Skip to main content
Log in

On the Periodic Solutions Emerging from the Equilibria of the Hill Lunar Problem with Oblateness

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, using the averaging theory of first order, we obtain sufficient conditions for computing periodic solutions in the 3D Hill problem with oblateness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouelmagd, E.I., Guirao, J.L.G.: On the perturbed restricted three-body problem. Appl. Math. Nonlinear Sci. 1(1), 123–144 (2016)

    Article  Google Scholar 

  2. Buica, A., Francoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Buica, A., García, I.: Periodic solutions of some perturbed symmetric Euler top. Topol. Methods Nonlinear Anal. 36, 91–100 (2010)

    MathSciNet  MATH  Google Scholar 

  4. de Bustos, M.T., Guirao, J.L.G., Vera, J.A., Vigo-Aguilar, J.: Periodic orbits and \(C^1\)-integrability in the planar Stark–Zeeman problem. J. Math. Phys. 53, 082701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Bustos, M.T., Guirao, J.L.G., Vera, J.A.: The spatial Hill Lunar problem: periodic solutions emerging from equilibria. Dyn. Syst., 1–14. doi:10.1080/14689367.2016.1227771

  6. Llibre, J., Rodrigues, A.: On the periodic orbits of Hamiltonian systems. J. Math. Phys. 51, 042704 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Malkin, I.G.: Some problems of the theory of nonlinear oscillations. In: Gosudarstv. Izdat. Tehn.–Teor. Lit., Moscow (1956) (Russian)

  8. Markakis, M.P., Perdiou, A.E., Douskos, C.N.: The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families. Astrophys. Space Sci. 315, 297–306 (2008)

    Article  Google Scholar 

  9. Markellos, V.V., Roy, A.E., Perdios, E.A., Douskos, C.N.: A Hill problem with oblate primaries and effect of oblateness on Hill stability of orbits. Astrophys. Space Sci. 278, 295–304 (2001)

    Article  MATH  Google Scholar 

  10. Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on Hill stability of orbits. Astrophys. Space Sci. 271, 293–301 (2000)

    Article  MATH  Google Scholar 

  11. Papadakis, K.E.: The planar Hill problem with oblate primary. Astrophys. Space Sci. 293(3), 271–287 (2004)

    Article  Google Scholar 

  12. Papadakis, K.E.: The planar photogravitational Hill problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16, 1809–1821 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Perdiou, A.E., Markellos, V.V., Douskos, C.N.: The Hill problem with oblate secondary: numerical exploration. Earth Moon Planets 97, 127–145 (2005)

    Article  Google Scholar 

  14. Perdiou, A.E., Perdios, E.A., Kalantonis, V.S.: Periodic orbits of the Hill problem with radiation and oblateness. Astrophys. Space Sci. 342, 19–30 (2012)

    Article  Google Scholar 

  15. Pérez-Chavela, E., Tamayo, C.: Relative equilibria in the 4-vortex problem bifurcating from an equilateral triangle configuration. Appl. Math. Nonlinear Sci. 1(1), 301–310 (2016)

    Article  MATH  Google Scholar 

  16. Roseau, M.: Vibrations non linéaires et théorie de la stabilité. In: Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin, New York (1966) (French)

Download references

Acknowledgements

This work has been partially supported by MINECO Grant Number MTM2014-51891-P, Fundación Séneca de la Región de Murcia Grant Number 19219/PI/14 and FEDER OP2014-2020 of Castilla-La Mancha Grant Number GI20163581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. López.

Appendix: Basic Results on Averaging Theory

Appendix: Basic Results on Averaging Theory

In this appendix we present the basic result from the averaging theory that we shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from a differential system of the form

$$\begin{aligned} \dot{\mathrm {x}}(t)=G_{0}(t, \mathrm {x})+\epsilon G_{1}(t, \mathrm {x})+\epsilon ^{2}G_{2}(t, \mathrm {x},\epsilon ), \end{aligned}$$
(11)

with \(\epsilon \ne 0\) sufficiently small. Here the functions \(G_{0}, G_{1}:\mathbb {R}\times \Omega \rightarrow \mathbb {R}^{n}\) and \(G_{2}:\mathbb {R}\times \Omega \times (-\epsilon _0,\epsilon _0) \rightarrow \mathbb {R}^{n}\) are \({{\mathcal {C}}}^{2}\) functions, T-periodic in the first variable, and \(\Omega \) is an open subset of \(\mathbb {R}^{n}\). The main assumption is that the unperturbed system

$$\begin{aligned} \dot{\mathrm {x}}(t)=G_{0}(t, \mathrm {x}), \end{aligned}$$
(12)

has a submanifold of periodic solutions. A solution of this problem is given using the averaging theory.

Malkin (see [3] and references therein) studied the bifurcation of T-periodic solutions in the T-periodic system \(\dot{x}=G_0(t,x) + \varepsilon G_1(t,x,\varepsilon )\), whose unperturbed system has a family of T-periodic solutions with initial conditions given by a smooth function \(\beta :{\mathbb {R}}^k\rightarrow {\mathbb {R}}^n\), and proved that if the bifurcation function

$$\begin{aligned} \mathcal {G}(\alpha )=\int _0^T\begin{pmatrix}<u_1(t, \alpha ), g(t, x(t,\beta (\alpha )),0)>\\ \cdots \\ <u_k(t, \alpha ), g(t, x(t,\beta (\alpha )),0)> \end{pmatrix}dt, \end{aligned}$$

where \(u_i\), \(i=1,\dots ,k\), are k linearly independent T-periodic solutions of the adjoint linearized differential system, has a simple zero \(\alpha _0\) such that \(\det (\mathcal {G})|_{\alpha =\alpha _0}\ne 0\), then for any \(\varepsilon >0\) sufficiently small, the system \(\dot{x}=G_0(t,x) + \varepsilon G_1(t,x,\varepsilon )\) has an unique T-periodic solution \(x_\varepsilon \) such that \(x_\varepsilon (0)\rightarrow \beta (\alpha _0)\) as \(\varepsilon \rightarrow 0\).

This can be rephrased as follows: Let \(\mathrm {x}(t, \mathrm {z},\epsilon )\) be the solution of the system (12) such that \(\mathrm {x}(0,\mathrm {z},\epsilon )=\mathrm {z}\). We write the linearization of the unperturbed system along a periodic solution \(\mathrm {x}(t,\mathrm {z},0)\) as

$$\begin{aligned} \dot{\mathrm {y}}=D_{\mathrm {x}}G_{0}(t, \mathrm {x}(t, \mathrm {z},0))\mathrm {y}. \end{aligned}$$
(13)

In what follows we denote by \(M_{\mathrm {z}}(t)\) some fundamental matrix of the linear differential system (13), and by \(\xi :\mathbb {R}^{k}\times \mathbb {R}^{n-k}\rightarrow \mathbb {R}^{k}\) the projection of \(\mathbb {R}^{n}\) onto its first k coordinates; i.e. \(\xi (x_{1}, \ldots , x_{n})=(x_{1}, \ldots ,x_{k})\).

We assume that there exists a k-dimensional submanifold \(\mathcal {Z}\) of \(\Omega \) filled with T-periodic solutions of (12). Then an answer to the problem of bifurcation of T-periodic solutions from the periodic solutions contained in \(\mathcal {Z}\) for system (11) is given in the following result.

Theorem 7

Let V be an open and bounded subset of \(\mathbb {R}^{k}\), and let \(\beta :\mathrm {Cl}(V)\rightarrow \mathbb {R}^{n-k}\) be a \({{\mathcal {C}}}^{2}\) function. We assume that

  1. (i)

    \(\mathcal {Z}=\{\mathrm {z}_{\alpha }=(\alpha , \beta (\alpha )), \alpha \in \mathrm {Cl}(V)\}\subset \Omega \) and that for each \(\mathrm {z}_{\alpha }\in \mathcal {Z}\) the solution \(\mathrm {x}(t, \mathrm {z}_{\alpha })\) of (12) is T-periodic;

  2. (ii)

    for each \(\mathrm {z}_{\alpha }\in \mathcal {Z}\) there is a fundamental matrix \(M_{\mathrm {z}_{\alpha }}(t)\) of (13) such that the matrix \(M_{\mathrm {z}_{\alpha }}^{-1}(0)-M_{\mathrm {z}_{\alpha }}^{-1}(T)\) has in the upper right corner the \(k\times (n-k)\) zero matrix, and in the lower right corner a \((n-k)\times (n-k)\) matrix \(\Delta _{\alpha }\) with \(\det (\Delta _{\alpha })\ne 0\).

We consider the function \(\mathcal {G}:\mathrm {Cl}(V)\rightarrow \mathbb {R}^{k}\)

$$\begin{aligned} \mathcal {G}(\alpha )=\xi \left( \frac{1}{T}\int _{0}^{T}M_{\mathrm {z}_{\alpha }}^{-1}(t)G_{1}(t, \mathrm {x}(t,\mathrm {z}_{\alpha },0))dt\right) . \end{aligned}$$
(14)

If there exists \(a\in V\) with \(\mathcal {G}(a)=0\) and \(\det ((d\mathcal {G}/d\alpha )(a))\ne 0\), then there is a T-periodic solution \(\mathrm {x}(t,\epsilon )\) of system (11) such that \(\mathrm {x}(0,\epsilon )\rightarrow \mathrm {z}_{a}\) as \(\epsilon \rightarrow 0\).

For a proof of Theorem 7 see Malkin [7] and Roseau [16], or [2] for shorter proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Bustos, M.T., López, M.A., Martínez, R. et al. On the Periodic Solutions Emerging from the Equilibria of the Hill Lunar Problem with Oblateness. Qual. Theory Dyn. Syst. 17, 331–344 (2018). https://doi.org/10.1007/s12346-017-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0233-4

Keywords

Navigation