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Integer constraints for enhancing interpretability

in linear regression

Emilio Carrizosa1, Alba V. Olivares-Nadal2 and Pepa Ramı́rez-Cobo3

Abstract

One of the main challenges researchers face is to identify the most relevant features in a prediction

model. As a consequence, many regularized methods seeking sparsity have flourished. Although

sparse, their solutions may not be interpretable in the presence of spurious coefficients and corre-

lated features. In this paper we aim to enhance interpretability in linear regression in presence of

multicollinearity by: (i) forcing the sign of the estimated coefficients to be consistent with the sign

of the correlations between predictors, and (ii) avoiding spurious coefficients so that only signifi-

cant features are represented in the model. This will be addressed by modelling constraints and

adding them to an optimization problem expressing some estimation procedure such as ordinary

least squares or the lasso. The so-obtained constrained regression models will become Mixed In-

teger Quadratic Problems. The numerical experiments carried out on real and simulated datasets

show that tightening the search space of some standard linear regression models by adding the

constraints modelling (i) and/or (ii) help to improve the sparsity and interpretability of the solutions

with competitive predictive quality.

MSC: 62J05, 90C11.
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1 Introduction

A plethora of real world data involve multiple features interacting between them. As a

consequence, one of the most common research challenges is trying to predict a variable

by making use of attributes that are deterministic or easier to access. A widely studied

tool to achieve this is the linear regression model

Y = β0 +βββX+a (1)
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where Y = (y1, . . . ,yK)
′ contains the K realizations of the random variable to be pre-

dicted, X ∈ R
K×N contains the observations of the attributes X1, . . . ,XN that influence

on Y, and a ∈ R
K denotes the error term. In practice, the coefficients βββ need to be esti-

mated and thus, the user needs to select an estimation method, which is usually derived

from solving an optimization problem of the form:

min
βββ

f (βββ)

s.t βββ ∈B

(2)

where B denotes the feasible region.

Since the data collection technologies are improving altogether with communication

systems and computers’ memories and processors, the dimension of the data sets to be

handled is increasing drastically. As a consequence, nowadays researchers aim to return

an interpretable output which explains the main interactions between the features that

conform the pile of data and the dependent variables. Usually, this is understood as a

problem of choosing the most relevant features for prediction (Friedman, Hastie and

Tibshirani, 2001; Cai, Tsay and Chen, 2009; Hastie, Tibshirani and Wainwright, 2015).

Sparse methods will yield solutions βββ in (2) with a large number of zero coefficients, in

which only the most significant features are associated with the non-zeroes (Tibshirani,

1996; Hastie et al., 2015). Although sparsity may be a desirable property for our solu-

tion, we should take into account that other characteristics need to be sought in order to

obtain a more interpretable output. First, correlated variables can provide highly variable

estimated coefficients that make it difficult to understand the impact of a feature on the

predictive variable. Second, spurious coefficients complicate the judgement of whether

a feature is truly relevant for prediction or not. We will explain these two issues with

further detail in what follows and motivate why we aim to alleviate them in this paper

while still seeking for a sparse solution.

It is known that ordinary least squares (OLS) provides solutions that may be highly

dense. A good representative of a possibly sparse estimation method in the form (2)

is the lasso (Tibshirani, 1996), which adds a ℓ1-norm penalization term to the OLS

objective:

f (βββ) = ‖y−β0 −βββX‖2
2 +λ‖βββ‖1 (3)

B= R
N .

The lasso encompasses OLS when the penalty parameter λ equals zero, but when λ in-

creases the solution becomes more sparse. The lasso is computationally feasible and,

under certain technical conditions on the data matrix X, it enjoys good statistical prop-

erties, see Friedman et al. (2001); Bühlmann and van de Geer (2011). However the lasso

also presents certain shortcomings well-documented in the literature (for a brief review,

see Bertsimas et al. (2016) and the references therein). In particular, it is known that

estimation through OLS or the lasso may be quite unstable in the presence of strong
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collinearity on the data (Silvey, 1969; Sengupta and Bhimasankaram, 1997; Hesterberg

et al., 2008). On one hand, the presence of correlated variables may yield a high vari-

ability in the estimated coefficients, complicating thus the interpretation of the results

(Farrar and Glauber, 1967; Watson and Teelucksingh, 2002; Montgomery, Peck and Vin-

ing, 2012). On the other hand, a consequence of collinearity that leads to problems for

interpreting the effect of the regressors is that two variables that are highly positively

(negatively) correlated may have associated estimated coefficients with different (same)

signs. This problem can be illustrated through the following numerical example in Hes-

terberg et al. (2008). Consider the diabetes database (Efron and Hastie, 2003), which

consists of the measures of 10 variables (age, sex, body mass index, average blood pres-

sure and six different blood serums) on 442 patients. The top panel of Figure 1 depicts

the path of solutions of the lasso for this database; that is to say, the estimates of the co-

efficients βββ obtained are depicted against the different values of the penalty λ. As noted

by Hesterberg et al. (2008), features tc and ldl (bottom left panel), have a correlation

of 0.89. However, their estimated coefficients take opposite signs, which is in contra-

diction with their dependence degree. Similarly, the coefficients for variables hdl and

tch (bottom right panel), which show a correlation of −0.73, have the same sign when

estimated by the OLS (the case λ= 0 in Figure 1). Hence it seems that the coefficients

of highly correlated variables may take values that compensate each other. Finally, an

additional inconsistency is that the sign of the estimated coefficient of hdl (squared blue

line, left bottom panel) varies depending on the level of sparsity required.

The negative effects of collinearity have been differently addressed in the litera-

ture. On one hand, some authors (Chatterjee and Hadi, 2015; Montgomery et al., 2012)

suggest to remove variables that are highly correlated or unimportant, often carrying

out significancy tests to determine if a variable can be discarded. However, the re-

sults of these tests may be misleading in the presence of strong collinearity (Watson

and Teelucksingh, 2002). In this line, the recent paper by Bertsimas and King (2015)

proposes to tighten the estimation procedure (2) by adding constraints that explicitly

forbid the coefficients of variables with a high pairwise correlation to be simultane-

ously non-zero. Nonetheless, as it will be seen in Section 3.3.1, these approaches may

be detrimental if highly correlated features own a strong predictive power. On the other

hand, some authors encourage highly correlated predictors to be altogether in the model.

The graph-guided fused lasso (GFlasso hereafter, proposed in Kim and Xing, 2009)

encourages two highly correlated variables to have similar estimated coefficients by

adding the penalization γ|βi − sign(ρi j)β j| to the lasso objective function, where ρi j

denotes the correlation between X i and X j. The SRIG method (Sparse Regression In-

corporating Graphical Structure Among Predictors, introduced in Yu and Liu, 2016),

determines the value of the coefficient β j not only by feature X j but also by all features

X i such that ρi j is large in absolute value. Under certain technical conditions, the SRIG

is endowed with nice properties that, for instance, ensure the recovery of the original

model. However, as it will be shown in Section 3.2, these conditions may not be ful-

filled in real databases, yielding outputs that may not improve the performance of the
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Figure 1: Top: path of solutions of the lasso for the diabetes database (the size of the coefficients βββ are

depicted against the values of the penalty λ). Bottom: problematic paths.

current methodologies. Our approach is less restrictive than the previous one, since it

neither encourages the removal of variables nor the presence of groups of correlated

features. Instead, we propose a constraint (called sign coherence constraint) that aims

to elude the signs’ inconsistency phenomenon related to collinearity shown in Figure

1, avoiding that the coefficients of highly correlated variables compensate each other.

This constraint provides more flexible models, as for some cases two highly correlated

variables may appear altogether in the output, and for some other cases one feature of a

highly correlated pair may be removed. This will be illustrated in Figure 5, Section 3.2.

Our approach is not the first one to restrict the sign of the estimated coefficients in linear

regression. For instance, Meinshausen (2013) makes use of non-negative least squares to

recover the real sparsity pattern in high-dimensional data under certain conditions. Also,

the LARS algorithm (Efron, Hastie, Johnstone and Tibshirani, 2004) emulates the lasso
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solution by requiring the sign of the coefficients to match the sign of their correlation

with the residuals. Another well-known example is the non-negative garotte (Breiman,

1995), which performs subset selection while forcing the signs of the coefficients to

match the signs of the OLS estimates.

To conclude, there are further remedies to alleviate collinearity issues, consisting of

harvesting more observations (Sengupta and Bhimasankaram, 1997; Montgomery et al.,

2012) or applying methods that decorrelate the data (Cao, Guo and Bouman, 2010;

Massy, 1965). Nevertheless, the later approaches imply the transformation of the vari-

ables and thus complicate the interpretation of the final models with respect to the orig-

inal features. More recently, optimization approaches bounding the Variance Inflation

Factor (VIF) and condition number of the correlation matrix have also been proposed

(Tamura et al., 2019; Jou, Huang and Cho, 2014; Tamura et al., 2017).

On top of the unreliable interpretation of coefficients in presence of high correla-

tions, the lasso also suffers a drawback, mitigated in this paper: the presence of spurious

coefficients. For λ> 0 the ℓ1-norm performs a shrinkage of the coefficients in the lasso

solution that eventually attains sparsity as a side effect. However, as will be shown in

the numerical section, the solutions of the lasso may be still dense for large datasets due

to these spurious coefficients. In this paper we avoid this negative effect of shrinkage

by defining a novel constraint (called significance constraint) that forces the estimated

coefficients to be either zero or larger than a fixed value (to be tuned).

In summary, in this paper we model two novel constraints which will tighten the

search space for βββ in Problem (2). As a result, the interpretability of the solutions is im-

proved since (i) the signs of the coefficients are coherent with the sign of the correlations

between highly or moderately correlated predictors, and (ii) the shrinkage is combatted

while avoiding spurious coefficients, which may lead to the annihilation of some coef-

ficients, thus increasing the sparsity. As will be shown in the numerical experiments,

such better interpretability is obtained without damaging the predictive power of the

model. When discerning the suitability of these constraints for a particular database, the

user should realize that constraints modelling (i) become inactive if no highly correlated

predictors are found, while constraints expressing (ii) do if all the variables have non-

spurious estimated coefficients. Hence, the user might want to analyse the correlations

before adding the sign coherence constraints. However, we do recommend adding the

significance constraint if a regularized method is used for estimation.

The resulting optimization problems will belong to the class of Mixed Integer Qua-

dratic Programs (MIQP), which have recently proven very suitable in different statistics

problem as linear regression (Tamura et al., 2019; Bertsimas and King, 2015), time

series (Carrizosa, Olivares-Nadal and Ramı́rez-Cobo, 2016), classification (Carrizosa,

Nogales-Gómez and Morales, 2016; Carrizosa, Nogales-Gómez and Morales, 2017), or

dimensionality reduction (Carrizosa and Guerrero, 2014). Indeed, Bertsimas and King

(2015); Bertsimas et al. (2016) use MIQP theory to solve (in tractable way) the best
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subset selection problem (Miller, 2002):

f (βββ) = ‖y−β0 −βββX‖2
2 (4)

B=
{

βββ ∈ R
N : ‖βββ‖0 ≤VT

}

,

where the ℓ0-norm is the cardinality function ‖βββ‖0 = #( j : β j 6= 0) and

‖βββ‖0 ≤VT , (5)

denotes the cardinality constraint which leads to attain the desired level of sparsity given

by the value VT . In this work, the two novel constraints (sign coherence and significance

constraints) will be combined with the cardinality constraint (5), so that sparsity is also

achieved in addition to a better interpretability.

The paper is structured as follows. In the next section we model the new constraints

to be added to Problem (2) in order to enhance interpretability through mathematical

programming. The numerical experiments are carried out in Section 3, where the es-

timation methods under comparison and the design of experiments are also discussed.

The last section is devoted to concluding remarks and extensions.

2 Mathematical model formulation

In this paper, it is our aim to enhance the interpretability of the outputs by replacing any

estimation procedure in the form (2) by:

min
βββ

f (βββ)

s.t βββ ∈B∩S

(6)

where S will gather the proposed constraints. Tightening an estimation procedure by

adding constraints, i.e., solving (6) instead of (2), has already been considered in the

literature in order to improve the performance of linear regression estimation methods

like (2), see for example Bertsimas and King (2015).

In this section we model the tightening set S by defining constraints that can be added

to a classic (possibly sparse) linear regression estimation method (2), in order to enhance

the interpretability of the outcome as well as improving its sparsity. As commented in

the previous section, the first novel constraint, called sign coherence constraint, imposes

coherence between the signs of the estimated coefficients and the signs of large pairwise

correlations between predictors. The second novel constraint, the so-called significance

constraint, allows only for truly significant features to be considered in the model. The

idea is that the user should feel free to add any of these constraints, when compatible, to

her selected estimation method given by (2), yielding (6).
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2.1 The sign coherence constraint

The presence of correlated variables in the data is demonstrated to lead to undesired

consequences, such as a high variability on the estimated coefficients and the sign in-

consistencies explained in the introduction; see e.g. Bartholomew et al. (2008). As it

was commented, the traditional procedure to avoid these undesired behaviour consists

of removing highly correlated variables. In particular, Bertsimas and King (2015) for-

bids two highly correlated variables to be simultaneously non-zero. Specifically, the

following pairwise correlation constraints are modelled

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη, (7)

where Ωη = {(i, j) : |ρi j| ≥ η} is the set of pairs of features considered to be highly

correlated, and γi, γ j are defined as

γ j =

{

1 if β j 6= 0

0 if β j = 0.
(8)

From now on, the constraint defined by Bertsimas and King (2015) and stated as (7) will

be called correlation constraint.

In contrast to Bertsimas and King (2015), we propose here a less restrictive approach

that allows two highly correlated variables to be in the model at the same time, but

forbids misleading interpretations and misrepresentative coefficients. Our aim is to avoid

sign inconsistencies while allowing the model to include two correlated variables if they

contribute to improve or maintain the prediction quality. Therefore, we propose to model

constraints that avoid the compensation of coefficients for correlated variables. Under

the light of the example illustrated in Figure 1, these are the requirements we aim to

gather when modelling the sign coherence constraint:

1. The coefficients of two features that are moderately or highly positively correlated

must have the same sign.

2. The coefficients of two features that are moderately or highly negatively correlated

must have opposite signs.

In order to model these constraints, we introduce the following binary variables:

ν+j =

{

1 if β j > 0

0 otherwise

ν−j =

{

1 if β j < 0

0 otherwise
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Therefore, the previous requirements 1-2 can be easily formulated as constraints as:

ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α (9)

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α (10)

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α (11)

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α (12)

where Ω+
α and Ω−

α are the sets of pairs of features that are moderately or highly corre-

lated, expressed as Ω+
α = {(i, j) : ρi j ≥ α} and Ω−

α = {(i, j) : ρi j ≤−α}. That is to say,

constraints (9)-(10) mean that, if two variables i, j are highly positively correlated (i.e.

(i, j) ∈ Ω+
α), then we do not allow one of the coefficients to be positive and the other

negative. Similarly, constraints (9)-(10) imply that, if two variables i, j are highly nega-

tively correlated (i.e. (i, j) ∈ Ω−
α ), we forbid their coefficients to be both positive or both

negative.

Note that variables ν+j ,ν
−
j are linked with γ j, defined in Equation (8), as follows:

γ j = ν+j +ν−j ,

and thus the cardinality constraint (5) can be also written as:

N

∑
j=1

(ν+j +ν−j )≤VT .

In order to illustrate the impact of these constraints we compare the path of solutions

depicted in Figure 1 for the lasso applied to the diabetes dataset, against the lasso

tightened with the sign coherence constraints, as depicted in Figure 2. As it can be

observed, the use of constraints (9)-(12) to tighten the feasible region of the lasso might

avoid the sign of a coefficient to vary depending on the level of sparsity required, easing

the interpretation of the impact of the predictors over the response variable.

2.2 The significance constraint

In this section we formulate a novel constraint that helps combatting the negative effects

of shrinkage of the lasso while discarding spurious coefficients. The idea is to allow only

for significant variables to be represented in the model and to improve the sparsity of the

output. Intuitively, large coefficients are identified with the significance of a feature once

the data are normalized. Following this reasoning we propose to establish a threshold of

significance that a feature must be able to exceed to be allowed in the model. We model

the significance constraint as follows:

|β j| ∈ {0}∪ [ǫ,+∞) j = 1, . . . ,N (13)
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Figure 2: Path of solutions of the tightened lasso by the sign coherence constraint for the diabetes database.

where ǫ is called here the significance threshold, to be fixed by the user or to be tuned

(see Section 3.1). In (13), a forbidden region in (0,ǫ) is defined with the aim to avoid

shrinkage and to forbid spurious coefficients in the solution. This constraint was already

used by Carrizosa et al. (2016) to discover potential causalities in multivariate time

series. Note that using the binary variables ν+j and ν−j defined in Section 2.1, constraints

(13) can be expressed in a more manageable form via two sets of linear constraints

β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N
(14)

where M is a large constant. This big M, often appearing when modelling problems

with integer variables, is large enough so it does not exclude reasonable values of the

parameters β j (see, e.g. Camm, Raturi and Tsubakitani, 1990). In order to clarify the

effect of the significance constraint (13), consider the heat map given by Figure 3. The

left panel depicts the values of the estimated coefficients for the lasso, in the first column,

and the lasso with the significance constraint (taking ǫ= 0.3), in the second column, for

the golf2009 database (Winner, 2016). The right panel represents the values of the

estimated coefficients for the OLS and its counterpart tightened with the significance

constraint (taking ǫ= 0.05) for the compact database (Torgo, 2016). Such datasets will

be described with further details in Section 3. The colour represents the sign of the

coefficients β j (blue for negative, red for positive) and the intensity is related to the

magnitude of such coefficients. In Figure 3 it can be observed that adding significance

constraints establishes a clearer cut between zero and non-zero coefficients. Also note
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that the tightened approach is not equivalent to making zero all the coefficients estimated

by the lasso to be smaller in absolute value than our threshold ǫ. For instance, in the left

panel β4, estimated to be 0.143, is enlarged to ǫ = 0.3, while β3 is enlarged to −0.436

despite being estimated by a value of −0.311, which was already larger in absolute value

than ǫ. Finally, it should be noted that the solutions under the significance constraint

lead to an improvement of 10.58% over the out-of-sample mean squared error (MSE

hereafter) of the lasso for the considered database. Moreover, on the right panel we

observe that the tightened OLS shrinks coefficient β14 =−0.024 to zero, while enlarges

coefficient β4 = 0.012 to ǫ= 0.05, despite being smaller in absolute value. Also, adding

the significance constraints yields to an improvement of 1.72% over the out-of-sample

MSE of the OLS.
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Figure 3: Heatmaps representing the coefficients βββ estimated by the lasso (left panel) and the OLS (right

panel) and their respective counterparts tightened by adding significance constraint (13) for the golf2009

and compact datasets.

3 Numerical illustrations

In this section we describe and undertake the numerical experiments performed to com-

pare two benchmark estimation methods in linear regression of the form (2) against their

tightened versions (6) derived from reducing the search of the coefficients βββ ∈B = R
N

to the set B∩ S, where S is defined through some constraints. Specifically, in the next

section we outline the design of the experiments, Section 3.2 shows the results for real

databases, Section 3.3.1 replicates the simulated study in Yu and Liu (2016), while in

Section 3.3.2 the databases are generated following the simulations in Bertsimas and

King (2015).
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3.1 Design of experiments

In order to assess the impact of the novel constraints over the estimated coefficients βββ

and the predictive quality of the solutions, we will analyse the differences in the per-

formance between Problems (2) and (6). As baseline estimation methods (i.e. Problem

(2)), we consider the lasso (Problem (3)) and the OLS (Problem (3) with λ = 0). Their

tightened versions (Problem (6)) consider the same objective functions but reduce the

search space of the coefficients βββ to the so-called tightened regions B∩S.

In our numerical setting, we consider various tightening sets S, whose related prob-

lems, taking form (6), are explicitly formulated in Appendix A. In order to analyse

the effect of the first novel constraint proposed in this paper, the sign coherence con-

straint, we consider the set S1 = {(9)− (12)}. To compare our approach with the re-

cent constraints by Bertsimas and King (2015), the correlation constraint, we will also

test the performance of the set S2 = {(7)}. Both sets will be considered in the first

part of Section 3.2 where the sign coherence constraint is analysed. Then, to clarify

the performance of the new significance constraint, the tightening set S3 = {(14)} will

be considered in the second part of Section 3.2. Finally, we will analyse the global

performance of our novel constraints when the cardinality constraint is also imposed

(that is, S4 = {(5), (9)− (12), (14)}) in comparison to the tightening set of Bertsimas

and King (2015), for which S5 = {(5), (7)}. In these cases we also show the predic-

tive quality and number of non-zero coefficients for the elastic net (Enet hereafter)

(Zou and Hastie, 2005), the SRIG method in Yu and Liu (2016) and the GFlasso in

Kim and Xing (2009). The Enet, which trades off between lasso and ridge regres-

sion, is known to avoid erratic paths of correlated variables in the lasso (Hastie et al.,

2015). In fact, for non-trivial values of the parameters, the Enet problem has a unique

solution, no matter the correlations between the regressors. This shall be addressed

in the last part of Section 3.2 as well as Sections 3.3.1 and 3.3.2. The Enet method

was run using R cran package glmnet, and the SRIG method was run using the R

packages recommended by the authors in Yu and Liu (2016). All the tightened pro-

cedures and the GFlasso were easily coded in the algebraic language AMPL (Fourer,

Gay and Kernighan, 2002), but the latter was solved using Knitro solver. As Problems

(2) and (6) are MIQPs with quadratic convex objective function and linear constraints,

they were solved using CPLEX. For the interested reader, the code is included in Ap-

pendix D of the Supplementary Material. Even though MIQP problems may be hard

to solve, the current solvers already incorporate a plethora of heuristics that turn them

into highly efficient optimizers. For instance, CPLEX incorporates various preprocess-

ing steps whose aim is to reduce the size of the problem and improve its formulation

(Savelsbergh, 1994; Atamurk, Nemhauser and Savelsbergh, 2000). On the other hand,

many other techniques and local search heuristics are implemented and implicitly run

during the process (see, for instance, Danna, Rothberg and LePape, 2005; Fischetti and

Lodi, 2005; Rothberg, 2007). As done in Bertsimas and King (2015), a time limit of 20

seconds was imposed to solve each MIQP for K ≤ N, although this limit was reached
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only for the largest datasets and in most cases cases the optimal solution was attained

in a few seconds. For the case with K > N, a time limit of 40 seconds was imposed

instead.

In order to make a fair comparison against existing procedures, the experiments de-

veloped here closely follow those in Bertsimas and King (2015). First, unless otherwise

specified, the datasets are normalized and divided in train, test and validation sets (50%,

25% and 25% of the data, respectively). All the problems are solved in the training set,

and the solution that minimizes the MSE in the test set is chosen. Two criteria are used

to compare the methods, namely, the MSE and the sparsity. All the MSEs reported in

this paper correspond to the values obtained in the validation sets and are normalized

by dividing by the MSE of the OLS solution; that is to say, when any method attains a

MSE greater than 1 their prediction power is estimated to be worse than that of the OLS,

while for smaller values the accuracy has improved.

The sparsity of the solution of the unconstrained lasso increases as its regularization

parameter λ ∈ R
+ does. The critical values of λ are easily computed using any imple-

mentation of the LAR algorithm in various standard statistical packages. In particular,

in this paper the lasso set of solutions was obtained by using the lars() function of

R-cran package lars (Hastie and Efron, 2013).

For the tightened MIQPs (6), the pairwise correlation considered to generate the sets

Ω+
α and Ω−

α in constraints (9)-(12) is fixed to α = 0.6. Following Bertsimas and King

(2015), the maximum pairwise correlation allowed is η = 0.8; that is to say, the set Ωη

in (7) is defined here as Ωη = {(i, j) : |ρi j| ≥ 0.8}.

The significance parameter ǫ in constraints (13) is tuned by chosing amongst the

ten values {0.05,0.06,0.08,0.1,0.125,0.15,0.175,0.2,0.25,0.3} so as to minimize the

MSE in the test set. The parameter VT controlling the sparsity is chosen sequentially

in {1, . . . ,N}. However, in order to restrict the search only to likely values of VT , a

stopping criterion is imposed: when no more features are added to the model (i.e., when

the constraint (5) becomes inactive), no larger values of VT are considered. On top of

this, to further improve the speed of the tightened procedures, we have restricted the

size of the parameters grids for large instances, as recommended in Tibshirani et al.

(2005). In particular, for large simulated datasets we have required our output to have a

maximum of 25% of non-zeroes over N, the number of predictors.

3.2 Real datasets

In this section we show the results obtained for some real datasets, which are eas-

ily reachable on internet and well referenced in the literature (Bertsimas and King,

2015). Further details about the data sets and their sources are displayed in Table 1. The

columns provide information about the name, number of observations (K), the number

of covariates (N), and data source.
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Table 1: Real data sets specifications and sources.

K N Source

cpu 105 6 Lichman (2016)

yacht 154 6 Lichman (2016)

whitewine 2499 11 Lichman (2016)

redwine 800 11 Lichman (2016)

golf2008 78 6 Winner (2016)

golf2009 73 11 Winner (2016)

compact 4096 21 Torgo (2016)

The median MSE and number of non-zeroes attained by the different estimation

procedures are displayed in Tables 2-4, where the first column of results corresponds to

the normalized MSE and number of non-zero coefficients (NZ), and each row shows the

results of a real dataset. To obtain such results, the databases were randomly divided ten

times in training, test and validation sets.

3.2.1 The effect of the sign coherence constraints

The sign coherence constraints described in Section 2.1 and formulated as (9)-(12) are

claimed to avoid the inconsistencies shown by Figure 1. Now we analyse the effect of

such constraints in the accuracy and sparsity of the obtained solutions. In addition, the

results are compared with those under the correlation constraint (7) by Bertsimas and

King (2015). The first three rows of Table 2 show the results for the untightened OLS,

and the OLS with tightening sets S1 (the novel sign coherence constraint) and S2 (the

correlation constraint of Bertsimas and King (2015)), respectively. Analogously, the re-

maining rows display the performance of the untightened and tightened lasso problems.

Table 2: Predictive quality (MSE) and sparsity degree (NZ) for the baseline methods and the approaches

tightened by the correlation-based constraints.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S1 1.031 5 0.970 4 1.009 9 0.999 10 1.004 5 0.896 7.5 1.014 15

S2 1.042 5 0.996 5 1.007 10 1.000 10 0.998 5 0.971 8 1.016 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S1 1.036 4 0.954 3.5 1.009 9 0.996 10 1 5 0.79 8 1.010 14

S2 1.049 4.5 0.961 4 1.008 10 0.994 8.5 0.986 4 0.966 7 1.013 14

From Table 2 it can be deduced that both constraints related to multicollinearity

yield a similar performance: adding sign coherence constraints slightly improves spar-

sity for yacht and whitewine databases, but may also attain slightly more dense solu-
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tions (golf2008 and the tightened lasso in redwine database). Regarding the predic-

tive quality, the MSEs are quite similar in most cases. An exception is the golf2009

database, where the tightening set S1 improves the predictive power of the tightening

set S2 in a 7.5% for the OLS and a 17.6% for the lasso. We conclude that, not only

the sign coherence constraint improves the interpretability of the results by avoiding the

inconsistencies described in Section 1, but also it does not damage the level of sparsity

and predictive power. Indeed, when comparing the novel coherence constraints (9)-(12)

against the correlation constraint (7), they give overall the same accuracy and sparsity.

We should remark that, in addition, our constraints yield more stable results than the

correlation constraint when used in the lasso model. To illustrate this, consider Figure

4, which displays the paths of solutions attained for the baseline and tightened lasso in

random shuffles of the golf2009 and yacht databases. The path of solutions attained

by the baseline lasso on the golf2009 database (top left panel) shows that coefficients

β11 and β6 grow quickly in opposite directions for small values of λ. These coeffi-

cients are inflated due to the high pairwise correlation (0.91) between these variables.

This phenomenon disappears when we strictly forbid coefficients β11 and β6 to be si-

multaneously non-zero (central left panel). However, coefficients β3, β4 and β6, which

are considerably less correlated (ρ3,4 = 0.05, ρ3,6 = 0.77 and ρ4,6 = −0.39), still show

this behaviour. Moreover, coefficient β10, which was significant even for large values of

the penalty λ, suddenly disappears as λ approaches zero. On the contrary, sign coher-

ence constraints (bottom left panel) seem to avoid the inflation of coefficients β3, β4,

β6 and β11, also leading to smoother paths. A similar behaviour is observed for yacht

database, where coefficients β2, β3, β4 and β5 explode for λ = 0 in the baseline lasso

(right top panel). Since the pairwise correlations between these variables do not exceed

the threshold 0.8 imposed by Bertsimas and King (2015) (indeed, the largest correlation

coefficient is ρ3,5 = 0.63), they are not explicitly forbidden simultaneously in the model,

thus yielding the same solution path as the lasso when adding the correlation constraint

(central right panel). As sign coherence constraints are less restrictive, they allow highly

correlated variables to simultaneously appear in the model. This may lead to alternative

solutions that may improve the stability of the estimated parameters βββ in the presence

of highly correlated variables. In fact, the bottom right panel represents a considerably

stable path of solutions along λ, which clearly identify the more significant feature for

prediction.

As mentioned in the introduction, our constraints differ from most of the approaches

previously considered in the literature: we do no explicitly forbid two highly correlated

variables in the model (as recommended in Chatterjee and Hadi (2015); Bertsimas and

King (2015)), nor encourage groups of correlated variables to be altogether in or out of

the model (Yu and Liu, 2016; Kim and Xing, 2009). An example of this is illustrated

on Figure 5, representing the estimated βββ in the 10 shuffles of golf2009 database. The

βββ have been estimated by the classic OLS (first row), the lasso (second row), and two

tightened OLS approaches: adding the correlation constraint (7) of Bertsimas and King

(2015) (tightening set S2) or adding the sign coherence constraints (9)-(12) (tightening
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Figure 4: Paths of solutions of the lasso (top panels), the lasso with the correlation constraint (mid panels)

and sign coherence constraints (bottom panels) in shuffle 9 of the Golf2009 database (left panels) and

shuffle 7 of the Yacht database (right panels).
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set S1). In this heatmap, features X6 and X10, with correlation 0.91, do not appear si-

multaneously in the same shuffle when adding the correlation constraints. Nonetheless,

their coefficients are non-zero simultaneously in various shuffles when considering sign

coherence constraints.
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Figure 5: Heatmap representing the coefficients βi estimated by OLS, lasso and OLS tightened by adding

correlation constraints (tightening set S2), or sign coherence constraints (tightening set S1) for golf2009

database.

The above results were obtained for fixed values of η and α, which were set to 0.6

and 0.8, respectively. These numerical examples followed the experimental design in

Bertsimas and King (2015), who fixed the correlation threshold α. However, in Ap-

pendix B we explore the sensitivity of the tightening procedures to changes in η and

α. We conclude that, in general, the calibration of these parameters seem to yield less

sparse solutions with a similar MSE. As a consequence the results shown in our numer-

ical experiments disregard the calibration of the correlation thresholds.

3.2.2 The effect of the significance constraint

Now we aim to study the impact of adding significance constraints (13) to the OLS

and the lasso. This was briefly analysed in Section 2.2, where heat maps representing

the estimated coefficients βββ were represented in Figure 3. We observed that imposing

a threshold ǫ to the estimates may lead to more sparse solutions by avoiding spurious



Emilio Carrizosa, Alba V. Olivares-Nadal and Pepa Ramı́rez-Cobo 83

coefficients and discarding unimportant variables. The first two rows of Table 3 display

the results for the untightened OLS and its counterpart tightened with S3 (significance

constraint). Analogously, the last two rows display the results for the unrestricted and

tightened lasso. In this table, we observe that tightening the feasible region of the OLS

and the lasso by using the set S3 always improves the sparsity of the output while usu-

ally attaining a competitive predictive quality. For instance, the significance constraints

improves the MSE of the OLS and the lasso in a 4% and a 2.6% for yacht database,

respectively, while reducing in 3.5 and 1.5 the number of non-zeroes. However, an ex-

ception is found in golf2009 dataset, where the novel constraint worsens the accuracy

of the OLS and the lasso, although yielding 3 more zeroes in both cases.

Table 3: Predictive quality (MSE) and sparsity degree (NZ) for the baseline methods and the approach

tightened by the significance constraint.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S3 0.978 4.5 0.960 2.5 0.999 8 1.000 7.5 1.007 5 1.205 8 1.002 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S3 0.989 4 0.934 1 0.999 8 1.001 7 0.987 3 0.936 6.5 1.003 13
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Figure 6: Improvements over the MSE of the lasso when tightened via the significance constraint.

Since it is not straightforward to choose a grid of thresholds ǫ to calibrate from, we

will try to gain some intuition by studying the improvement of the predictive quality

when adding the significance constraints for each value of ǫ considered. To this aim,

Figure 6 shows the median improvement on the lasso MSE for each value of the penalty

λ and each threshold in the proposed grid for whitewine (left panel) and compact (right

panel) database.
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From Figure 6 we observe that the behaviour for the largest ǫ (0.3, 0.25) can be more

effective specially for the larges values of λ. That is to say, a large ǫmay help combating

the strong shrinkage of the lasso when highly sparse solutions are sought. Still large but

more conservative values of the threshold (ǫ= 0.2,0.175,0.15) seem to also improve the

MSE of the lasso with large λ, also providing less extreme behaviours than the choices

ǫ= 0.3,0.25. Finally, the smallest values of the threshold (ǫ = 0.06,0.05) may slightly

improve the lasso with small λ and the OLS. In conclusion, there is no straightforward

a priori choice for the parameter ǫ, which should be calibrated. Nevertheless, if the user

is seeking a highly sparse solution (i.e., the user is choosing a high penalty λ) it seems

advisable to choose larger values for ǫ in order to combat the shrinkage more effectively.

On the other hand, when estimating via OLS (or lasso with small values of λ) the user

might want to focus on a grid with a majority of small values of ǫ.

3.2.3 Global performance

Finally, we show in Table 4 the results when our novel constraints are jointly considered

in combination to the cardinality constraint, or equivalently, when the set S4 (cardinal-

ity + sign coherence + significance constraints) is used to tighten the OLS or lasso ap-

proaches. For comparison reasons, the table also shows the results under the tightening

set S5 (cardinality + correlation constraints) proposed in Bertsimas and King (2015).

Table 4 also displays the predictive quality and number of non-zero coefficients for the

Enet, the SRIG method in Yu and Liu (2016) and the GFlasso method in Kim and Xing

(2009).

Table 4: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the real datasets.

Method
Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S4 0.990 4 0.934 1 1.011 6 1.002 6 0.999 3 0.963 4 1.012 9

S5 1.002 4 0.934 1 1.008 8 1.000 6 1.006 3 1.024 5 1.016 11

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S4 0.993 4 0.934 1 1.013 6 0.998 6 0.982 3 0.971 4.5 1.013 9

S5 1.049 4 0.934 1 1.008 7.5 0.995 6 0.988 3 1.045 4 1.015 11.5

SRIG 0.988 6 0.942 2 1.000 11 0.999 11 0.983 6 1.016 11 0.999 21

Enet 0.917 5.5 0.948 2 1.000 11 0.998 11 0.994 4 0.805 9.5 1.000 21

GFlasso 0.972 6 0.959 2.5 1.000 11 0.996 11 1.000 4 0.866 9.5 1.001 20

First, we analyse the performance of the baseline estimation procedures (OLS and

lasso) against their tightened counterparts. We can conclude that reducing the search

space of the coefficients βββ by intersecting with either S4 or S5 always improves the

sparsity of the solutions. Moreover, the predictive quality is usually similar to that of

the OLS and the lasso. In particular, for yacht database, both tightened approaches
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improve the MSE of the OLS and the lasso estimates by a 6.6% and a 2.6%, respectively.

However, these tightened procedures worsens the accuracy of the lasso in the golf2009

database.

Second, we compare the performance of the two tightening sets. From the table

it can be observed that they deliver a similar accuracy-sparsity trade-off for 3 out of

the 7 real datasets (yacht, redwine, golf2008). For the remaining databases, the

approaches attain different trade-offs between sparsity and predictive quality. Indeed,

the novel set S4 maintains the sparsity attained by the set S5 og Bertsimas and King

(2015) on the cpu database, while slightly improving the MSE in a 1.2% and a 5.3%

for the tightened OLS and lasso, respectively. In contrast, the proposed tightening set

provides more sparse solutions, with a similar predictive quality for whitewine and

compact datasets. Finally, S4 improves the MSE of the OLS and the lasso in a 6% and

7.1% in golf2009 database, but it provides a slightly more dense solution for the lasso.

Note that the best accuracy for the lasso in this database was attained when adding

exclusively sign coherence constraints (see Table 2), although the solution provided was

more dense. Third, both the SRIG and GFlasso are clearly outperformed by the tightened

approaches. On top of this, for the real datasets considered here there is no guarantee that

the necessary assumptions to preserve the theoretical properties of the SRIG are fulfilled.

In order to compare the performance of our approach against these methods under a

more favourable scenario for the later, in the next section we replicate the simulation

study of Yu and Liu (2016), hence assuring the non-violation of the conditions for the

SRIG method.

3.3 Simulations

In the previous section, the behaviour of the novel constraints for the case of real datasets

with a small number of predictors was analysed. In this section we aim to examine the

sensitivity of the tightened procedures under various settings. First, we will simulate

data as in Yu and Liu (2016) to understand the behaviour of the methodology under

different correlation structures and for different sizes of the training sample. Second, we

aim to test the proposed methodology for larger datasets and for different correlations

intensities. To do so we simulate data as in Bertsimas and King (2015).

3.3.1 Sensitivity to correlation structure and training sample size

In this section we aim to test the proposed methodology for datasets simulated following

the three examples and training sizes described in Yu and Liu (2016). Ten instances have

been generated for each example and for training and testing sizes of 40, 80 and 120.

For both Examples 1 and 2, βi = 3 for i = 1, ..,15, and βi = 0 for i = 16, . . . ,100. In

Example 1, however, the predictors were generated as follows:

X i = Z j +0.4ai
X , Z j ∼ N(0,1), ai

X ∼ N(0,1)
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for 5( j− 1)+ 1 ≤ i ≤ 5 j and j = 1,2,3. For i > 15, X i ∼ N(0,1). In Example 2, the

k-th vector of observations
(

X1
k , . . . ,X

N
k

)

was generated following a multivariate normal

distribution with zero mean and covariance matrix Σ = (σi j), where σi j = 0.5|i− j|. Anal-

ogously, in Example 3 the vector of observations was also drawn from a multivariate

normal distribution with zero mean but with covariance matrix Σ = (B+ψI)−1, where

bi j = 0 for i = j, and bi j = 0.5δi j, δi j ∼ Be(0.05) otherwise. Parameter ψ is fixed so

that the condition number of Σ−1 equals N. The real coefficients are βββ = Σ−1Σxy, where

Σxy is the cross-covariance vector whose elements equal 10 for the four predictors with

the largest degrees and 0 otherwise. These three examples have different structures of

correlation and, as it will be seen later, this may influence on the performance of the

approaches making use of constraints taking into account pairwise correlations. As an

illustration, Figure 8 of the Appendix C of the Supplementary Material displays the pairs

of variables appearing in the correlation constraints of Bertsimas and King (2015) and

our sign coherence constraints.

As done in Bertsimas and King (2015), the grid of values of the parameter λ to be

tuned for the tightened MIQP with lasso objective function is logarithmically generated

in the interval (0,λmax], where λmax is the penalty provided by the lars for which only

one coefficient is non-zero. Analogously to the real datasets results, Table 5 shows the

median MSE and number of non-zeroes (NZ). In particular, for each example (rows) and

training sizes (columns), each row shows the results obtained for an estimation method,

namely the OLS, the lasso, and their tightened counterparts, which take the form of

Problem (6) with tightening sets S4 (cardinality + sign coherence + significance con-

straints) and S5 (cardinality + correlation constraints). The last rows for each exam-

ple display the results for the methods dealing with correlated variables: the Enet, the

SRIG, and the GFlasso. To make it easier to discuss these results, in Figure 7 we have

represented the MSE against the number of nonzeroes for the three simulated examples

of Table 5. The different estimation methods have been assigned different colours, the

solid items representing the approaches making use of our proposed tightening set. The

diversity of training samples have been represented by unalike symbols.

In the top panel of Figure 7 we can observe that, in Example 1, the MIQPs (i.e., the

approaches proposed in Bertsimas and King (2015) and in this paper) tend to attain more

sparse solutions than the continuous optimization methods (i.e., the lasso, SRIG and

GFlasso). As it can be observed in Figure 8 in the Appendix, the true generating model

contains predictors that hold a high pairwise correlation and, therefore, are forbidden

to appear simultaneously in the outputs yielded by the tightening set of Bertsimas and

King (2015). As a consequence, the approaches making use of this set S5 are not able

to recover the original graph, hence delivering more sparse solutions but with worse

predictive quality than our tightening set. In constrast, the sign coherence constraints

flexibility allows the simultaneous presence of all the variables in the generating model.

As a consequence, S4 yields outputs with similar performance to that of the SRIG, that

is the best approach amongst those based on continuous optimization models.
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Figure 7: Median MSE and NZ for each method in the simulated datasets of Yu and Liu (2016).

In the bottom panels of Figure 7 we observe that the MIQP approaches are clustered

together. For both Examples 2 and 3 it is evident that the methods based on integer

optimization improve the sparsity of the outputs with no damage to the predictive qual-

ity. More specifically, in Example 3 all the methods based on continuous optimization

conform a unique cluster with higher density and similar or slightly worse MSE than

the MIQP approaches. Nonetheless, in Example 2 the SRIG and the lasso attain more

sparse solutions than the rest of continuous optimization approaches, yet still yielding

more non-zeroes than the tightened procedures. In this case, all the approaches attain a

similar accuracy.



88 Integer constraints for enhancing interpretability in linear regression

Table 5: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with N = 100.

Ntrain= 40 Ntrain= 80 Ntrain= 120

MSE NZ MSE NZ MSE NZ

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 0.689 7.5 0.240 7.5 0.081 12.0

S5 1.138 3.5 0.767 3.0 0.579 3.0

lasso 0.358 24.0 0.131 27.5 0.043 31.0

S4 0.306 14.0 0.154 17.0 0.062 20.0

S5 1.231 4.5 0.731 4.0 0.564 3.5

SRIG 0.082 15.0 0.050 15.0 0.082 15.0

Enet 0.351 27.0 0.111 32.0 0.351 27.0

Example 1

GFlasso 0.188 26.0 0.064 31.5 0.188 26.0

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 1.380 5.0 0.197 6.5 0.133 9.0

S5 1.560 4.0 0.206 6.0 0.142 9.0

lasso 0.756 27.5 0.096 30.0 0.080 31.5

S4 1.160 7.0 0.115 12.0 0.105 15.5

S5 0.841 18.5 0.115 15.5 0.102 15.5

SRIG 0.913 9.5 0.149 28.5 0.111 28.5

Enet 0.862 53.0 0.157 53.0 0.125 50.0

Example 2

GFlasso 0.638 38.5 0.053 80.0 0.038 53.5

OLS 1.000 100.0 1.000 100.0 1.000 100.0

S4 0.412 5.0 0.101 13.5 0.106 15.0

S5 0.424 2.0 0.110 8.5 0.101 11.5

lasso 0.494 18.5 0.135 44.0 0.151 47.5

S4 0.391 7.5 0.083 18.0 0.097 14.5

S5 0.325 7.5 0.078 13.5 0.097 16.5

SRIG 0.537 34.5 0.110 43.5 0.185 51.0

Enet 0.525 28.0 0.148 45.5 0.165 49.5

Example 3

GFlasso 0.494 23.5 0.135 44.0 0.151 51.0

3.3.2 Scalability and sensitivity to correlation intensity

In this section we aim to test the proposed methodology for larger datasets with diverse

correlation intensities. As the overall design of experiments, the synthetic generation of

the data is similar to that of Bertsimas and King (2015). The k-th vector of observations
(

X1
k , . . . ,X

N
k

)

was generated following a multivariate normal distribution with zero mean

and covariance matrix Σ = (σi j), where σi j = ρ|i− j|. In particular, we chose ρ = −0.9
and ρ=−0.5 so as to test the performance of the constraints under highly and moderate

correlations. The regression model is taken in small dimension, but with quite a number

of irrelevant covariates. More precisely, the number of features was set to 500, only 10 of
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which corresponding to explanatory variables, the remaining 490 being noise. For each

value of ρ, 10 instances were generated as follows. The βi were uniformly generated

in the interval (−2,2) for i such that i modulus N/10 = 0. The response was generated

following (1), with β0 = 0 and the error terms i.i.d. following a normal distribution with

zero mean and variance as in Bertsimas and King (2015). As done in Section 3.3.1, the

sequence of λ has been logarithmically generated. Table 6 shows the median MSE and

number of non-zeroes (NZ) of the solutions for the OLS, the lasso and their tightened

counterparts, as well as the SRIG, Enet and GFlasso.

Table 6: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with N = 500.

r = 0 5– . r = – 0 9.

OLS 1.000 500 1.000 500

S4 0.745 6 0.732 6

S5 0.849 6 1.474 4

lasso 0.535 80.5 0.533 183

S4 0.526 10.5 0.528 11

S5 0.501 13 0.807 19

SRIG 0.630 34 0.792 102

Enet 0.535 50 0.534 51.5

GFlasso 0.537 70.5 0.533 54.5

MSE NZMSE NZ

Note that, for the simulated data with moderately correlated features (ρ = −0.5),

the correlation constraints (7) and the sign coherence constraints (9)-(12) are inactive,

since the highest pairwise correlation in absolute value is roughly 0.5. In this case, both

sets of tightening constraints help to considerably improve the sparsity of the base-

line estimation procedures. Indeed, the density of the OLS is drastically reduced by

increasing in 494 the zeroes of the output, while its predictive quality is also substan-

tially improved. However, the novel tightening set S4 provides an accuracy 12.2% better

than the attained with the set S5 proposed in Bertsimas and King (2015). On the other

hand, the benchmark sparse regression method, the lasso, attains a median of 80.5 non-

zeroes, while its tightening counterparts produce much more sparse solutions with better

MSEs. Although the predictive quality of the outputs of the tightened procedure with S5

is slightly better than that obtained with S4, this comes at the price of yielding more

dense solutions. More generally, the methods based on MIQP solvers clearly outper-

form the approaches relying on continuous optimization techniques: the former manage

to considerably reduce the sparsity of the later with a slightly better predictive quality.

Amongst the later approaches, the GFlasso is outperformed by the Enet which, with a

similar accuracy, provides a much more sparse solution. Nonetheless, the most sparse

of these methods is the SRIG, although yielding the worst predictive quality.
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Table 7: Predictive quality (MSE) and sparsity degree (NZ) for the baseline estimation methods (OLS,

lasso, SRIG, Enet and GFlasso), and OLS and lasso tightened with S4 (cardinality + novel constraints) or

S5 (cardinality + correlation constraint), for the simulated datasets with ρ=−0.9 and N = 50,500,1000.

N = 50 N 500= N 1000=

MSE NZ MSE NZ MSE NZ

OLS 1.000 50 1.000 500 1.000 1000

S4 0.662 8 0.732 6 1.035 5

S5 0.634 8 1.474 4 1.310 5.5

lasso 0.671 24.5 0.533 183 0.555 56

S4 0.637 8.5 0.528 11 0.904 8

S5 0.595 19 0.807 19 0.406 10

SRIG 0.127 42 0.792 102 0.835 103.5

Enet 0.108 26 0.534 51.5 0.538 49.5

GFlasso 0.693 41 0.533 54.5 0.615 359

The simulated instances with highly correlated features, ρ = −0.9, show a simi-

lar behaviour. Nevertheless, the lasso provides significantly more dense outputs in this

case, with a median of 183 non-zeroes. The tightening set S5 proposed in Bertsimas and

King (2015) worsens its predictive quality although improving substantially its sparsity.

In contrast, the novel tightening set S4 attains around eight more zeroes than the later

while maintaining the lasso’s accuracy. Regarding the OLS, both tightened estimation

methods reduce drastically the density of the solutions, although the S4 obtains around

two more non-zero coefficients than the tightening set S5. However, the price paid for

two extra non-zeroes is shown in the accuracy of the solution: while adding cardinality,

sign coherence and significance constraints improves the MSE of the OLS in a 26.8%,

adding cardinality and correlation constraints instead worsens the accuracy in 47.4%.

Analysing the results for the continuous optimization based methods, we observe that

the best performance is yielded by the Enet and GFlasso which, with a similar MSE,

significantly enhance the sparsity of the classic lasso. Nonetheless, when tightened with

S4, the later attains outputs with comparable predictive quality and many more zero

coefficients (around 40 more).

In order to analyse the scalability of our methodology we have also simulated data as

in Bertsimas and King (2015) with 50 and 1000 variables, and a maximum correlation

of 0.9. For the later, the MIQP to be solved would have 3001 variables and more than

2000 constraints. As the size of the problem is considerably larger, we have allowed for

a time limit of 40 seconds in this case, which was also the time limit considered for high

dimensional data where N > K. The results are collected in Table 7. As it can be ob-

served, MIQP approaches attain solutions that are considerably more sparse than their

continuous counterparts while still delivering a good predictive quality. In particular,

SRIG delivers the most dense outputs from the sparse continuous methods, while the

GFlasso is outperformed both in terms of accuracy and sparsity. Regarding the MIQP,
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they attain different accuracy-sparsity trade-offs. Although the proposed constraints at-

tain better accuracy when combined with the OLS objective, this is not true when the

regularization penalty λ is positive. Nonetheless, in this case the tightening set S4 yields

more sparse outputs than S5.

Summarizing, tightening the search space of the OLS and the lasso provides consid-

erably more sparse solutions, although the sign coherence and significance constraints

yield a better accuracy-sparsity trade-off than the correlation constraint. Indeed, the later

can substantially worsen the predictive quality of the baseline methods in order to reduce

the density of the outputs, while the former entails a more competitive MSE.

4 Concluding remarks

The aim of this paper is to enhance the interpretability in a regression model without

worsening its predictive quality. We assume we have a baseline regression estimation

procedure based on solving an optimization problem (e.g. OLS or lasso), and then the

underlying optimization problems are modified by adding new constraints to those defin-

ing the search space. These constraints avoid misleading estimators that may be obtained

in the presence of highly correlated variables and detect the most important features for

the prediction.

In order to assess the impact of adding the two novel constraints over various estima-

tion procedures, in our numerical experiments we consider the OLS and the lasso. The

search space of βββ is reduced in these methods by using the tightening set composed by

the sign coherence constraints (9)-(12) and/or the significance constraints (14), possibly

in combination with the cardinality constraint (5). The first constraint forces the sign of

the coefficients to be coherent with the sign of large and moderately large pairwise corre-

lations between features, while the second avoids spurious coefficients and combats the

shrinkage of regularized regression. We compare the performance of our tightening set,

including all the proposed constraints, with the recent tightening set by Bertsimas and

King (2015), which also defines a MIQP and includes the cardinality constraint (5) and

the correlation constraint (7) which explicitly forbids two highly correlated variables to

be simultaneously in the regression model. These methods are compared against other

approaches also dealing with correlated variables but based on continuous optimiza-

tion techniques: the Enet (Zou and Hastie, 2005), the SRIG (Yu and Liu, 2016), and

the GFlasso (Kim and Xing, 2009). The results show that the novel constraints yield

tractable optimization problems, solvable in short time by standard solvers, and may

enhance the interpretability while often improving or maintaining the predictive quality

and level of sparsity. More specifically, the MIQP approaches attain a different trade

off between sparsity and predictive quality than the methods based on continuous op-

timization, usually yielding more sparse solution with similar or better MSE. Amongst

the former methods, the novel constraints tend to improve the predictive quality of the

outputs obtained with the tightening set proposed in Bertsimas and King (2015).
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Although we have proposed some heuristics to further improve the speed of the

tightened procedures, such as reducing the grid of parameters for large datasets, in the

future we aim to develop tailored heuristics that improve the computational times of the

MIQPs when they particularly model linear regression problems.
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A Mathematical formulation of the methods under comparison

The optimization problems that are solved in the numerical study take the form of Prob-

lem (6), whose objective function is that of the lasso or of OLS (i.e., the objective func-

tion in Problem (3), where λ= 0 in the case of the latter). The tightening sets are denoted

as Sm, m= 1, ..,5, and were defined in Section 3.1. For the sake of comprehension, these

problems will be explicitly stated now.

A.1 Lasso regression problem with tightening set S1S1S1

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t



























ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(15)

A.2 Lasso regression problem with tightening set S2S2S2

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t

{

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη

γ j ∈ {0,1} ∀ j = 1, . . . ,N

(16)

A.3 Lasso regression problem with tightening set S3S3S3

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t







β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(17)



Emilio Carrizosa, Alba V. Olivares-Nadal and Pepa Ramı́rez-Cobo 95

A.4 Lasso regression problem with tightening set S4S4S4

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t































































N

∑
j=1

(ν+j +ν−j )≤VT

β j ≥ ǫν+j −ν−j M ∀ j = 1, . . . ,N

β j ≤−ǫν−j +ν+j M ∀ j = 1, . . . ,N

ν+i +ν−j ≤ 1 ∀(i, j) ∈ Ω+
α

ν−i +ν+j ≤ 1 ∀(i, j) ∈ Ω+
α

ν+i +ν+j ≤ 1 ∀(i, j) ∈ Ω−
α

ν−i +ν−j ≤ 1 ∀(i, j) ∈ Ω−
α

ν+j ,ν
−
j ∈ {0,1} ∀ j = 1, . . . ,N

(18)

A.5 Lasso regression problem with tightening set S5S5S5

min
βββ

‖y−β0 −βββX‖2
2 +λ‖βββ‖1

s.t



















N

∑
j=1

γ j ≤VT

γi +γ j ≤ 1 ∀(i, j) ∈ Ωη

γ j ∈ {0,1} ∀ j = 1, . . . ,N

(19)

B Calibration of correlation thresholds

In this section we calibrate the correlation thresholds η and α in the grid

{0.2,0.25,0.3,0.35,0.4,0.45,0,5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9}. Table 8 reports

the predictive quality and the number of non-zero coefficients attained by calibrating

these parameters. In comparison to results in Table 2, attained for fixed η and α, the

calibrateD methods yield more dense outputs with a similar accuracy.
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Table 8: Predictive quality (MSE) and sparsity (NZ) for the approaches tightened with the correlation-based

constraints when parameters η and α are calibrated.

Cpu Yacht Whitewine Redwine Golf2008 Golf2009 Compact

MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ MSE NZ

OLS 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S1 1.000 6 1.000 6 1.000 11 1.000 11 1.000 6 1.000 11 1.000 21

S2 1.038 5 0.987 5 1.000 10 0.999 7 1.005 3.5 0.889 8 1.016 15

lasso 1.000 5 0.959 2.5 1.000 10.5 0.997 9.5 1.000 4 0.798 9.5 1.000 20.5

S1 1.000 6 1.000 6 1.000 11 0.999 11 0.999 6 0.871 9.5 1.000 21

S2 1.042 5 0.969 5 1.000 10 1.000 8 0.998 3.5 0.812 7.5 1.015 15

C Correlated variables in simulated data with N = 100N = 100N = 100

In order to better understand the results of the tightened procedures displayed in Table

5 and Figure 7, in Figure 8 we have represented heatmaps that indicate whether two

variables are highly correlated (|ρ| ≥ 0.8) or moderately correlated (|ρ| ≥ 0.6) for a

random instance of each example of simulated data in Section 3.3.1. Orange colour

indicates that the correlation constraint (7) is included in the tightening set S5 and also

that sign coherence constraints (9)-(12) are added to the tightening set S4. Green colour

stands only for the presence of sign coherence constraints (9)-(12) in S4. Left panels

represent the correlations amongst all features, while right panels show the correlations

only amongst the predictors truly appearing in the generating model (i.e. βi 6= 0). As it

can be observed, some features appearing in the generating model of Example 1 have a

correlation larger than 0.8 in absolute value, and therefore they are forbidden to appear

together in the output model of S5.
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Figure 8: Features exceeding a pairwise correlation of 0.8 in absolute value (orange), hence appearing

in the correlation constraint (7) and also sign coherence constraints (9)-(12), and features exceeding a

pairwise correlation of 0.6 in absolute value (green), appearing solely in the sign coherence constraints.
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D AMPL code

#DATA PARAMETERS

param N; #Number of predictors

param K; #Number of observations

#SETS OF INDICES

set Nvar:=1..N;

set Nobs:=1..K;

#THE MATRIX OF DATA

param X {i in Nobs,j in 1..(N+1)}; # Kx(N+1) matrix of data

# Includes response variable in position N+1

#PARAMETERS OF THE METHODS

param lambda; # Lasso penalty

param NZ; #Upper-bound on the total number of non-zeroes

param eps; #Significance threshold

param M default 100; #Upper bound for the coefficients beta

#SETS OF HIGHLY/MODERATELY CORRELATED VARIABLES

set conjcorrpos dimen 2; # Positively correlated features

set conjcorrneg dimen 2; # Negatively correlated features

#VARIABLES

var c ; # Intercept

var beta {j in Nvar}; # Slopes

var nupos {j in Nvar}, binary;

var nuneg {j in Nvar}, binary;

var v {j in Nvar} >=0 ; # Auxiliar variables to express the absolute value

#OBJECTIVE FUNCTION

minimize fun: (1/N)*sum{ i in Nobs} (X [i,p+1] -c-sum{ j in Nvar} (beta[j]*X[i,j]))̂ 2

+(1/N)*lambda*sum{ j in Nvar} v[j];

#CONSTRAINTS

#SPARSITY CONSTRAINT

subject to sparsity: sum{j in Nvar} (nuneg[j]+nupos[j])<=NZ;

#SIGNIFICANCE CONSTRAINTS

subject to significancepos {j in Nvar}: beta[j]>=eps*nupos[j]-nuneg[j]*M;

subject to significanceneg {j in Nvar}: beta[j]<=-eps*nuneg[j]+nupos[j]*M;

#SIGN COHERENCE CONSTRAINTS

subject to coherencepos1 {(j,r) in conjcorrneg}: nupos[j]+nupos[r]<=1;

subject to coherencepos2 {(j,r) in conjcorrneg}: nuneg[j]+nuneg[r]<=1;

subject to coherenceneg1 {(j,r) in conjcorrpos}: nupos[j]+nuneg[r]<=1;

subject to coherenceneg2 {(j,r) in conjcorrpos}: nuneg[j]+nupos[r]<=1;

#AUXILIAR CONSTRAINTS

subject to abs1 {j in Nvar}: v[j]>=beta[j];

subject to abs2 {j in Nvar}: v[j]>=-beta[j];

subject to sumnusj {j in Nvar}: nuneg[j]+nupos[j]<=1;


