Ir al contenido

Documat


Extremal Problems of the Density for Vibrating String Equations with Applications to Gap and Ratio of Eigenvalues

  • Qi Jiangang [1] ; Li, Jing [1] ; Xie, Bing [1]
    1. [1] Shandong University

      Shandong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00351-y
  • Enlaces
  • Resumen
    • The present paper obtains the infimum of the densities for vibrating string equations in terms of the gap and ratio of the first two eigenvalues. The main result in this paper can be viewed as a new version of the Lyapunov inequality involving the first two eigenvalues. Some new estimates of the gap and ratio are obtained. Furthermore, the classical Lyapunov inequality can be deduced by the main conclusion.

  • Referencias bibliográficas
    • 1. Ashbaugh, M.S., Benguria, R.D.: Eigenvalue ratios for Sturm–Liouville operators. J. Differ. Equ. 103(1), 205–219 (1993)
    • 2. Cañada, A., Montero, J.A., Villegas, S.: Lyapunov inequalities for partial differential equations. J. Funct. Anal. 237(1), 176–193 (2006)
    • 3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley, New York (1989)
    • 4. Chen, D.Y., Huang, M.J.: Lower bounds on the eigenvalue gap for vibrating strings. J. Math. Anal. Appl. 417(1), 225–233 (2014)
    • 5. Chen, D., Zheng, T.: Bounds for ratios of the membrane eigenvalues. J. Differ. Equ. 250(3), 1575–1590 (2011)
    • 6. Cheng, Y.H.: An eigenvalue problem for vibrating strings with concave densities. Appl. Math. Lett. 25(12), 2077–2080 (2012)
    • 7. Dunford, N., Schwartz, J.T.: Linear Operators Part I. Interscience Publishers, New York (1958)
    • 8. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendonc Press, Oxford (1997)
    • 9. Gentry, K.D., Banks, D.O.: Bounds for functions of eigenvalues of vibrating systems. J. Math. Anal. Appl. 51, 100–128 (1975)
    • 10. Huang, M.J.: The eigenvalue gap for vibrating strings with symmetric densities. Acta Math. Hung. 117(4), 341–348 (2007)
    • 11. Huang, M.J.: Upper bounds on the eigenvalue ratio for one-dimensional Schrödinger operators. J. Math. Anal. Appl. 452(2), 1031–1039 (2017)
    • 12. Kiss, M.: Eigenvalue ratios of vibrating strings. Acta Math. Hung. 110(3), 253–259 (2006)
    • 13. Lavine, R.: The eigenvalue gap for one-dimensional convex potentials. Proc. Am. Math. Soc. 121(3), 815–815 (1994)
    • 14. Lyapunov, A.M.: Problème général de la stabilité du mouvement, Ann. Fac. Sci. Univ. Toulouse (29), 203-474 (1907), see also Ann. of Math....
    • 15. Megginson, R.E.: An Introduction to Banach Space Theory, Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)
    • 16. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Phil. Trans. R. Soc. Lond....
    • 17. Pinasco, J.P.: Lyapunov-Type Inequalities with Applications to Eigenvalue Problems. Springer, Berlin (2013)
    • 18. Rundell, W., Sacks, P.: An inverse eigenvalue problem for a vibrating string with two dirichlet spectra. SIAM J. Appl. Math. 73(2), 1020–1037...
    • 19. Tang, X.H., Zhang, M.: Lyapunov inequalities and stability for linear Hamiltonian systems. J. Differ. Equ. 252(1), 358–381 (2012)
    • 20. Zhang, M., Wen, Z., Meng, G., Qi, J., Xie, B.: On the number and complete continuity of weighted eigenvalues of measure differential equations....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno