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Abstract

The logratio-normal-multinomial distribution is a count data model resulting from compounding

a multinomial distribution for the counts with a multivariate logratio-normal distribution for the

multinomial event probabilities. However, the logratio-normal-multinomial probability mass func-

tion does not admit a closed form expression and, consequently, numerical approximation is re-

quired for parameter estimation. In this work, different estimation approaches are introduced and

evaluated. We concluded that estimation based on a quasi-Monte Carlo Expectation-Maximisation

algorithm provides the best overall results. Building on this, the performances of the Dirichlet-

multinomial and logratio-normal-multinomial models are compared through a number of examples

using simulated and real count data.
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1 Introduction

A compound distribution of a random vector is the probability distribution resulting

from assuming that its parameters are themselves random variables (Mosimann, 1962).

This type of distribution plays an important role in mixture models (Lindsay, 1995)

and Bayesian statistics, among others (Robbins, 1964, 1980). Practical applications are

found in diverse areas such as genetics, microbiome studies, document classification

and economics (Blei and Lafferty, 2007; Bouguila, 2008; Layton, and Siikamäki, 2009;

Holmes, Harris and Quince, 2012; Silverman et al., 2018; Grantham et al., 2019).

Two classical distributions to model multivariate count data are the multinomial dis-

tribution and the multivariate Poisson distribution. Whilst in the first case the total num-

ber of counts per observation is a parameter, in the second it is not and it depends on

the magnitude of the Poisson rates. In the literature, the multivariate Poisson distri-
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butions has been compounded with Gamma distributions (Nelson, 1985) and with the

multivariate log-normal distribution (Aitchison and Ho, 1989). In this article, we focus

on distributions which are compounded with the multinomial distribution.

The Dirichlet-multinomial (DM) compound distribution (also called multivariate

Pólya-Eggenberger distribution) is the most commonly used for modelling and analysing

multivariate count data when they depend on a total number of trials and, unlike the ordi-

nary multinomial distribution, some data overdispersion is present (Chapter 40, Johnson,

Kotz and Balakrishnan, 1997). Let X be a random vector of counts. The DM distribu-

tion results from compounding a multinomial M(x;n,πππ = p) for the measured vector of

counts X, with parameters n and πππ being the total number of trials and the vector of prob-

abilities for the range of possible discrete outcomes respectively, and a Dirichlet D(p;ααα)
for the probabilities p, with a parameter ααα. The probability mass function (pmf) of a

DM distribution is DM(x;n,ααα) = Pr(X = x;n,ααα) =
∫

SD D(p;ααα)M(x;n,p)dp, where

SD refers to the unit simplex. The unit simplex is the sample space of random vectors

p of length D consisting of strictly positive components adding up to one (Aitchison,

1986), i.e.

S
D =

{

p = (p1, . . . , pD) ∈ R
D

∣

∣

∣

∣

∣

pk > 0 and
D

∑
k=1
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}

.

The closed form expression for the DM pmf is

DM(x;n,ααα) =
n! Γ

(

∑D
k=1αk

)

Γ
(

n+∑D
k=1αk

)

D

∏
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Γ(xk +αk)

xk! Γ(αk)
,

where Γ(·) is the well-known gamma function. The DM distribution is defined on the

sample space of random count vectors. That is, the {n,D}-simplex lattice

S
(n,D) =

{

x = (x1, . . . ,xD)

∣

∣

∣

∣

∣

xk ∈ {0,1, . . . ,n} and
D

∑
k=1

xk = n

}

, (1)

consisting of random vectors of counts with components in the non-negative integer do-

main and sum equal to n (Scheffé, 1958). As stressed in Aitchison (1986) and Comas-

Cufı́, Martı́n-Fernández and Mateu-Figueras (2016), the Dirichlet distribution imposes a

very strong independence structure: any pair of ratios between different components of

p are assumed to be statistically independent. This heavily restricts its potential for data

modelling when the analysis is based in ratios between parts, as it is the case of compo-

sitional data analysis (Comas-Cufı́ et al., 2016). Some generalisations of the Dirichlet

have been proposed to overcome this difficulty with limited success (Connor and Mosi-

mann, 1969; Minka, 2004; Ongaro and Migliorati, 2013).

In the 1980’s John Aitchison introduced the compositional approach to model and

analyse multivariate random vectors defined on the simplex (Aitchison, 1986). A num-

ber of methodological and practical contributions have been recently published in differ-
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ent areas such as statistics Comas-Cufı́, Martı́n-Fernández and Mateu-Figueras (2019),

waste management (Edjabou et al., 2017), health (Chastin et al., 2015) and animal sci-

ence (Palarea-Albaladejo et al., 2017).

We focus here on the logratio-normal-multinomial distribution resulting from com-

pounding a multinomial distribution for the vector of counts X with a logratio-normal

distribution for the corresponding vector of multinomial probabilities p. The logratio-

normal distribution was introduced in Mateu-Figueras, Pawlowsky-Glahn and Egozcue

(2013) to model compositions. Also known as the normal distribution on the simplex

(we denote it by NSD), it is defined using the ordinary multivariate normal probability

density function (pdf) over a vector of orthonormal logratio coordinates (Egozcue et al.,

2003) as follows:

NSD(p;µµµ,Σ) =N(h;µµµ,Σ) = (2π)−
D−1

2 |Σ|− 1
2 exp

(

−1

2
(h−µµµ)′Σ−1(h−µµµ)

)

, (2)

where µµµ and Σ are the usual expectation and covariance parameters, and h = (h1, . . . ,

hD−1) are orthonormal logratio coordinates of a composition p defined on S
D with

respect to a predefined orthonormal basis of the simplex, see (Egozcue et al., 2003).

Although the logratio-normal is a reparametrisation of the logistic-normal distribution

(Aitchison and Shen, 1980), its definition avoids using the logistic transformation in or-

der to focus on the appropriate reference measure (see Mateu-Figueras et al. (2013) for

details). In our developments, we will use so-called isometric logratio (ilr) coordinates

obtained from a particular choice of orthonormal basis as introduced in Egozcue et al.

(2003). Namely, h = ilr(p) with elements

hi =

√

i

i+1
ln

i

√

∏i
j=1 p j

pi+1

, i = 1, . . . ,D−1. (3)

Note that the composition p associated with orthonormal logratio coordinates h is

obtained by inverse transformation p = ilr−1(h). Importantly, using this particular ilr

representation does not imply a lack of generality, since the results are invariant under

change of orthonormal basis. This is because different orthonormal logratio coordinate

systems are orthogonal rotations from one to another. In Billheimer, Guttorp and Fa-

gan (2001) the multivariate logistic-normal-multinomial distribution was defined for

modelling multinomial counts by compounding the multinomial distribution with the

additive-logistic-normal distribution (Chapter 6, Aitchison (1986)). Practical applica-

tions of this model can be found in (Xia et al., 2013; Silverman et al., 2018) for micro-

biome data, or Hughes, Munkvold and Samita (1998) where the additive-logistic-normal

was combined with the binomial distribution to model two-part compositions. In the

following, we refer to the distribution obtained by composing the logratio-normal and

the multinomial distribution as the logratio-normal-multinomial distribution (referred

to as LNM in the following). From a probabilistic point of view, the logratio-normal-

multinomial and the logistic-normal-multinomial models define the same law of prob-
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ability. Nevertheless, we have decided to call it logratio-normal-multinomial in order

to emphasize that, instead of using the logistic transformation, we use the orthonormal

logratio coordinates together with the reference measure compatible with the algebraic-

geometric structure of the simplex and with the compositional approach introduced by

(Aitchison, 1986).

Markov Chain Monte Carlo (MCMC) methods have been used so far for parameter

estimation with these models. For the case of multivariate logistic-normal-multinomial

distribution see (Billheimer et al., 2001) and (Xia et al., 2013). Quasi-Monte Carlo meth-

ods (QMC) are well-known tools used to approximate high-dimensional integrals (Mo-

rokoff and Caflisch, 1995; Leobacher and Pillichshammer, 2014). They deviate from

standard Monte Carlo in the type of sampling procedure used to approximate the in-

tegral. While classic Monte Carlo uses pseudo-random samples, QMC methods use

quasi-random samples or low-discrepancy sequences. QMC methods have been suc-

cessfully used in different parameter estimation scenarios (Drmota and Tichy, 1997;

Pan and Thompson, 2007; Kuo et al., 2008) and have shown an improvement of the ef-

ficiency when embedded in an Expectation-Maximisation (EM) algorithm (Jank, 2005).

Building on these results, we propose more efficient tools to estimate the parameters

of a LNM distribution. Their performance in modelling count data is compared with the

DM distribution.

The work is organised as follows. In Section 2, some basic definitions are formally

introduced. In Section 3, we derive the E and the M steps of an EM scheme for pa-

rameter estimation. We propose to combine QMC integration with the EM algorithm to

estimate the parameters of the LNM distribution. Section 4 illustrates the use of DM and

LNM distributions in three different examples based on simulated and real data. Lastly,

Section 5 concludes with some final remarks.

All data analyses discussed in this work were conducted using the R statistical pro-

gramming environment (R Development Core Team, 2015). Computer routines imple-

menting the methods and the data sets can be obtained at https://github.com/mcomas/

SORT-normal-multinomial.

2 Basic definitions and properties

The simplex SD has an Euclidean vector space structure of dimension D− 1 with its

own basic operations (perturbation and powering), an inner product and a distance (so-

called Aitchison distance) (Egozcue et al., 2003). According to this algebraic-geometric

characterisation, compositions can be mapped onto the ordinary real space using lo-

gratio coordinates. The logratio-normal distribution is a model which is closed under

the main operations in the simplex SD (Mateu-Figueras et al., 2013). Also, it is a flex-

ible distribution because it can model compositions whose components have different

forms of dependence. Importantly, the density function (2) is defined with respect to

what is called the Aitchison measure on the simplex, a probability measure different

https://github.com/mcomas/SORT-normal-multinomial
https://github.com/mcomas/SORT-normal-multinomial
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from the ordinary Lebesgue measure on real space (Pawlowsky-Glahn and Egozcue,

2001; Mateu-Figueras, Pawlowsky-Glahn and Egozcue, 2011). The Aitchison measure

is a natural measure on the simplex, compatible with its vector space structure and ab-

solutely continuous with respect to the Lebesgue measure in the space of logratio coor-

dinates (Mateu-Figueras et al., 2013).

As said above, the LNM is the distribution resulting from compounding the multi-

nomial distribution M(x;n,πππ = p) with the logratio-normal distribution NSD(p;µµµ,Σ).

a random vector of counts X generated from a LNM distribution with parameters n, µµµ

and Σ is obtained in two steps:

• Firstly, a random composition p is generated using the logratio-normal distribution

with parameters µµµ and Σ.

• Secondly, a count random vector X is generated using the multinomial distribution

with parameters n and πππ = p.

The pmf of a LNM distributions, expressed in terms of orthonormal logratio coordi-

nates, is

LNM(x;n,µµµ,Σ) = Pr(X = x;n,µµµ,Σ) =
∫

SD
NSD(p;µµµ,Σ)M(x;n,p)dAp (4)

=
∫

RD−1
N(h;µµµ,Σ)

n!

∏D
k=1 xk!

D

∏
k=1

ilr−1
k (h)

xk dh,

(5)

where ilr−1
k (h) stands for the k-th component of the composition p = ilr−1(h). Note that

expression (4) is written with respect to the Aitchison measure, while expression (5) is

written with respect to the Lebesgue measure in the logratio coordinate space. The LNM

distribution is defined on S
(n,D) (Eq. 1).

Note that definition of the LNM distribution is similar to the definition of the DM

distribution. The difference is that in the former the composition p is modelled by a

normal distribution in terms of ilr-coordinates, instead of using a Dirichlet distribution.

Using the pmf given in (4) or (5), the following properties can be easily derived.

Property 1 For a fixed x we have

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =M
(

x;n,πππ = ilr−1(µµµ)
)

.1

1. lim‖Σ‖→0 stands for any sequence of covariance matrices such that their highest eigenvalue goes to 0.
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Proof. See Appendix A. �

Property 2 Let x = (x1, . . . ,xD) and x1 + · · ·+ xD = n. If limn→∞
xi
n
= πi and πi > 0 for

1 ≤ i ≤ D, then

lim
n→∞

nD−1 ·LNM(x;n,µµµ,Σ) =NSD(πππ;µµµ,Σ)
1√
D

1

π1 . . .πD

Proof. See Appendix A. �

Hence, depending on the parameters n and Σ, the LNM distribution can be approx-

imated by either a multinomial distribution or a logratio-normal distribution. The first

property suggests that for count data sets where the random vector p has low variability,

modelling based on either the LNM or multinomial distributions will provide similar

results. The second property implies that a LNM distribution with large values of the

number of trials n converges to the NSD distribution. That is, for large n, the distribution

of the random count vectors X on the simplex lattice S
(n,D) will be very similar to the

distribution of the random vector p on the simplex SD.

3 Monte Carlo EM algorithm for logratio-normal-multinomial

parameter estimation

Let X = {x1, . . . ,xN} be an independent and identically distributed sample of multivari-

ate count data, with N denoting the sample size. To estimate the LNM parameters µµµ and

Σ it is necessary to maximise the likelihood of the observed data given by

L(µµµ,Σ;X) =
N

∏
i=1

Pr(X = xi;n,µµµ,Σ) . (6)

Denoting by H the non-observed ilr-coordinates, i.e. H = {h1, . . . ,hN}, the EM al-

gorithm (Dempster, Laird and Rubin, 1977) allows to maximise (6) by iteratively using

an expected augmented likelihood L(µµµ,Σ;X,H) = ∏N
i=1 f (xi,hi;µµµ,Σ), where the joint

probability density function of random vectors X and H is

f (x,h;µµµ,Σ) =N(h;µµµ,Σ)
(∑D

k=1 xk)!

∏D
k=1 xk!

D

∏
k=1

ilr−1
k (h)

xk .

In the E step, the expected value at the (s+1)-th iteration of the algorithm is calcu-

lated using the expression



M Comas-Cufı́, J.A. Martı́n-Fernández, G. Mateu-Figueras and J. Palarea-Albaladejo 105

Q(µµµ,Σ | µµµ(s),Σ(s)) = E
H |X;µµµ(s),Σ(s) [lnL(µµµ,Σ;X,H)]

= E
H |X;µµµ(s),Σ(s)

[

N

∑
i=1

ln( f (xi,hi;µµµ,Σ))

]

,

for a random vector H conditioned to X with parameters µµµ(s) and Σ
(s) obtained in the

previous iteration. In the M step, the function Q(µµµ,Σ | µµµ(s),Σ(s)) is maximised with

respect to the parameters µµµ and Σ. By expanding Q(µµµ,Σ | µµµ(s),Σ(s)), it holds that

Q(µµµ,Σ | µµµ(s),Σ(s)) = E
H |X;µµµ(s),Σ(s)

[

N

∑
i=1

ln

(

N(hi;µµµ,Σ)
(∑D

k=1 xik)!

∏D
k=1 xik!

D

∏
k=1

ilr−1
k (hi)

xik

)]

=
N

∑
i=1

{

Ehi |xi;µµµ
(s),Σ(s) [ln(N(hi;µµµ,Σ))]

}

+

+
N

∑
i=1

{

ln

(

(∑D
k=1 xik)!

∏D
k=1 xik!

)

+
D

∑
k=1

Ehi |xi;µµµ
(s),Σ(s)

[

ln
(

ilr−1
k (hi)

xik
)]

}

.

To optimise the function Q with respect to the parameters µµµ and Σ, it is only neces-

sary to optimise the terms where µµµ and Σ are involved. That is, the term Q∗(µµµ,Σ|µµµ(s),

Σ
(s)) = ∑N

i=1

{

E
hi |xi;µµµ

(s),Σ(s) [ln(N(hi;µµµ,Σ))]
}

. Using the linearity of the expectation

E
hi |xi;µµµ

(s),Σ(s) , this term is maximised at the basic statistics µµµ(s+1) = 1
N ∑N

i=1Ehi |xi;µµµ
(s),Σ(s)

[hi] and Σ
(s+1) = 1

N ∑N
i=1Ehi |xi;µµµ

(s),Σ(s) [h
⊺
i hi]− µ̂µµ⊺µ̂µµ. In consequence, the critical point

when applying the EM algorithm here is the calculation of the expected values

E
hi |xi;µµµ

(s),Σ(s) [hi] and E
hi |xi;µµµ

(s),Σ(s) [h
⊺
i hi].

3.1 Quasi-Monte Carlo approximation to the E step

The expected valuesEhi |xi;µµµ
(s),Σ(s) [hi] and Ehi |xi;µµµ

(s),Σ(s) [h
⊺
i hi] are calculated using Monte

Carlo approximation, then turning the EM algorithm into a Monte Carlo EM algorithm

(Jank, 2005; Neath, 2013). To simplify the exposition, in this subsection we denote the

expected value Ehi |xi;µµµ
(s),Σ(s) by simply E. The vector E [h] = (E [hk])k=1,...,D−1 and the

matrix E [h⊺h] = (E [hkhr])k,r=1,...,D−1 are particular cases of the general expression

E [ϕ(h)] =
∫

RD−1
ϕ(h) f (h | x ; µµµ(s),Σ(s))dh, (7)

where ϕ : RD−1 → R and f (h | x ; µµµ(s),Σ(s)) = f (x,h ;µµµ(s),Σ(s))

Pr({X=x} ;n,µµµ(s),Σ(s))
. Moreover, note that

Pr
(

X = x ; n,µµµ(s),Σ(s)
)

=
∫

RD−1 f (x,h;µµµ(s),Σ(s))dh. Hence, to evaluate (7), we need to

approximate the integral
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I

(

ϕ,x,µµµ(s),Σ(s)
)

=

∫

RD−1
ϕ(h) f (x,h;µµµ(s),Σ(s))dh (8)

for different functions ϕ.

In Xia et al. (2013), a MCMC method based on the Metropolis algorithm is used

to estimate E [h]. Although the authors approximate the second moment, E [h⊺h], with

the square of the first moment, E [h]⊺ ·E [h], we here estimate the first and the sec-

ond moments, i.e. ϕ(h) = h and ϕ(h) = h⊺h, separately in the E step. To approximate

I
(

ϕ,x,µµµ(s),Σ(s)
)

, we used Monte Carlo integration with importance sampling (Caflisch,

1998). In each E step, importance sampling is performed using a normal distribution

centred at m = E [h] with covariance S = E [(h−m)⊺(h−m)] calculated in the previ-

ous E step. The integral I
(

ϕ,x,µµµ(s),Σ(s)
)

is approximated by

I
(

ϕ,x,µµµ(s),Σ(s)
)

=
∫

h∈RD−1

ϕ(h) f (x,h;µµµ(s),Σ(s))

N(h;m,S)
N(h;m,S)dh

= EW∼N(m,S)

[

ϕ(w) f (x,w;µµµ(s),Σ(s))

N(w;m,S)

]

≈ 1

M

M

∑
r=1

ϕ(wr) f (x,wr;µµµ
(s),Σ(s))

N(wr;m,S)
, (9)

where the values wr, r = 1, . . . ,M, are sampled from a normal distribution N(m,S).

We here adopt a QMC approach which, instead of using pseudo-random normal gen-

erators, employs low-discrepancy sequences to generate the random values wr (Caflisch,

1998; Wang and Fang, 2003; Leobacher and Pillichshammer, 2014). A low-discrepancy

sequence is an equidistributed sample defined on a particular domain that is generated

at a low computational cost (Chapter 2, Leobacher and Pillichshammer (2014)). Al-

though different low-discrepancy sequences exist, we only considered Halton and Sobol

sequences (Chapter 1, Drmota and Tichy (1997)). To choose between them we followed

Morokoff and Caflisch (1995), which suggests best performance of Sobol sequences

when the dimension of h is higher than six. Halton sequences are instead recommended

for lower dimensions. QMC methods have shown to improve efficiency when combined

with an EM algorithm (Jank, 2005).

Appendices B and C include a comparative of the performance of different methods

in a univariate but extreme case and on a number of multidimensional cases respectively.

In these scenarios, the best approximations for the first and second moments were ob-

tained using the QMC approach. By contrast, methods based on MCMC algorithms

showed the worst performance and highest computing time.



M Comas-Cufı́, J.A. Martı́n-Fernández, G. Mateu-Figueras and J. Palarea-Albaladejo 107

4 Examples

In this section, we consider three different contexts where N multinomial observations

X = {x1, . . . ,xN} are generated from N probability vectors p1, . . . ,pN . In the first sce-

nario we consider a pure multinomial process (i.e. p1 = · · ·= pN). In the second scenario

we consider each pi in Hardy-Weinberg equilibrium (i.e. pi2 = 4pi1 pi3, which implies

a correlation of minus one between the logratios ln( p·1
p·2
) and ln( p·3

p·2
)). The last case is a

real scenario where no implicit relation between pi’s is assumed. In these three scenar-

ios we compare the ability to model the sample X using both DM and LNM compound

distributions. The main aim is to investigate how probability vectors pi are modelled

using the expected posterior probabilities calculated using distributions DM and LNM,

i.e. p̂i,DM = EP |X=xi; α̂αα
[P] and p̂i,LNM = ilr−1

(

EH |X=xi; µ̂µµ,Σ̂
[H]
)

respectively.

For the LNM distribution we considered two different possibilities as starting point

for the EM algorithm (SP1 and SP2 below):

- SP1: Given model parameters µµµ∗
t and Σ

∗
t evaluated at iteration t and observation x,

the maximum h∗ of f (h | x ; µµµ∗
t ,Σ

∗
t ) can be easily calculated. Thus, the follow-

ing iterative algorithm was defined:

1. Set t = 0 and initiate µµµ∗
0 and Σ

∗
0 using sample mean and identity matrix in

logratio coordinates.

2. For each xi ∈ X calculate h∗
i maximising f (h | xi ; µµµ

∗
t ,Σ

∗
t ).

3. Set µµµ∗
t+1 =

1
N ∑h∗

i and Σ
∗
t+1 =

1
N ∑(h∗

i −µµµ∗
t+1)

⊺(h∗
i −µµµ∗

t+1).

4. If ‖µµµ∗
t+1 −µµµ∗

t ‖∞ > 0.001 go to step 2. Otherwise, stop and set µµµ0 = µµµ∗
t+1

and Σ0 =Σ
∗
t+1.

- SP2: Set µµµ0 = ilr(pDM) and Σ0 = Cov [ilr(pDM)]. That is, LNM estimation started

using the final estimates of the mean vector and covariance matrix in logratio

coordinates obtained from the DM compound distribution.

To estimate the parameters of the LNM distribution, we iterated the EM algorithm

until the distance between two consecutive estimates was lower than a certain tolerance

value τ = 0.001. The expected values in (7) were approximated using 10000 iterations

of a QMC simulation scheme based on Sobol sequences for the first and third example

and Halton sequences for the second example.

4.1 A pure multinomial process

A sample X = {x1, . . . ,xN} was generated, with xi ∼ M(x; n,πππ = p) using a unique

probability vector p. Following Martı́n-Fernández et al. (2015), we designed nine differ-

ent settings for p (see details in Appendix D). For each one we considered an increasing

number of multinomial trials n ∈ {50,100,200,500}, resulting in 9×4 different scenar-
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ios. For each scenario we generated 10 different replicates of X with N = 1000 count

vectors from the corresponding multinomial model. In total, we used 9× 4× 10 = 360

samples of size 1000. For each of the replicates X, we calculated the expected value

p̂i,DM and p̂i,LNM. It is reasonable that for any vector of counts xi, expected values p̂i·
will be close to p. To evaluate how close estimations p̂i· were to p we computed the

mean of the Aitchison distances, distA, between them; or, equivalently, the mean of the

Euclidean distances, distE, between the corresponding ilr coordinates (Egozcue et al.,

2003):

1

1000

1000

∑
i=1

distA (p, p̂i·) =
1

1000

1000

∑
i=1

distE (ilr(p), ilr(p̂i·)) . (10)
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Figure 1: Pure multinomial process: average of Aitchison distances between true p and estimated p̂i· values

using models DM (red bars), LNM with starting point SP1 (green bars) and LNM with starting point SP2

(blue bars). Nine different scenarios were set up considering four different number of trials in each one (n

from 50 to 500). See Appendix D for details.

This value was afterwards averaged across the 10 replicates. Figure 1 shows the re-

sults for the nine scenarios. As expected, DM and LNM produced similar results when

modelling probabilities p. Note that, in this example considering a multinomial setting,

the estimate for Σ is close to the zero matrix (Property 1). Because of this, in some
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scenarios after initialisations SP1 and SP2, the covariance matrix Σ0 was close to de-

generate and the EM algorithm stopped in the first iteration (see Table 2). In general,

when the number of trials increases the error decreases as expected.

4.2 The Hardy-Weinberg equilibrium

In this case the variability of the unobserved vectors of probabilities p1, . . . ,pN is gov-

erned by the Hardy-Weinberg equilibrium (Graffelman, and Weir, 2016). In brief, a bial-

lelic genetic marker with alleles A and B with respective frequencies q and (1−q) is in

Hardy-Weinberg equilibrium if the genotype frequencies x = ( fAA, fAB, fBB) are given

by p = (q2,2q(1−q),(1−q)2). To obtain our sample X = {x1, . . . ,xN}, we generated N

uniform random variables qi, taking values between 0 and 1, in six different scenarios:

1. qi ∼Uni f (0,1),
2. qi ∼Uni f (0,0.5),

3. qi ∼Uni f (0,0.25),

4. qi ∼Uni f (0.25,0.5),
5. logit(qi)∼ Norm(0,1), and

6. logit(qi)∼ Norm(1,1).

The probabilities pi were calculated using qi according to the Hardy-Weinberg equi-

librium. Observations xi were drawn from a multinomial distribution with parameters

n ∈ {50,100,200,500}, and π = pi (Graffelman, 2015). After fitting DM and LNM

models to sample X, we computed the expected probability vector of probabilities p̂i,DM

and p̂i,LNM using DM and LNM models respectively.

We compared estimations p̂i· to vector pi = (q2
i ,2qi(1− qi),(1− qi)

2) by using the

average of Aitchison distances (10) as in the previous example. The results are displayed

in Figure 2. Unlike with the pure multinomial process, there is a linear relation between

the three parts of the composition. Consequently, the probabilities pi could be better

approximated in all cases using LNM instead of DM, with negligible differences for

different starting points SP1 or SP2. Again, the error decreases with increasing number

of trials as expected.

To illustrate the performance of the models in presence of variability in the probabil-

ity vectors pi, we used ternary diagrams to graphically represent the first 50 simulated

allele genotype probability vectors (Figure 3) and their genotype frequency (Figure 4).

Figure 3 (left) shows probability vectors {p1 . . . ,p50} satisfying the Hardy-Weinberg

equilibrium which were generated from the first scenario above (q ∼Uni f (0,1)). Note

that they exactly fit a (compositional) line described by the parametric equations {(t2,
2t(1 − t),(1 − t)2) : 0 < t < 1}. Figure 3 (centre) shows that estimates {p̂1,DM, . . . ,

p̂50,DM} from the DM model are far more scattered with respect to the equilibrium state

than those from the LNM model {p̂1,LNM, . . . , p̂50,LNM} (Figure 3 (right)). Taht is, while

the LNM model is able to capture the variability along the compositional line the DM is
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not.
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Figure 2: Hardy-Weinberg equilibrium: average of Aitchison distances between true πππ and estimated pi

values using models DM (red bars), LNM with starting point SP1 (green bars) and LNM with starting point

SP2 (blue bars). Six different scenarios were set up considering four different numbers of trials in each one

(n from 50 to 500).
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Figure 3: Probabilities pi in the Hardy-Weinberg equilibrium. Original probabilities pi distributed accord-

ing to Scenario 1 (left), estimates p̂i,DM using the Dirichlet-multinomial model (centre), estimates p̂i,LNM

using the logratio-normal-multinomial model (right).

This behaviour is made more evident when samples of count data are generated with

both models. Figure 4 (left) shows genotype frequency data vectors {x1 . . . ,x50} gen-

erated from the Hardy-Weinberg equilibrium using a multinomial distribution (Graffel-

man, 2015). In the centre we can see how data randomly generated from a DM model

with parameter α̂αα = (0.642,0.858,0.622), which was estimated from sample X, spread

all over the ternary diagram. On the right-hand side, data were randomly generated using

a LNM model with parameters
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µ̂µµ= (−0.460,0.343) and Σ̂=

(

1.528 2.706

2.706 4.816

)

estimated from X. In this case, the obtained sample is a fairly accurate realisation of the

original data.
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Figure 4: Genotype frequencies xi in the Hardy-Weinberg equilibrium. Original frequencies xi generated

in Scenario 1 (left), genotype frequencies simulated by Dirichlet-multinomial model (centre), genotype fre-

quencies simulated by logratio-normal-multinomial model (right).

4.3 Catalan parliamentary elections

Final vote shares by municipality from the 2015 Catalan parliamentary elections were

provided by the Statistical Institute of Catalonia (http://www.idescat.cat/en/). A subsam-

ple was drawn for statistical inference based on the DM and LNM models. We aimed to

evaluate by simulation the ability of an opinion poll to reflect voting intention. Table 1

shows the vote counts registered in some municipalities out of 947. We only consid-

ered votes for the six main parties obtaining seats in the parliament: Junts pel sı́ (jxsi),

Partit socialista de Catalunya (psc), Partit popular (pp), Catalunya si que es pot (catsp),

Ciutadans (cs) and Candidatura d’unitat popular (cup). Moreover, in order to have rea-

sonable estimates for our simulations, we only considered those municipalities with at

least 1000 votes registered (369 municipalities). The number of votes registered in these

municipalities ranged from 1006 votes to 836687 votes.

Table 1: Distribution of votes by municipality across political parties in 2015 Catalan parliamentary elec-

tion (only some municipalities shown).

Municipality jxsi psc pp catsp cs cup Population

Abella de la Conca 57 11 5 3 9 18 170

Abrera 1685 1275 619 938 1771 453 12125

Àger 271 14 25 10 18 45 594

Agramunt 1940 161 185 104 252 152 5515

Aguilar de Segarra 121 0 4 5 4 18 251

Agullana 298 26 15 16 31 80 826

...
...

...
...

...
...

...
...

http://www.idescat.cat/en/
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Using all available data, for each municipality i we calculated the vector of proba-

bilities pi =
1
n′i

(

n′i,jxsi, . . . ,n
′
i,cup

)

, where n′i, j is the total number of votes to party j in

municipality i and n′i = n′i,jxsi + · · ·+ n′i,cup. In this example, the vector of probabilities

pi , i = 1 . . .369, was considered the gold standard. That is, the best available estima-

tion of the vote probabilities across parties in each municipality. We created an artificial

survey by selecting for each municipality a subsample consisting of ni registered votes.

More formally, we created a sample X = {x1, . . . ,x369} with xi following a multivariate

hypergeometric distribution with population size
(

n′i,jxsi, . . . ,n
′
i,cup

)

and sample size ni.

We considered two scenarios for ni:

1. Proportional size: ni as percentage of n′i, ranging from 0.5% to 5%.

2. Constant size: ni constant for all municipalities, with ni ranging from 10 to 200.

In both cases, we repeated the experiment five times for each value of ni . Given a

data set X, we compared estimates p̂i,DM and p̂i,LNM with the gold standard pi. Because

data did not follow any particular distribution, we used three different criteria in this

comparative analysis as proposed in Palarea-Albaladejo and MartÃn-Fernández (2008):

• Average of Aitchison distances: 1
369 ∑369

i=1 distA(pi, p̂i·),

• Frobenius distance between the covariance matrix, Σp =
(

σp
i j

)

∈ R
5×5, obtained

from {ilr(p1), . . . , ilr(p369)} and the covariance matrix, Σp̂· =
(

σ
p̂·
i j

)

∈ R
5×5, ob-

tained from {ilr(p̂1·), . . . , ilr(p̂369·)} , i.e.

∥

∥Σp −Σp̂·

∥

∥

F
=

√

√

√

√

5

∑
i=1

5

∑
j=1

(σp
i j −σ

p̂·
i j )

2,

and

• STRESS (standardised residual sum of squares) index given by

STRESS =

√

√

√

√

∑369
i=1 ∑369

j=1

(

dA(pi,p j)−dA(p̂i·, p̂ j·)
)2

∑369
i=1 ∑369

j=1 dA(pi,p j)
2

.

Figure 5 shows the results for different sample sizes. The values of the three mea-

sures decreased when the size ni increased in all cases (Fig. 5). A parallelism between

the results for DM and LNM compound distributions is observed. Noticeably, the per-

formance of DM was worse than LNM in all the cases. The alternative starting points,

either SP1 or SP2, showed similar behaviour, specially using the average Aitchison dis-
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tance criterium. Importantly, for a similar sample size, the results for the second scenario

(constant size) were better than those for the first scenario (proportional size).
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Figure 5: Performance measures for the 2015 Catalan election example: average of Aitchison distance

(top), Frobenius distance (centre), STRESS index (bottom). Estimates obtained using models DM (dashed

red line), LNM (starting point SP1, dotted blue line) and LNM (starting point SP2, solid green line). Two

scenarios with different sample sizes (see text for details).
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4.4 Comparison of computing times

Table 2: Mean computing time in seconds for the three examples shown in Section 4 (95% confidence

interval in parenthesis). Calculations performed on an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

Times marked with 1 did not iterated trough the EM algorithm because after initialisation Σ0 was singular.

DM LNM (SP1) LNM (SP2)

Pure multinomial process example

Scenario 1 (D=9) 11.6 [4.2, 23.7] 152.6 [133.7, 172.9] 22.2 [9.6, 31.9]1

Scenario 2 (D=12) 16.1 [3.1, 28.6] 194.7 [169.2, 223.8] 23.1 [13.6, 39.2]1

Scenario 3 (D=15) 20.0 [10.7, 35.0] 231.3 [189.8, 310.7] 25.4 [19.1, 43.3]1

Scenario 4 (D=16) 22.6 [6.5, 39.3] 255.9 [156.8, 334.6] 28.7 [13.6, 51.1]1

Scenario 5 (D=20) 24.8 [11.5, 35.4] 145.3 [2.2, 310.6] 35.3 [18.8, 52.3]1

Scenario 6 (D=25) 22.2 [12.6, 32.2] 218.2 [1.8, 535.5] 33.0 [23.7, 476.5]1

Scenario 7 (D=30) 34.3 [9.2, 42.9] 2.4 [2.4, 2.7]1 41.6 [10.9, 51.9]1

Scenario 8 (D=36) 27.8 [11.2, 53.4] 3.5 [3.4, 3.6]1 44.2 [14.9, 65.7]1

Scenario 9 (D=50) 58.0 [11.1, 80.3] 7.0 [6.9, 9.0]1 77.1 [45.2, 92.6]1

Hardy-Weinberg equilibrium example

Scenario 1 (D=3) 2.3 [1.8, 2.5] 219.2 [152.6, 286.9] 216.7 [153.8, 263.4]

Scenario 2 (D=3) 1.8 [1.6, 1.9] 878.7 [735.1, 1015.3] 565.6 [484.4, 612.3]

Scenario 3 (D=3) 2.3 [2.1, 2.6] 1319.0 [1208.2, 1548.5] 695.6 [593.3, 757.5]

Scenario 4 (D=3) 1.8 [1.6, 1.9] 66.3 [55.9, 92.7] 129.5 [89.5, 179.7]

Scenario 5 (D=3) 2.0 [1.9, 2.3] 160.7 [101.9, 208.3] 146.4 [116.1, 198.1]

Scenario 6 (D=3) 1.6 [1.5, 1.8] 327.6 [232.4, 431.0] 195.3 [140.7, 253.3]

Catalan parliamentary election example

Scenario 1 (D=6) 1.5 [1.4, 1.7] 508.6 [430.4, 617.2] 430.2 [379.7, 510.0]

Scenario 2 (D=6) 0.8 [0.7, 1.3] 124.7 [84.3, 208.5] 186.6 [116.7, 272.2]

For the three examples above, the computing time spent on parameter estimation us-

ing LNM was higher than using DM (see Table 2). For LNM, both choices of starting

points (SP1 and SP2) provided similar results, although SP1 tended to be slower. For the

second example (subsection 4.2), the computing time was remarkably higher in scenar-

ios 2 and 3 using LNM. Note that these scenarios were characterised for being the ones

with the smaller probability in the first component. As expected, data dimensionality

was the major factor affecting computing time.

5 Final remarks and conclusions

Count data are commonly generated in modern scientific areas such as text mining or

genomic and microbiome studies based on next generation sequencing technologies.

The DM distribution is a popular choice to model multivariate counts. However it may

not be appropriate for complicated correlation structures because, amongst others, it

imposes a negative correlation between every pair of multinomial categories. This might
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not be realistic when analysing for example microbiome data (Mandal et al., 2015).

Consequently, there is a need for models allowing more flexible dependence structures

in multivariate count data.

The LNM compound probability distribution has been introduced in this work as

a flexible model for multivariate count data. Rooted on the theoretical framework for

compositional data modelling, the LNM model is fully compatible with the geometry of

the simplex, the sample space where multinomial probabilities lay. Accordingly, multi-

nomial probabilities can be conveniently mapped onto real space through logratio coor-

dinates with respect to an orthonormal basis of the simplex for the purpose of parameter

estimation. Importantly, results are invariant under changes of orthonormal basis. Pa-

rameter estimates for the LNM model cannot be computed analytically though. Differ-

ent estimation approaches have been discussed and compared in this work. One based

on a quasi-Monte Carlo EM algorithm is concluded to be preferable. This approach

improves estimates obtained by Markov Chain Monte Carlo based on the Metropolis al-

gorithm as used in previously works. Because inference is based on the EM algorithm,

likelihood estimation can get stuck in some local maxima. Even though in the examples

shown in this manuscript the global maximum is obtained, it is possible that different

initialisations can be necessary to find it in particular cases.

In terms of modelling, we have shown that the LNM model produces better results

than the DM. In particular, we have shown that in realistic cases LNM outperforms DM

in its ability to model the underlying probabilities from the observed counts. It is impor-

tant to remark that the number of parameters for a DM and a LNM grow linearly and

quadratically respectively. So when the number of dimension is high, it is recommended

to consider some parametrisation for the covariance matrix (Pinheiro and Bates, 1996,

for an example where different restrictions on the spectral decomposition are applied to

Gaussian finite mixtures see (Banfield and Raftery, 1993) ).

Modelling multivariate count data using the LNM provides extra flexibility for the

multinomial parameter distribution. In addition, it opens up the possibility of defining

new statistical inference tools for compositional data analysis. Areas for future develop-

ment include improved procedures for obtaining fast and reliable maximum likelihood

estimates, e.g. along the lines of recent work by (Silverman et al., 2019). These and other

questions in relation to the proposed LNM model will be addressed in future work.
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A Proof of properties 1 and 2

Property 1 For a fixed x we have

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =M
(

x;n, ilr−1(µµµ)
)

.2

Proof. Let h be a real vector defined on R
D−1 and let x be a count vector defined on Sn,D.

Because ilr−1
1 (h)

x1 · · · ilr−1
D (h)

xD ≤ x1
x1 · · ·xD

xD , for any fixed x = (x1, . . . ,xD) we have:

lim
‖Σ‖→0

LNM(x;n,µµµ,Σ) =
∫

h∈RD−1

n!

x1! · · ·xD!
ilr−1

1 (h)
x1 · · · ilr−1

D (h)
xD

lim
‖Σ‖→0

N(h;µµµ,Σ)dh

=
∫

h∈RD−1

n!

x1! . . .xD!
ilr−1

1 (h)
x1 · · · ilr−1

D (h)
xDδ (h−µµµ)dh

=
n!

x1! . . .xD!
ilr−1

1 (µµµ)
x1 · · · ilr−1

D (µµµ)
xD =M

(

x;n, ilr−1(µµµ)
)

.

�

Property 2 Let x = (x1, . . . ,xD) and x1 + · · ·+ xD = n. If limn→∞
xi

n
= πi and πi > 0 for

1 ≤ i ≤ D, then

lim
n→∞

nD−1 ·LNM(x;n,µµµ,Σ) =NSD(πππ;µµµ,Σ)
1√
D

1

π1 . . .πD

Proof. Let πππn = (πn,1, . . . ,πn,D) =
1
n
(x1, . . . ,xD). We have that

lim
n→∞

nD−1
LNM(x;µµµ,Σ) = lim

n→∞

(n+D−1)!

n!
LNM(x;µµµ,Σ). (11)

Substituting x by nπππn and using the LNM probability mass function (5), we can

rewrite (11) as

∫

h∈RD−1
N(h;µµµ,Σ) lim

n→∞

(n+D−1)!

n!

n!

(nπn,1)! . . . (nπn,D)!
ilr−1

1 (h)
nπn,1 . . . ilr−1

D (h)
nπn,D

dh

(12)

Considering the change of variable given by (3), which has the Jacobian

dh =
1√

D p1 . . . pD

dp,

2. lim‖Σ‖→0 stands for any sequence of covariance matrices such that their highest eigenvalue goes to 0.
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we can express (12) with respect to p

∫

p∈SD⊂RD
N(ilr(p);µµµ,Σ)

1√
D p1 . . . pD

lim
n→∞

(n+D−1)!

(nπn,1)! . . . (nπn,D)!
p1

nπn,1 . . . pD
nπn,Ddp,

(13)

where dp is measured using Lebesgue measure.

Note that for the Dirichlet distribution with parameters αi = nπn,i +1, 1 ≤ i ≤ D, we

have

∫

p∈SD⊂RD

(n+D−1)!

(nπn,1) . . .!(nπn,D)!
p1

nπn,1 . . . pD
nπn,Ddp = 1, (14)

and using the Stirling’s approximation we have

ϕ(p) = lim
n→∞

(n+D−1)!

(nπn,1)! . . . (nπn,D)!
p1

nπn,1 . . . pD
nπn,D

= lim
n→∞

(n+D−1)!

(2πn)
D−1

2
√
πn,1 . . .πn,D

p1
nπn,1 . . . pn,D

nπD

π
nπn,1

1 . . .π
nπn,D
D

.

Moreover, it can be seen that p = πππn is a global maximum for p1
πn,1 . . . pD

πn,D when

p1 + · · ·+ pD = 1. Moreover, because limn→∞πππn = πππ, we have that

ϕ(p) = lim
n→∞

(n+D−1)!

(2πn)
D−1

2
√
πn,1 . . .πn,D

(

p1
πn,1 . . . pD

πn,D

πn,1
πn,1 . . .πn,D

πn,D

)n

=

=

{

∞ when p = πππ

0 otherwise,

which implies, together with Equation 14, that ϕ is the Dirac delta function centred at

πππ.

Putting all together, (13) can be rewritten as

∫

p∈SD⊂RD
N(ilr(p);µµµ,Σ)

1√
D p1 . . . pD

δ (p−πππ)dp =

N(ilr(πππ);µµµ,Σ)
1√

Dπ1 . . .πD

=NSD(πππ;µµµ,Σ)
1√

Dπ1 . . .πD

.

�

Observe that we obtain the logratio-normal distribution on the simplex expressed

with respect to the Lebesgue measure. The term 1/(
√

Dπ1 . . .πD) relates the Aitchison

measure with the Lebesgue measure (Mateu-Figueras et al., 2013).
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B E-step convergence in a simple univariate but extreme case

Let x = (1,0) be an observed vector of counts, with mean µ= 0 and standard deviation

σ = 1. Consider the S2 basis given by B=
{

b1 =
1

e
√

1/2+e−
√

1/2

(

e
√

1/2,e−
√

1/2
)}

. The

coordinates of an element p = (p1, p2) of S2 with respect to the basis B, are

h = ilr(p) =

√

1

2
ln

p1

p2

,

and an element of S2 with respect to its coordinates is

p = ilr−1(h) = h⊙b1 =
1

eh
√

1/2 + e−h
√

1/2

(

eh
√

1/2,e−h
√

1/2
)

.

Using Equation 5 we calculate the marginal probability

Pr({X = (1,0)};µ= 0,σ = 1) =
∫ ∞

−∞

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2 + e−h
√

1/2

)

dh ≈ 0.50.

Using numerical integration we obtain an approximation of these expected values:

E
H |X;µµµ(s),Σ(s) [h] =

∫ ∞

−∞
h

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2+e−h
√

1/2

)

Pr({X = (1,0)};µ= 0,σ = 1)
dh ≈ 0.5136.

E
H |X;µµµ(s),Σ(s)

[

h2
]

=
∫ ∞

−∞
h2

(

1√
2π

)

e−
h2

2

(

eh
√

1/2

eh
√

1/2+e−h
√

1/2

)

Pr({X = (1,0)};µ= 0,σ = 1)
dh ≈ 1.0.

After performing a fixed number of simulations, we compare the estimate and the

variance of the error when approximating the expected valuesEh|x,µ,σ (h) andEh|x,µ,σ
(

h2
)

using five different Monte Carlo approaches: MC method via importance sampling

as described in Section 3.1, MC method via importance sampling and antithetic vari-

ates (Caflisch, 1998), QMC method using Halton low-discrepancy sequences, MCMC

method based on the Metropolis algorithm with a standardised gaussian proposal (Xia

et al., 2013), and MCMC method based on the Hamiltonian algorithm (Chapter 5, Neal

(2010)). For QMC estimation, the variability was estimated using scrambling techniques

(see Owen (1995); L’Ecuyer and Lemieux (2002) for further details). Importance sam-

pling for MC and QMC was conducted using m = Eh|x,µ,σ (h) and s = 1. MCMC meth-

ods were initiated at h0 = Eh|x,µ,σ (h).
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Table 3: Mean and standard deviation (in parenthesis) of 500 different approximations to Eh|x,µ,σ (h) and

Eh|x,µ,σ
(

h2
)

when x = (1,0), µ= 0 and σ = 1. Computing time is shown with respect to the MC method.

Method First moment Second moment Time

Numerical approximation 0.5135884 1.0000000

MC 0.5136272 (0.02412) 1.0008430 (0.03998) ×1.00

MC (Antithetic variates) 0.5136542 (0.00148) 1.0017754 (0.04047) ×0.96

QMC 0.5135818 (0.00071) 0.9999877 (0.00171) ×2.03

MCMC (Metropolis) 0.5133551 (0.02928) 0.9996497 (0.04716) ×6.70

MCMC (Hamiltonian) 0.5163096 (0.04394) 1.0037255 (0.07058) ×90.12
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Figure 6: Approximation of moments: Eh|x,µ,σ (h) (left); Eh|x,µ,σ
(

h2
)

(right). For x = (1,0), µ = 0 and

σ= 1 using different MC techniques to approximate the E step: Monte Carlo (MC) via importance sampling

(black), MC via importance sampling and antithetic variates (red), QMC using Halton sequences (green),

MCMC based on the Metropolis algorithm (blue) and MCMC based on the Hamiltonian algorithm (purple).

Horizontal dashed line (black) is approximation calculated by numerical integration.

Figure 6 shows the behaviour of the methods for the first 1000 iterations in one

simple approximation. The horizontal dashed line (in black) represents the expected

values calculated by numerical integration. This exercise was repeated 500 times. Table

3 shows the mean and the standard deviation of the corresponding 500 approximations

obtained by each procedure in the first 1000 iterations. In addition, a comparison of the

computing time was conducted. The computing time was very similar for all methods,

except for MCMC methods. The best results produced by the classical MC method.

Regarding to the approximation of the first and second moment, QMC estimation clearly

outperformes the other approaches. Remarkably, the MCMC algorithms has the worst

performance. The standard deviations obtained by the Metropolis algorithm (0.044 and

0.071) were the largest and far from the standard deviations obtained by QMC. Figure 6
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illustrates this behaviour. Note that the lines for the methods whose standard deviation

was close to zero are close to the horizontal line representing the exact values.

C E-step convergence in multivariate cases

To evaluate the performance of the estimation procedures, we set up a simulation study

parametrised by the following five parameters:

• Dimension of the random vector H. We considered dimension d ∈ {1,5,25,125}.

• Multinomial sample size, n ∈ {10,100}.

• Location of parameter µµµ. Concretely, we parameterised the Aitchison norm for the

mean of the multivariate normal (MVN) distribution, λ ∈ {0,1,2}.

• Variability of parameter Σ. To this end, we parameterised the quotient between

the trace and the dimension of the covariance matrix of the MVN distribution,

ν ∈ {0.5,1,2}.

• Agreement between count x and parameter µµµ. We considered two scenarios, a first

scenario were count x was generated by a multinomial distribution with parame-

ter πππ = ilr(µµµ), and a second scenario were count x was generated by a multino-

mial distribution with parameter πππ= ilr(−µµµ). We parameterised the two scenarios

with a parameter ξ ∈ {0,1} to modelate the two multinomial distributions with

πππ = ilr−1 ((2ξ−1)µµµ). Parameter ξ measures the change from a situation with dis-

agreement between x and µµµ to a situation with agreement between them.

In each of the previous 144 scenarios we repeated the following simulation 100

times:

1. A vector µµµ ∈ R
d was uniformly generated from the d-sphere with radius λ, i.e.

{µµµ ∈ R
d ; ‖µµµ‖2 = λ}.

2. A covariance matrix Σ ∈ Rd×d was generated as Σ = ν

tr(A)/d
A, where A ∼

Wishart(d,Id) (ensuring that
tr(Σ)

d
= ν).

3. A vector X was generated following a multinomial distribution with sample size n

and probability πππ = ilr−1 ((2ξ−1)µµµ).

4. We approximated the first and second moment of the random variable H con-

ditional to X, µµµ and Σ using Monte Carlo, Monte Carlo with antithetic variate,

Quasi Monte Carlo and MCMC (using the Metropolis-Hastings algorithm). Ap-

proximations were conducted generating 100 random variables.
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In each scenario, for the first and second moment, gold standards were obtained with

100000 replicates using standard Monte Carlo integration and MCMC. We evaluated

the accuracy of each method by calculating the infinity norm of the difference between

the approximation and the gold standard.

Table 4: Results obtained after adjusting a linear model to the logarithm of the error.

Dependent variable: ln(error)

First moment Second moment

Effect (95% CI) Effect (95% CI)

MC (Reference) 1 1

MC-AV 0.404 (0.378, 0.429) 0.888 (0.861, 0.915)

QMC 0.443 (0.417, 0.469) 0.612 (0.585, 0.639)

MCMC 2.182 (2.156, 2.208) 2.014 (1.987, 2.041)

d 1.020 (1.020, 1.020) 1.023 (1.023, 1.024)

n 0.994 (0.994, 0.994) 0.989 (0.989, 0.989)

λ 1.156 (1.145, 1.167) 1.532 (1.521, 1.544)

ν 1.583 (1.569, 1.598) 1.851 (1.835, 1.866)

ξ 1.056 (1.037, 1.074) 1.176 (1.157, 1.195)

R2 0.574 0.600

To assess the results we fitted a linear model to investigate differences in logarithmic

error with respect to the methods used. Results were further adjusted by the five param-

eters: d, n, λ, ν and ξ (Table 4). The table shows the relative effect of each parameter

when estimating the error. On average, QMC produced 44.3% and 61.2% of the error

to estimate the first and second moment respectively in comparison to standard MC. In

contrast, MCMC methods doubled the error in both moments with respect to MC (2.182

and 2.014). The use of antithetic variables (MC-AV) provided the best results when ap-

proximating the first moment. In relation to the parameters, as it is expected, the higher

the dimension the higher the error. We also observe the high impact of the MVN vari-

ability, ν, parameter in both moments (1.58 and 153 respectively). In minor measure,

the same occurred for the norm, λ, and the disagreement, ξ. On the contrary, the higher

the sample size, n, the lower the error.

To have a visual summary of the results, Figure 7 shows different boxplots of the

parameters d, λ and ν. As seen in Table 4, this graphic illustrates how antithetic vari-

ates perform specially well in low dimensions when estimating the first moment. QMC

method performs well in almost all scenarios, when estimating both moments.
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Figure 7: Results obtained in the simulation study for the first and second moment. Results are shown for

each method with respect to parameters d, λ, ν.
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D Choices for the probability vector p

Table 5: Probability vectors p used in the first example. Column k shows the scenario number, column D

refers to the number of components. The column on the right-hand side accounts for the initial numbers of

trials.

k D p

1 9 0.057 0.077 0.078 0.105 0.105 0.105 0.141 0.141 0.191

2 12 0.066 0.071 0.072 0.076 0.078 0.078 0.084 0.086 0.087 0.096 0.097 0.109

3 15 0.024 0.033 0.033 0.044 0.044 0.044 0.059 0.059 0.059 0.080 0.080 0.080

0.108 0.108 0.145

4 16 0.024 0.031 0.031 0.041 0.041 0.041 0.056 0.056 0.056 0.056 0.075 0.075

0.075 0.102 0.102 0.13

5 20 0.016 0.020 0.020 0.028 0.028 0.028 0.037 0.037 0.037 0.037 0.050 0.050

0.050 0.050 0.068 0.068 0.068 0.092 0.092 0.124

6 25 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02

0.02 0.02 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.50

7 30 0.021 0.023 0.023 0.025 0.025 0.026 0.028 0.028 0.028 0.028 0.030 0.030

0.031 0.031 0.031 0.033 0.034 0.034 0.034 0.034 0.037 0.038 0.038 0.038

0.042 0.042 0.042 0.047 0.047 0.052

8 36 0.019 0.019 0.020 0.020 0.021 0.021 0.021 0.021 0.022 0.022 0.023 0.023

0.024 0.024 0.024 0.024 0.024 0.026 0.026 0.027 0.027 0.028 0.028 0.029

0.029 0.030 0.032 0.032 0.033 0.033 0.037 0.037 0.038 0.043 0.043 0.050

9 50 0.02 (50 times)


