Skip to main content
Log in

Bifurcation Patterns in Homogeneous Area-Preserving Piecewise-Linear Maps

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The dynamical behavior of a family of planar continuous piecewise linear maps with two zones is analyzed. Assuming homogeneity and preservation of areas we obtain a canonical form with only two parameters: the traces of the two matrices defining the map. It is shown the existence of sausage-like structures made by lobes linked at the nodes of a nonuniform grid in the parameter plane. In each one of these structures, called resonance regions, the rotation number of the associated circle map is a given rational number. The boundary of the lobes and a significant inner partition line are studied with the help of some Fibonacci polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillations. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  2. Avrutin, V., Granados, A., Schanz, M.: Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps. Nonlinearity 24, 2575–2598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, S., Grebogi, C.: Border collision bifurcations in two-dimensional piecewise smooth maps. Phys. Rev. E 59, 4052–61 (1999)

    Article  Google Scholar 

  4. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems: theory and applications. In: Antman, S.S., Greengard, L., Holmes, P.J. (eds.) Applied Mathematical Sciences, vol. 163. Springer, London (2008)

    Google Scholar 

  5. Falcon, S., Plaza, A.: On k-Fibonacci sequences and polynomials and their derivatives. Chaos, Solitons Fractals 39, 1005–1019 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Henon, M.: A two-dimensional mapping with a strange attarctor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MATH  Google Scholar 

  7. Hoggart Jr., V.E., Long, C.T.: Divisibility properties of generalized fibonacci polynomials. Fibonacci Q. 12, 113–120 (1974)

    MathSciNet  Google Scholar 

  8. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press, New York (1977)

    Google Scholar 

  9. Lagarias, J.C., Rains, E.: Dynamics of a family of piecewise-linear area-preserving plane maps I, rational rotation numbers. J. Differ. Equ. Appl. 11, 1089–1108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lagarias, J.C., Rains, E.: Dynamics of a family of piecewise-linear area-preserving plane maps II, invariant circles. J. Differ. Equ. Appl. 11, 1089–1108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lagarias, J.C., Rains, E.: Dynamics of a family of piecewise-linear area-preserving plane maps III, Cantor set spectra. J. Differ. Equ. Appl. 11, 1089–1108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lozi, R.: Un attracteur etrange du type Henon. J. Phys. 39, 9–10 (1978)

    Google Scholar 

  13. Nusse, H.E., Yorke, J.A.: Border-collision bifurcation including “period two to period three” for piecewise smooth systems. Physica D 57, 39–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Simpson, D.J.W., Meiss, J.D.: Shirinking point bifurcations of resonance tongues for piecewise smooth continuous map. Nonlinearity 22, 1123–1144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, W.M., Hao, B.L.: How the Arnold’s tongues become sausages in a piecewise linear circle map. Commun. Theor. Phys. 8, 1–15 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are partially supported by the Spanish Ministerio de Ciencia y Tecnologia, Plan Nacional I+D+I, in the frame of Projects DPI2013-47293-R, MTM2012-31821 and MTM2015-65608-P, and by the Consejería de Economia-Innovacion-Ciencia-Empleo de la Junta de Andalucía under grant P12-FQM-1658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Torres Peral.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Generalized Fibonacci Polynomials and Power of Matrices

Appendix A. Generalized Fibonacci Polynomials and Power of Matrices

The generalized Fibonacci polynomials were introduced in [7] as,

$$\begin{aligned} u_n(x,y)=xu_{n-1}(x,y)+ y u_{n-2}(x,y), \quad u_0(x,y)=0, u_1(x,y)=1. \end{aligned}$$
(A.1)

By using induction we can prove prove that

$$\begin{aligned} u_n(x,y)=\dfrac{\sigma ^n-(-y)^n \sigma ^{-n}}{\sigma +y\sigma ^{-1}}, \quad \text {where} \quad \sigma (x,y)=\dfrac{x-\sqrt{x^2+4y}}{2}. \end{aligned}$$

In the same spirit as that in Proposition 13 in [5], we obtain the derivative of \(u_n\) with respect to the variable x as

$$\begin{aligned} u'_n(x,y)=\dfrac{(n-1) x u_{n}+2 n y u_{n-1}}{x^2+4y}=\dfrac{2n u_{n+1}- ( n+1) x u_{n}}{x^2+4y} \end{aligned}$$
(A.2)

Now, we are in position of give explicit expressions for the powers of a \(2 \times 2\) matrix. First let us introduce the family of polynomials, closely related to the Fibonacci generalized polynomials, defined by the recursion

$$\begin{aligned} v_n(x,y)=x v_{n-1}(x,y)+y v_{n-2}(x,y), \quad v_0(x,y)=\beta , \quad v_1(x,y)=\alpha \end{aligned}$$
(A.3)

By induction it is direct to show that

$$\begin{aligned} v_{n}(x,y)=\alpha u_n(x,y)+\beta y u_{n-1}(x,y). \end{aligned}$$
(A.4)

Proposition A.1

If we denote by T and D the trace and the determinant of the \(2 \times 2\) matrix \(A= (a_{ij}),\) and \(u_k=u_k(T,-D)\) the \(k-\)degree Fibonacci generalized polynomial, then

$$\begin{aligned}A^n= \left( \begin{array}{ll} a_{11}u_n-Du_{n-1} &{}\quad a_{12}u_n\\ a_{21}u_n &{}\quad a_{22}u_n-Du_{n-1} \end{array} \right) . \end{aligned}$$

Proof

From the Cayley Hamilton Theorem we have \(A^n=T A^{n-1}- D A^{n-2}.\) for \(n\geqslant 2.\) Then the entries of the matrix \(A^n=(a_{ij}^{(n)}),\) satisfy the recursion

$$\begin{aligned} a_{ij}^{(n)}=T a_{ij}^{(n-1)}-D a_{ij}^{(n-2)} \quad \text {with} \quad \begin{array}{ll} a_{11}^{(0)}=1,&{}\quad a_{11}^{(1)}=a_{11},\\ a_{12}^{(0)}=0, &{}\quad a_{12}^{(1)}=a_{12},\\ a_{21}^{(0)}=0, &{}\quad a_{21}^{(1)}=a_{21},\\ a_{22}^{(0)}=1, &{}\quad a_{22}^{(1)}=a_{22}. \end{array} \end{aligned}$$

and from (A.3) and (A.4) the conclusion follows. \(\square \)

Next we consider some results about the powers of the matrix

$$\begin{aligned} \begin{array}{l} A(T)=\left( \begin{array}{ll} T &{}\quad -\,1\\ 1 &{}\quad 0 \end{array} \right) . \end{array} \end{aligned}$$
(A.5)

In order to facilitate the study we introduce the function

$$\begin{aligned} \Psi _n(T)=u_{n}(T,-1), \end{aligned}$$
(A.6)

where \(u_n(x,y)\) is the generalized Fibonacci polynomial, that is

$$\begin{aligned} u_{n+1}(x,y)=x u_{n}(x,y)+y u_{n-1}(x,y), \quad \text {with}\quad u_0(x,y)=0, u_1(x,y)=1. \end{aligned}$$

Obviously, we have

$$\begin{aligned} \Psi _{n+1}(T)= T \Psi _n(T)- \Psi _{n-1}(T), \quad \text {with}\quad \Psi _0(T)=0,\quad \Psi _1(T)=1. \end{aligned}$$

Moreover, from Corollary 10 in [7], we easily deduce that

$$\begin{aligned} \Psi _{n}(T)=\prod _{k=1}^{n-1}\left( T-2\cos \left( \dfrac{k\pi }{n}\right) \right) \end{aligned}$$
(A.7)

Proposition A.2

The followings statements hold for the matrix (A.5).

  1. (a)

    By using the function \(\Psi _n(T)\) defined in (A.6) we have

    $$\begin{aligned} A^n(T)=\left( \begin{array}{ll} \Psi _{n+1}(T) &{}\quad -\,\Psi _{n}(T)\\ \Psi _{n}(T) &{}\quad -\,\Psi _{n-1}(T) \end{array} \right) , \end{aligned}$$
  2. (b)

    If \(\vert T \vert <2,\) we can put \(T=2 \cos \alpha \) with \(0< \alpha < \pi ,\) and then

    $$\begin{aligned} A^n(2 \cos \alpha )=\dfrac{1}{\sin \alpha }\left( \begin{array}{cc} \sin (n+1)\alpha &{}\quad -\,\sin n \alpha \\ \sin n\alpha &{}\quad -\,\sin (n-1) \alpha \\ \end{array} \right) , \end{aligned}$$
  3. (c)

    If \(\vert T \vert >2,\) we can put \(T=2 \gamma \cosh \alpha \) with \( \alpha \in \mathbb {R}, \gamma =\pm 1\) and then

    $$\begin{aligned} A^n(2 \gamma \cosh \alpha )=\dfrac{\gamma ^n}{\sinh \alpha }\left( \begin{array}{ll} \sinh (n+1)\alpha &{}\quad -\,\gamma \sinh n \alpha \\ \gamma \sinh n\alpha &{}\quad -\,\sinh (n-1) \alpha \\ \end{array} \right) . \end{aligned}$$
  4. (d)

    If \(\vert T \vert =2,\) we can put \(T=2 \gamma \) with \( \gamma =\pm 1\) and then

    $$\begin{aligned} A^n(2 \gamma )=\gamma ^n\left( \begin{array}{ll} n+1&{}\quad -\,\gamma n \\ \gamma n &{}\quad -\,(n-1) \\ \end{array} \right) . \end{aligned}$$

Proof

(a) The statement follows from Proposition A.1 by taking

$$\begin{aligned} a_{11}=T, \quad a_{12}=-1, \quad a_{21}=1, \quad a_{22}=0, \end{aligned}$$

and using the function \(\Psi _n(T),\) see (A.6).

(b) If \(T=2 \cos \alpha =e^{i \alpha }+ e^{-i \alpha },\) then \(A^n=M D^n M^{-1} \) where

$$\begin{aligned} M=\left( \begin{array}{ll} 1 &{}\quad 1\\ e^{i \alpha } &{}\quad e^{-i \alpha } \end{array} \right) \quad \text {and}\quad D=\left( \begin{array}{ll} e^{-i \alpha } &{}\quad 0\\ 0 &{}\quad e^{i \alpha } \end{array} \right) , \end{aligned}$$

and the statement is straightforward.

(c) If \(T=2 \gamma \cosh \alpha ,\) then \(A^n=M D^n M^{-1} \) where

$$\begin{aligned} M=\left( \begin{array}{ll} 1 &{}\quad 1\\ \gamma e^{- \alpha } &{}\quad \gamma e^{ \alpha } \end{array} \right) \quad \text {and}\quad D=\left( \begin{array}{ll} \gamma e^{\alpha } &{}\quad 0\\ 0 &{}\quad \gamma e^{- \alpha } \end{array} \right) , \end{aligned}$$

and the statement follows.

Statement (d) can be easily proved by induction. \(\square \)

Remark A.3

As a by-product of Proposition A.2 we get for \(\gamma =\pm 1,\)

$$\begin{aligned} \Psi _n(2 \cos \alpha ) = \dfrac{ \sin n \alpha }{\sin \alpha },\quad \Psi _n(2 \gamma \cosh \alpha )= \dfrac{\gamma ^{n+1} \sinh n \alpha }{\sinh \alpha }, \quad \Psi _n(2 \gamma )= \gamma ^{n+1}n. \end{aligned}$$

In addition, by using the notations

$$\begin{aligned} T_{n}=2 \cos \left( \dfrac{\pi }{n}\right) , \quad \widehat{T}_n=T_{n-\frac{1}{2}}=2 \cos \left( \frac{\pi }{n-\frac{1}{2}}\right) \end{aligned}$$
(A.8)

we have

$$\begin{aligned}\begin{array}{lll} \Psi _{n-1}\left( T_n \right) = 1,&{}\quad \Psi _{n}\left( T_n \right) =0, &{}\quad \Psi _{n+1}\left( T_n \right) =-1\\ \\ \Psi _{2n-2}\left( \widehat{T}_{n} \right) = -1, &{}\quad \Psi _{2n-1}\left( \widehat{T}_{n} \right) =0, &{}\quad \Psi _{2n}\left( \widehat{T}_{n} \right) =1. \end{array} \end{aligned}$$

and so, \(\quad A^n\left( T_n\right) =-I, \quad A^{2n-1}\left( \widehat{T}_{n}\right) =I.\)

The proof of the following lemmata is direct from expression  A.2 and Remark A.3.

Lemma A.4

The two first derivatives of the function \(\Psi _n(x),\)\(n\geqslant 2,\) are

$$\begin{aligned} \Psi '_n(x)= & {} \dfrac{2n \Psi _{n+1}(x)-(n+1) x\Psi _{n}(x)}{x^2-4}, \nonumber \\ \Psi ''_n(x)= & {} \dfrac{2n \Psi '_{n+1}(x)-(n+1) \Psi _{n}(x)-(n+3) x \Psi '_{n}(x)}{x^2-4}. \end{aligned}$$
(A.9)

In particular, we have

$$\begin{aligned} \Psi '_{n-1}(T_n)=\Psi '_{n+1}(T_n)=\dfrac{-n T_n}{T_n^2-4},\quad \Psi '_{n}(T_n)=\dfrac{-2 n}{T_n^2-4}, \end{aligned}$$

and

$$\begin{aligned} \Psi ''_{n}(T_n)=\dfrac{6 n T_n}{(T_n^2-4)^2},\quad \Psi ''_{n \pm 1}(T_n)=\dfrac{ n(T_n^2+8) \mp n^2(T_n^2-4)}{(T_n^2-4)^2}. \end{aligned}$$

The next lemmata deals with the values of some functions \(\Psi _k\) and its derivatives at the point \(\widehat{T}_n.\)

Lemma A.5

The values of the functions \(\Psi _{n-2}, \Psi _{n-1}, \Psi _{n}, \Psi _{n+1}, \) at the point \(\widehat{T}_n\) are,

$$\begin{aligned} \Psi _{n-1}(\widehat{T}_n)=-\Psi _{n}(\widehat{T}_n)=\dfrac{1}{\sqrt{2+\widehat{T}_n}}, \; \Psi _{n-2}\left( \widehat{T}_n\right) =-\Psi _{n+1}(\widehat{T}_n)=\dfrac{1+\widehat{T}_n}{\sqrt{2+\widehat{T}_n}}. \end{aligned}$$
(A.10)

and its derivatives at the point \(\widehat{T}_n\) are

$$\begin{aligned} \Psi '_{n-2}\left( \widehat{T}_n\right)= & {} \dfrac{(n-1)(\widehat{T}_n^2+\widehat{T}_n-2)+2}{\widehat{T}_n^2-4}\Psi _n\left( \widehat{T}_n\right) , \nonumber \\ \Psi '_{n-1}\left( \widehat{T}_n\right)= & {} \dfrac{2n-2+n \widehat{T}_n}{\widehat{T}_n^2-4}\Psi _n\left( \widehat{T}_n\right) ,\nonumber \\ \Psi '_{n}\left( \widehat{T}_n\right)= & {} \dfrac{2n+(n-1)\widehat{T}_n}{\widehat{T}_n^2-4}\Psi _n\left( \widehat{T}_n\right) ,\nonumber \\ \Psi '_{n+1}\left( \widehat{T}_n\right)= & {} \dfrac{n(\widehat{T}_n^2+\widehat{T}_n-2)-2}{\widehat{T}_n^2-4}\Psi _n\left( \widehat{T}_p\right) . \end{aligned}$$
(A.11)

Proof

We start by considering the equality,

$$\begin{aligned} A^{2n-1}(\hat{T}_{n})=A^{n-1}(\widehat{T}_{n})A^{n}(\widehat{T}_{n})=I. \end{aligned}$$

Then from (3.2), by dropping the functional dependence, we get

$$\begin{aligned}\begin{array}{ll} \Psi _{n} \Psi _{n+1}-\Psi _{n-1} \Psi _{n}=1, &{}\quad \Psi ^2_{n-1}-\Psi ^2_{n}=0, \\ \Psi _{n-1} \Psi _{n+1}-\Psi _{n-2} \Psi _{n}=0, &{}\quad \Psi _{n-2} \Psi _{n-1}-\Psi _{n-1} \Psi _{n}=1, \end{array} \end{aligned}$$

and by resolving the above equations we obtain A.10.

Finally, from Lemma A.4, we compute the derivatives (A.11). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Morato, L.B., Macias, E.F., Nuñez, E.P. et al. Bifurcation Patterns in Homogeneous Area-Preserving Piecewise-Linear Maps. Qual. Theory Dyn. Syst. 18, 547–582 (2019). https://doi.org/10.1007/s12346-018-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0299-7

Keywords

Mathematics Subject Classification

Navigation