent variable, is im-

possible to perform by ordinary methods.

However, the fact that the distribution function has a closed form makes it easier to

calculate the quantile function and therefore to obtain the median. In this case, the initial

probability function can be reparametrized as a function of certain parameters, one of

which is precisely this quantile, the median. This procedure allows regression analysis

to be carried out in a similar way to that traditionally used when trying to explain the

mean of the response variable as a function of covariates, which is impossible for the

distribution studied here. We therefore propose this line of action in the present work:
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we will study the factors that affect the median of the distribution initially verifying that

the reparameterization on the median provides a good fit of the data analysed.

The paper is organized as follows. Section 2 gives the expression of some functions

associated with the model: the CDF, the survival function and the quantile function;

it also explains how to generate random values from the new law, and studies some

properties of the model such as unimodality and the fact that its members can be ordered

stochastically. Graphical representations show that the family is quite flexible in several

senses: it can used to model overdispersed and underdispersed data; it is also seen that

the failure function can be decreasing, bathtub shaped or increasing. Section 3 deals

with the point estimation of the two parameters. We offer a method of getting a starting

point for the optimization problem involved by means of maximum likelihood (ML)

estimates. The performance of the ML estimators is studied numerically and shows good

behaviour. Finally, Section 4 considers three real data sets. The data are fitted both to the

model presented in this paper and to other competitors. The proposed family provides a

much better explanation than the other distributions, showing the practical usefulness of

the new distribution.

2 Some properties of the discrete generalized half-normal

distribution

Let X ∼ DGHN(σ,β), from (3) it readily follows that

pk

pk−1

=
Φψ

(
(k+1)β

)
−Φψ

(
kβ
)

Φψ (kβ)−Φψ ((k−1)β)
, k = 1,2, . . . ,

where p0 = 1−2Φψ(1).

Let X ∼ DGHN(σ,β), from (3) it readily follows that the CDF of X is given by

F(k;σ,β) = 2Φψ((k+1)β)−1, k ∈ N0,

the survival function of X is

S(k;σ,β) = 2Φψ(−(k+1)β), k ∈ N0,

and the quantile function is given by

Q(u;σ,β) =

[
σ

{
Φ−1

(
1+u

2

)}1/β

−1

]
, u ∈ (0,1),
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where [·] denotes the integer part. As a special case, the median is

Q(0.5;σ,β) =

[
σ

{
Φ−1

(
3

4

)}1/β

−1

]
≈
[
σ (0.6745)1/β−1

]
. (4)

Because the DGHN distribution is a discrete version of the GHN model, random values

can be generated from this distribution as follows:

(i) Generate u ∼ U(0,1).

(ii) Compute t = σ
(
−Φ−1 (u/2)

)1/β
.

(iii) Do X = [t].

2.1 Moments

The moments of X are given by

E(X r) = 2 ∑
k≥0

kr
{

Φψ

(
(k+1)β

)
−Φψ

(
kβ
)}

= 2 ∑
k≥0

{(k+1)r − kr}Φψ

(
−(k+1)β

)
. (5)

As [Y ]r ≤Y r, for r ≥ 1, it follows directly that E(X r)< ∞, ∀r ∈ N.

In practice, many count data sets exhibit overdispersion and, although less frequently,

also underdispersion. Figure 2 shows the value of the quotient D =Var(X)/E(X) when
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Figure 2: D=Var(X)/E(X) for σ= 1 (dotted), σ= 5 (dashed) and σ= 10 (solid), the horizontal

line D = 1 is in grey.
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X ∼ DGHN(σ,β) for σ = 1,5,10 as a function of β. Looking at this figure it can be

seen that for each σ the value of D can be greater than, equal to or less than 1 as the

value of β increases. In this sense, the new model is quite flexible.

2.2 Mode

Looking at Figure 1 we see that in all cases the PMF is unimodal. Next we show that

this is the case for all members in the family. Moreover, we will prove that for 0< β < 1

the PMF is decreasing. With this aim, we first give a preliminary lemma.

Lemma 1 If Y ∼ GHN(σ,β) with probability density function f (x;σ,β), then, as a

function of x,

(a) f (x;σ,β) is strictly decreasing, if 0< β < 1, ∀σ > 0.

(b) f (x;σ,β) is (strictly) log-concave , if β ≥ 1, ∀σ > 0.

Proof (a) If 0 < β < 1 then f (x;σ,β) is proportional to the product of two strictly

decreasing functions: f1(x) = xβ−1 and f2(x) = exp(−0.5x2β/σ2β); thus it is a strictly

decreasing function.

(b) Routine calculations show that ∂ 2

∂x2 f (x;σ,β) = −β−1

x2 − β(2β−1)

σ2β x2(β−1), which is

strictly negative, thus implying the result. �

Now, we state the following proposition related to the DGHN model.

Proposition 1 Let X ∼ DGHN(σ,β).

(a) If 0< β < 1 and σ > 0, then p(k;σ,β)> p(k+1;σ,β), ∀k ∈ N0.

(b) If β ≥ 1 and σ > 0, then p(k;σ,β)2 ≥ p(k−1;σ,β)p(k+1;σ,β), ∀k ∈ N0.

We study separately the two cases: 0< β < 1 and β ≥ 1.

Proof (a) It is a direct consequence of Lemma 1 (a).

(b) Note that P(X = k;σ,β) in equation (3) can be written as P(X = k;σ,β) =∫ k+1
k f (x;σ,β)dx. Then, for β ≥ 1, it is a direct consequence of Theorem 2.8. in Dhar-

madhikari and Joag-Dev (1988) taking g(x) = f (x;σ,β) (which is log-concave by

lemma 1 part b), Bn = (0,∞) and B = (k,k + 1) ⊆ Bn, that the DGHN distribution

is log-concave; the result is immediate. �

As an immediate consequence of Proposition 1 we state the following.
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Corollary 1 Let X ∼ DGHN(σ,β). X is unimodal. If 0 < β < 1 the unique mode is

attained at x = 0.

As commented in Keilson and Gerber (1971), unimodality guarantees that the dis-

tribution has all moments, and that the convolution of pk with any unimodal discrete

distribution is also unimodal and log-concave.

2.3 The failure rate function

The failure (or hazard) rate function for the probability function under consideration is

given by

h(k;σ,β) =
Φψ(−kβ)

Φψ(−(k+1)β)
−1, k ∈ N0.

Theorem 9.6 in Dharmadhikari and Joag-Dev (1988) showed that if a random variable

is log-concave then it has an increasing failure rate (IFR). Furthermore, Lariviere and

Porteus (2001) introduced the concept of generalized failure rate function, defined as

g(k;σ,β) = k h(k;σ,β) for k ∈ N0, and showed that the distributions with increasing

generalized failure rate (IGFR) have useful applications in operations management (see

also Lariviere 2006). It is clear that if a random variable is IFR then it is also IGFR.

Accordingly, by the log-concavity of the distribution discussed in Section 2.2, the fol-

lowing result can be established for the discrete generalized half-normal distribution.

Corollary 2 (i) If β ≥ 1 then the DGHN(σ,β) distribution is IFR and IGFR .

Figure 3 displays the failure rate function for several parameter values. Looking at

this figure, it can be seen that the model is useful for fitting a wide range of shapes:

decreasing, bathtub and increasing. Figure 4 shows the different patterns of the failure

rate function (IFR, Bathtub and DFR) accordingly to the values of σ and β. We highlight

that for 0< β ≤ 1/2 the model seems to be DFR, whereas for 1/2< β < 1 the behaviour

of the failure rate also depends on σ.

The next proposition shows the limit of the failure rate for k →+∞.

Proposition 2 Let X ∼ DGHN(σ,β). Therefore, the failure rate satisfies

lim
k→∞

h(k;σ,β) =





0 if 0< β < 1/2,

exp
(

1
2σ

)
−1 if β = 1/2,

∞ if β > 1/2.
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Figure 3: Failure rate function for several parameter values.

Proof Using the L’Hôpital rule and the continuity of the limit, we have

lim
k→∞

h(k;σ,β) = lim
k→∞

(
k

1+ k

)β−1

exp



− 1

2σ2β
lim
k→∞

[
1−
(
1+ 1

k

)2β
]

k−2β



−1

Applying the L’Hôpital rule again in the second limit, we have

lim
k→∞

h(k;σ,β) = exp

{
1

2σ2β
lim
k→∞

(
1+ 1

k

)2β−1

k−2β+1

}
−1

= exp

{
1

2σ2β
lim
k→∞

(1+ k)2β−1

}
−1.

The result is obtained separating the cases 0< β < 1/2, β = 1/2 and β > 1/2. �
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Figure 4: Shapes for the failure rate of DGHN(σ,β) for 0< β < 1.

2.4 Stochastic orderings

This subsection shows that the members of the new model can be stochastically

ordered according to the parameter values. With this aim, we first recall the following

definition:

Definition 1 Let X1 and X2 be two random variables with distribution functions F1 and

F2, respectively. Then X1 is said to be stochastically smaller than X2, denoted by X1 ≤st

X2, if F1(x)≥ F2(x) for all x.

The DGHN family can be ordered in the following way.

Proposition 3 (a) Let X1 ∼ DGHN(σ,β1) and X2 ∼ DGHN(σ,β2), for some σ,β1,

β1 > 0. Then, X2 ≤st X1 if and only if β1 ≥ β2.

(b) Let X1 ∼ DGHN(σ1,β) and X2 ∼ DGHN(σ2,β), for some σ1,σ2,β > 0. Then,

X2 ≤st X1 if and only if σ1 ≥ σ2.

Proof (a) Let ψi = σβi , i = 1,2. We have X2 ≤st X1 if and only if P(X2 ≥ x)≤ P(X1 ≥ x)

for all x ∈ N0 if and only if 2Φψ2
(−(x+1)β2)≤ 2Φψ1

(−(x+1)β1) for all x ∈ N0 if and

only if β1 ≥ β2.

(b) The result can be shown using a similar argument to (a). �
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The following corollary is a consequence of Proposition 3.

Corollary 3 (i) If X1 ∼ DGHN(σ,β1) and X2 ∼ DGHN(σ,β2), with β1 ≥ β2, then

E(X r
2)≤ E(X r

1), for all r > 0.

(ii) If X1 ∼ DGHN(σ1,β) and X2 ∼ DGHN(σ2,β), with σ1 ≥ σ2, then E(X r
2) ≤

E(X r
1), for all r > 0.

3 Point estimation

3.1 Without covariates

Let X1, . . . ,Xn be independent and identically distributed (IID) from X ∼ DGHN(σ,β),

and let the observed values be denoted by x1, . . . ,xn. The log-likelihood function for

(σ,β) is

ℓ(σ,β) = n log(2)+
n

∑
i=1

log
{

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

)}
. (6)

The derivatives of the log-likelihood function are

∂
∂σ

ℓ(σ,β) =−β
σ

n

∑
i=1

φ
(
(xi+1)β

σβ

)
(xi+1)β

σβ
−φ

(
x
β
i

σβ

)
x
β
i

σβ

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

) , (7)

∂
∂β

ℓ(σ,β) =
1

σβ

n

∑
i=1

φ
(
(xi+1)β

σβ

)
(xi +1)β log

(
xi+1
σ

)
−φ

(
x
β
i

σβ

)
x
β
i log

(
xi
σ

)

Φψ

(
(xi +1)β

)
−Φψ

(
x
β
i

) . (8)

The ML estimates of the parameters satisfy the system that results from equating to 0 in

equations (7) and (8). Nevertheless, since this system does not have an explicit solution,

in order to obtain the ML estimates it is preferable to maximize function (6). This can be

carried out, for example, by using the BFGS algorithm available in the optim function

of the R programming language (R Core Team, 2016). The BFGS algorithm requires a

starting point, which must be inside the feasible region. The estimators obtained from

equating any two observed frequencies to their theoretical values can be used as the

starting point. For example, if p̂i denotes the observed frequency of the value i, for

i = 0,1 (the zero-frequency and the one-frequency method), the system is

p̂0 = 2Φψ (1)−1 and p̂1 = 2
{

Φψ

(
2β
)
−Φψ (1)

}
.
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The solutions for ψ and β obtained from the above equations are

ψ̃ =

[
Φ−1

(
1+ p̂0

2

)]−1

and β̃ =
log ψ̃+ logΦ−1

(
p̂1/2+Φ

(
1/ψ̃

))

log2
.

Therefore, the solution for σ is σ̃ = ψ̃1/β̃ .

In order to assess numerically the performance of the ML estimates, a simulation

study was carried out. Below we describe the study and summarize the results obtained.

For several values of the parameters (β = 0.8, 1.0, 1.3 and σ = 1, 5) and sample sizes

(n = 30, 50, 100) 1000 random samples were generated. In each case, the ML estimates

of β and σ were computed, as well as their standard error based on the hessian matrix

of the model. Table 1 reports the bias, the root of the mean squared error (
√

MSE) and

the coverage probability (CP) of the 95% level interval obtained from the asymptotic

normality of the ML estimates. As expected, the bias and the
√

MSE decrease as the

sample size increases. Also as expected, the closeness of the CP to its nominal value

increases as the sample size increases.In all cases the empirical coverages is quite close

to 0.95.

Table 1: Results for the ML estimates in the DGHN model.

n = 30 n = 50 n = 100

β σ bias
√

MSE CP bias
√

MSE CP bias
√

MSE CP

0.8 1 β̂ 0.157 0.443 0.970 0.067 0.249 0.962 0.030 0.125 0.954

σ̂ 0.006 0.211 0.955 0.001 0.166 0.952 0.003 0.117 0.950

5 β̂ 0.040 0.150 0.955 0.027 0.113 0.950 0.013 0.075 0.952

σ̂ -0.007 0.901 0.926 -0.007 0.695 0.933 -0.003 0.490 0.940

1 1 β̂ 0.304 0.679 0.970 0.156 0.468 0.971 0.047 0.210 0.961

σ̂ -0.002 0.166 0.969 0.001 0.131 0.963 -0.002 0.094 0.953

5 β̂ 0.055 0.190 0.949 0.030 0.137 0.952 0.015 0.092 0.954

σ̂ -0.017 0.708 0.931 -0.005 0.550 0.937 -0.009 0.387 0.944

1.3 1 β̂ 0.648 0.948 0.975 0.520 0.868 0.975 0.266 0.620 0.975

σ̂ -0.002 0.118 0.980 -0.001 0.094 0.980 0.001 0.070 0.957

5 β̂ 0.071 0.237 0.958 0.039 0.175 0.948 0.021 0.116 0.957

σ̂ -0.023 0.549 0.926 -0.020 0.427 0.932 -0.006 0.299 0.947

3.2 Estimation in a DGHN regression model

Unfortunately, the mean of the DGHN has a complicated form (see equation (5)). For

this reason, an alternative way to use this model in a regression context is through the

median (see equation (4)). Let Q0.5 be the median of the model. The pmf of the model
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with reparametrization based on Q0.5 and β is given by

pk = 2
1

∑
j=0

(−1) jΦ

(
τ

(
k+ j

1+Q0.5

)β)
, k = 0,1,2, . . . (9)

where τ = 0.674489.

A common specification for Q0.5 is exponential, ensuring the non–negativity of this

parameter. That is,

logQ0.5i =
κ

∑
s=1

xisγs, i = 1, . . . , t,

where xi1,xi2, . . . ,xiκ are covariates and γ1,γ2, . . . ,γκ are unknown regression coeffi-

cients. The log-likelihood for the vector (γ,β) is

ℓ(γ,β) = n log2+
n

∑
i=1

log

{
Φ

(
τ

(
k

1+Q0.5i

)β)
−Φ

(
τ

(
k+1

1+Q0.5i

)β)}
. (10)

Again, the mle of (γ,β) can be obtained maximizing (10) in relation to them.

4 Applications

This section presents applications to three real data sets.

4.1 An application in ecology

This data set (Kulasekera and Tonkyn, 1992 and Table 2 here) consists of the number of
weevil eggs laid per bean and contains 193 observations.

Table 2: Number of weevil eggs laid per bean

Number / bean 0 1 2 3 Total

Obs. Freq. 5 68 88 32 193

To analyse the data we considered the model proposed in this paper, comparing it to

the models in Kemp (2008), Gómez-Déniz et al. (2014) and in Kulasekera and Tonkyn

(1992) (denoted as Kula in the tables). ML estimators of the parameters for each model

are shown in Table 3. This table also shows the value of the maximized log-likelihood,

L, and the Akaike information criterion, Akaike (1974), defined as AIC = 2r−2logL,

where r is the number of parameters. As is well-known, the model with lower AIC is

preferred. Therefore, according to this criterion, the proposed model provides a better

fit than the other laws. To illustrate the performance of the DGHN model for this data,
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we estimate the probability of the events X = 0, X = 1, X = 2, X = 3 and X ≥ 4 for

all the models with their respective 95% confidence intervals based on the delta method

(we exclude the estimations provided by Kulasekera and Tonkyn (1992) because their

intervals are very wide). Results are presented in Table 4. Note that the DGHN model is

the only one for which the confidence intervals always include the observed frequencies.

Therefore, the proposed distribution may be an attractive alternative to models for data

taking values in N0.

Table 3: Model ML estimates and standard errors (in parentheses).

Kemp Gómez-Déniz et al. (2014) DGHN Kula

θ̂ = 12.9970 (15.2697) α̂= 54.1196 (0.2091) β̂ = 2.8873 (3.0927) α̂= 11.0943 (13.8496)

q̂ = 0.1393 (0.0490) σ̂ = 1.0860 (0.0562) σ̂ = 2.6519 (0.0251) q̂ = 0.0125 (0.0057)

L –223.956 –222.9054 –218.7891 –221.9045

AIC 451.9119 449.8108 441.5782 447.8090

Table 4: Estimated probabilities for P(X = k),k = 0,1,2,3, and P(X ≥ 4) and their 95% confi-

dence intervals (CI).

X = 0 X = 1 X = 2 X = 3 X ≥ 4

model point 95% CI point 95% CI point 95% CI point 95% CI point 95% CI

Kemp 0.022 (0.011,0.034) 0.291 (0.249,0.333) 0.527 (0.476,0.577) 0.133 (0.093,0.173) 0.005 (0.000,0.009)

Gómez-Déniz et al. (2014) 0.061 (0.039,0.084) 0.280 (0.235,0.324) 0.522 (0.463,0.581) 0.131 (0.090,0.172) 0.006 (0.001,0.011)

DGHN 0.048 (0.025,0.069) 0.294 (0.253,0.356) 0.505 (0.449,0.561) 0.152 (0.106,0.199) 0.001 (0.000,0.003)

observed 0.026 0.352 0.456 0.166 0.000

4.2 A real application in the health framework

Since the seminal work of Koenker and Bassett (1978) quantile regression has attracted

much research, particularly in recent years, probably due to the help of computers. This

technique allows a natural generalization of the generalized linear models for certain

well-known robust estimators of location. The methodology we propose in this Section

is simple and, enables us to explain the median by the effects of covariate factors, as

discussed in Section 3.2.

Many authors in the literature have focused on the factors that affect the mean of the

dependent variable under study. The proposal presented here is based on studying the

factors that can affect the median of the dependent variable. As far as we know, there are

few studies in the theoretical or applied statistical literature of regression of quantiles for

a discrete variable (parametric model).

A common specification for the median parameter, Q0.5, is exponential, ensuring the

non–negativity of the parameter. That is,

logQ0.5 =
κ

∑
s=1

xisγs, i = 1, . . . , t,
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obtaining the conventional log-linear model such that Q0.5 = exp
{
γ⊤x

}
, where x is the

vector of covariates and γ is an unknown vector of regression coefficients.

The marginal effect, which reflects the variation of the conditional median due to a

one-unit change in the jth covariate ( j = 1, . . . ,κ), has a similar consideration to that in

generalized linear models. For indicator variables such as xκi which takes only the values

0 or 1, the marginal effect is δ j = Q0.5(ki|x j = 1,x1, . . . ,xκ)/Q0.5(ki|x j = 0,x1, . . . ,xκ)≈
exp(β j), i = 1, . . . ,n; j = 1, . . . ,κ. Therefore, the conditional median is exp(β j) times

larger if the indicator variable is one rather than zero.

For the present purpose we used data obtained from the 1977-78 Australian Health

Survey, a well-known data set previously studied by Cameron and Trivedi (1998); see

also Cameron and Trivedi (1986). This data set can be downloaded from the web page

http://cameron.econ.ucdavis.edu/racd/racddata.html

Details of this data source can also be consulted in the “Ecdat” R (data(DoctorAUS))

package. The data set consists of 5190 elements with fifteen variables. The variable

ILLNESS, the number of illnesses in past 2 weeks is taken as the dependent variable.

The minimum value of this variable is 0, the maximum value 5 and the median is 1. A

different count variable could be taken as the dependent variable if another study were

required. Fundamentally, the convenience of this approach is based on the fact that by

testing all the count variables appearing in the data, the variable ILLNESS presents a

median different from zero and a larger index of dispersion.

In our study, CHCOND (chronic condition) is not considered, and INSURANCE

(medlevy : medibanl levy, levyplus: private health insurance, freepoor: government in-

surance due to low income, freerepa : government insurance due to old age disability or

veteran status) is converted into three dichotomous variables, FREEPOR, FREEREPA

AND LEVYPLUS. Therefore, MEDLEVY is the reference variable.

Descriptive statistics on the variables in this dataset are given in Cameron and Trivedi

(1986, p.68) (see Table 3.2 in this work). In our study the following distributions were

also considered for comparison purposes: a Poisson (P) distribution with parameter β >
0; a negative binomial (NB) distribution with parameters β > 0 and mean q > 0; a

generalised Poisson (GP) distribution with parameters β > 0 and mean q > 0 and of

course the proposed distribution studied here. Among the various parameterisations of

the generalized Poisson distribution, we used the one described in Consul and Famoye

(1992).

Tables 5 and 6 show the estimation in the case of non including and including co-

variates, respectively. Again, in view of the maximum value of the logarithm of the like-

lihood function, the proposed distribution studied here is superior to the remainders. We

estimated the two parameters, β and q = Q0.5 by maximizing directly the log-likelihood

function given by L = ∑n
i=1 log pki

. We also show the value obtained for the Akaike In-

formation Criterion (AIC). (Note that AIC = 2(k−L), where k is the number of model
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parameters and L is the maximum value of the log–likelihood function). The goodness

of fit is also corroborated by looking at the graph shown in Figure 5, in which it can be

observed that the model seems to be a reasonable choice for the given data.

Table 5: Coefficient estimates and p-values for the different models considered without covariates.

P NB GP DGHN

Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value

β̂ 1.431 0.000 3.801 0.000 0.120 0.000 0.082 0.000

q̂ 1.431 0.000 1.432 0.000 0.015 0.000

L -8390.942 -8264.408 -8266.708 -8255.156

AIC 16783.90 16532.80 16537.40 16514.30

Table 6: Coefficient estimates and p-values for the different models considered with covariates.

The cases of P, NB and GP correspond to maximizing the mean link and the GHN to maximizing

the median

P NB GP DGHN

Variable Estimate Pr> |t| Variable Pr> |t| Variable Pr> |t| Variable Pr> |t|
SEX 0.022 0.259 0.021 0.419 0.021 0.407 0.013 0.750

AGE 0.151 0.026 0.143 0.081 0.142 0.080 0.367 0.003

INCOME -0.125 0.000 -0.125 0.001 -0.125 0.001 -0.186 0.002

HSCORE 0.082 0.000 0.084 0.000 0.084 0.000 0.126 0.000

DOCTORCO 0.043 0.000 0.045 0.000 0.045 0.000 0.060 0.002

NONDOCCO 0.009 0.253 0.008 0.415 0.008 0.384 0.000 0.962

HOSPADMI -0.014 0.433 -0.012 0.614 -0.012 0.611 -0.011 0.716

HOSPDAYS 0.000 0.475 0.000 0.655 0.000 0.638 0.001 0.463

MEDECINE 0.071 0.000 0.072 0.050 0.072 0.000 0.095 0.000

PRESCRIB 0.077 0.000 0.078 0.037 0.078 0.000 0.097 0.000

NONPRESC 0.103 0.000 0.105 0.007 0.105 0.000 0.154 0.000

FREEPOR 0.008 0.610 0.009 0.936 0.009 0.720 -0.040 0.209

FREEREPA 0.103 0.003 0.107 0.015 0.107 0.011 0.136 0.044

LEVYPLUS 0.008 0.610 0.009 0.936 0.009 0.720 0.049 0.128

CONSTANT -0.064 0.084 -0.068 0.122 -0.069 0.114 -0.968 0.000

β̂ 38.373 0.053 0.013 0.053 1.213 0.000

L -7590.674 -7588.737 -7588.696 -7759.528

As can be seen, most of the covariates considered are statistically significant except

SEX, NONDOCCO, HOSPADMI, HOSPDAYS, FREEPOR and LEVYPLUS in all the

models used. Observe that the sign of the regressors coincides for all the models.

It can be seen that the maximum value of the log-likelihood function is lower in

the case of the quantile regression although the estimates are similar in terms of sign

and significance. This is not surprising since the link used affects the mean in classical

models and the median in the distribution studied here. Thus from our point of view, the

model is viable for cases in which classical distributions provide a poor fit of the variable

to be studied, as will be seen in the last example provided in the next subsection.

The different models considered were analysed using the BFGS algorithm (Broyden,

Fletcher, Goldfarb and Shanno), with RATS and Mathematica (Wolfram) software, for
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both the inflated and the non-inflated models. In all of the models considered, the con-

vergence of the algorithm is extremely fast. In general, the algorithm converged in fewer

than 30 iterations.
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Figure 5: Empirical and fitted data for the number of illness in the past two weeks.

4.3 An actuarial application

Usually in automobile insurance rate-making the target is to estimate the probability of

a claim in order to compute a premium according to a premium calculation principle. In

this example we consider a dataset of Swedish third party automobile insurance claims

which is well-known in the actuarial literature. Some of the most important factors of

claim frequency will be taken into account. The variable kilometres (Km) is the kilo-

meters travelled by a vehicle, here grouped into seven categories (category 1, less than

1000 km per year, category 2, 1000-15000 km per year, etc.); Zone gives the graphic

zone, also grouped into seven categories; Bonus is a variable representing the driver

claim record grouped into seven categories; Insured starts in the class 1 and is moved

up one class, to a maximum of 7, for each year in which there is no claim; finally, Make

represents the type of vehicle (nine specified makes of car). The dependent variable is

the Number of claims. More details can be seen in Frees (2010).

For comparison purposes we have considered the Poisson and the negative binomial

distributions, which are very widely used in the actuarial context, to fit the number of
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Figure 6: Empirical and fitted data for Swedish automobile claims.

claims. The values of the maximum of the log-likelihood function for these models

are -221571.00 and -93806.541, respectively, compared to -8920.57 for the distribution

proposed here. Therefore, the proposed distribution is very much superior to the others.

The estimated values of the parameters are β̂ = 0.324(0.005) and q̂ = 1.571(0.197)

(standard errors in parentheses).

Figure 6 shows the empirical and fitted distributions obtained using Poisson, negative

binomial and our proposed distribution. This graphic confirms the superiority of the

proposed distribution over the others.

Using a similar idea to that proposed in Heras, Moreno and Vilar-Zanón (2018), we

have used the covariates explained above in order to explain the median of the dependent

variable given by the number of claims. The results are shown in Table 7. As we can see

the value of the maximum of the log-likelihood function has been much reduced.

It can be seen that all the variables are highly significant, and the signs (see Frees ,

2010) are similar to those of the classical regression model when the Number of claims

is considered as the dependent variable, except for the covariate Km; when this last is

studied in detail, the interpretation is observed to be similar; the covariable Km takes

values from 1 to 5, increasing with the number of kilometers traveled by the insured.

The negative value of the regressor indicates that the greater the number of kilometers

traveled, the smaller will be the value of the median. The insured will have better insur-

ance terms than justified by his claim record (because he has travelled more kilometers).

Finally, the premium for this automobile insurance portfolio, which is not computed

here, can be obtained by using the quantile principle used by Heras et al. (2018).
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Table 7: Parameter estimates from the new count distribution using quantile (median) regression

Parameter Estimate S.E. t–Wald Pr> |t|
km –0.536 0.035 15.096 0.000

zone –0.394 0.026 14.802 0.000

bonus 0.253 0.020 12.382 0.000

make 0.289 0.015 19.251 0.000

β̂ 0.410 0.006 58.834 0.000

constant 2.485 0.183 13.581 0.000

L =−8516.35

AIC = 17044.70

Conclusions

This work introduces the discrete version of the continuous GHN distribution. We have

presented its most important probabilistic properties. Parameter estimation was ap-

proached by maximum likelihood. Using three applications to real data sets, we have

shown that the discrete generalized half-normal distribution proposed in this work pro-

vided a better fit than other extensions of the discrete half-normal model, illustrating

that the model is competitive with other discrete models depending on two parameters.

One of the disadvantages of the discretization of a continuous variable is that the

average does not appear expressed in a closed form allowing simple reparameterization

of the distribution in order to incorporate covariables. However, as noted, this drawback

can be avoided by carrying out quantile regression (the median in our case). This is pos-

sible due to the fact that the discretization is carried out from the distribution function,

which has a simple, closed expression. This particularity has been incorporated into this

work with an application in the health scenario, which take into account the fact that on

many occasions the median is a more intuitive, manageable and practical characteristic

than the mean.
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