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Small area estimation of additive parameters

under unit-level generalized linear mixed models

Tomáš Hobza1, Yolanda Marhuenda2 and Domingo Morales2

Abstract

Average incomes and poverty proportions are additive parameters obtained as averages of a

given function of an income variable. As the variable income has an asymmetric distribution, it

is not properly modelled via normal distributions. When dealing with this type of variable, a first

option is to apply transformations that approximate normality. A second option is to use non-

symmetric distributions from the exponential family. This paper proposes unit-level generalized

linear mixed models for modelling asymmetric positive variables and for deriving three types of

predictors of small area additive parameters, called empirical best, marginal and plug-in. The pa-

rameters of the introduced model are estimated by applying the maximum likelihood method to the

Laplace approximation of the likelihood. The mean squared errors of the predictors are estimated

by parametric bootstrap. The introduced methodology is applied and illustrated under unit-level

gamma mixed models. Some simulation experiments are carried out to study the behaviour of

the fitting algorithm, the small area predictors and the bootstrap estimator of the mean squared

errors. By using data of the Spanish living condition survey of 2013, an application to the estima-

tion of average incomes and poverty proportions in counties of the region of Valencia is given.

MSC: 62J12 Generalized linear models; 62P25 Applications to social sciences; 62D05 Sampling

theory, sample surveys.

Keywords: Average income, poverty proportion, generalized linear mixed models, empirical best

predictor, mean squared error, bootstrap.

1 Introduction

Many of the socioeconomic indicators published by statistical offices are additive pa-

rameters. These parameters are the sums of the transformed values that an objective vari-

able takes in the population units and its definition depends on the selected variable and

transformation. This paper deals with the small area estimation (SAE) of additive pa-

rameters, with particularizations to average incomes and poverty proportions. The prob-

lems of SAE appear when the sample sizes are small in the target population subsets,
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4 Small area estimation of additive parameters under unit-level generalized linear mixed models

called small areas or domains, so that the direct estimators are not reliable. A domain

direct estimator is obtained by using only the domain data. The low amount of data

can be overcome by using statistical models that introduce additional information via

auxiliary variables, data from other domains and variance-covariance structures. Model-

based predictors of domain parameters are generally more efficient than direct estima-

tors. See the monograph of Rao and Molina (2015) for an introduction to SAE, linear

mixed models (LMM) and related issues.

Average incomes and some income-based poverty indicators are sums of transformed

individual incomes. Some SAE methods based on unit-level models have been proposed

in the literature for this type of parameters. Elbers, Lanjouw and Lanjouw (2003) intro-

duced estimators based on the predictions of a fitted marginal nested error regression

(NER) model. Molina and Rao (2010) proposed empirical best predictors (EBP) by

employing the predictions of a NER model conditioned to the observed sample. This

approach was extended to two-fold NER models by Marhuenda et al. (2017). Hobza

and Morales (2013) derived predictors of means of household normalized net annual

incomes under random regression coefficient models. Molina, Nandram and Rao (2015)

proposed a hierarchical Bayes approach and Guadarrama, Molina and Rao (2014) com-

pared several poverty mapping methods based on unit level models. Hobza and Morales

(2016), Hobza, Morales and Santamarı́a (2018) derived EBPs based on unit-level logit

mixed models, Tzavidis et al. (2008), Chambers, Salvati and Tzavidis (2012, 2016) in-

troduced predictors based on M-quantile regression models. Karlberg (2014) proposed

log-transformation mixed small area prediction models incorporating a logistic compo-

nent for skewed data in the presence of zeroes. Dreassi, Petrucci and Rocco (2014), Fab-

rizi, Ferrante and Trivisano (2017) and Moura, Silva and Neves (2017) gave hierarchical

Bayes procedures for skewed survey data. By using temporal and spatio-temporal area-

level models, Esteban et al. (2012a, 2012b), Marhuenda, Molina and Morales (2013)

and Morales, Pagliarella and Salvatore (2015) derived also model-based predictors of

poverty indicators. Boubeta, Lombardı́a and Morales (2016, 2017) introduced empirical

best predictors (EBP) of poverty proportions based on Poisson mixed models. Further

references can be found in Pratesi (2016). A common feature of the above cited refer-

ences is the use of predictors based on generalized linear mixed models (GLMM).

This paper extends the EBP methodology of Molina and Rao (2010) by introducing

predictors of additive parameters based on unit-level GLMMs. The introduced method-

ology is applied to the prediction of small area average incomes and poverty indica-

tors under unit-level gamma mixed models (GMM). The GLMMs have random effects

taking into account the between-domains variability that is not explained by the auxil-

iary variables. The random effects are usually assumed to be normally distributed. The

maximum likelihood (ML) estimation of GLMM parameters have some computational

difficulties because the likelihood may involve high-dimensional integrals which cannot

be evaluated analytically. For calculating the ML estimators of model parameters, this

paper maximizes the Laplace approximation to the log-likelihood.
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The paper introduces EBPs for estimating domain additive parameters. The pro-

posed EBPs are based on unit-level GLMMs. Two more predictors, called plug-in and

marginal, are also considered and empirically studied in a simulation experiment.

The mean squared error (MSE), also called prediction variance in the model-based

approach to SAE, is a standard accuracy measure for predictors of domain parameters.

Hall and Maiti (2006a,b) introduced bootstrap estimators of MSEs of predictors of func-

tions of fixed and random effects under SAE models. As we are interested in estimating

small area additive parameters, we consider the parametric bootstrap estimator of the

MSE introduced by González-Manteiga et al. (2007), but adapted to GLMMs. This ap-

proach was extended by González-Manteiga et al. (2008a,b) to nested error regression

models and to multivariate area-level models respectively.

In the particular case of GMMs, we carry out simulation experiments for investigat-

ing the behaviour of the fitting method, the predictors of average incomes and poverty

proportions and the parametric bootstrap estimator of the MSE. We present an appli-

cation to data from the Spanish living conditions survey (SLCS) of 2013 in the region

of Valencia (east of Spain). The target is the estimation of 2013 average incomes and

poverty proportions at county level.

The extension of the methodology of Molina and Rao (2010), where the EBPs are

introduced under unit-level LMMs, to unit-level GLMMs have three main mathematical

and computational difficulties: (1) under LMMs, the distribution of the unobserved part

of the vector of target variables conditioned to the observed part can be calculated explic-

itly, but not in the case of GLMMs; (2) the likelihoods of GLMMs are high dimensional

integrals, so they need more specialized fitting algorithms; (3) it can not be assumed that

the shape parameters (or shape function) of GLMMs are all equal to a known common

constant, so a procedure for estimating them is needed. This paper faces these three is-

sues by studying the applicability of two unit-level GLMMs to the estimation of small

area additive parameters.

The paper is organized as follows. Section 2 introduces two unit-level GLMMs. As

the shape parameters of the second model are known constants multiplied by a com-

mon parameter, this model cannot be fitted by using standard software; for example

by using the glmer function of lme4 library of the R programming language (R Core

Team 2019). This is why Section 3 describes the employed ML-Laplace algorithm that

we have programmed in R for fitting the model. Sections 4, 5, 5.1 and 5.2 present the

empirical best, the marginal and the plug-in predictors of functions of model effects,

additive parameters, means and poverty proportions respectively. The calculation of the

EBPs uses a census file as auxiliary information. It is shown that this restriction can

be avoided if the auxiliary variables are categorical. In that case, it is sufficient to have

the population sizes of the domains crossed with the categories. Section 6 gives a para-

metric bootstrap method for estimating the MSE. Section 7 presents three simulation

experiments. Simulation 1 analyses the behaviour of the fitting algorithm. Simulation 2

compares the performances of the three introduced predictors. Simulation 3 empirically

studies the parametric bootstrap estimators of the MSEs. Section 8 applies the developed



6 Small area estimation of additive parameters under unit-level generalized linear mixed models

methodology to unit-level data from the 2013 SLCS and takes the aggregated auxiliary

information from the Spanish Labour Force Survey (SLFS). The target is the estimation

of 2013 average incomes and poverty proportions at county level. Section 9 gives some

conclusions. The paper contains two appendices. Appendix A gives the components of

the updating equation of the ML-Laplace algorithm for the GMM. Appendix B presents

some complementary tables and figures for the application to real data.

2 The unit-level generalized linear mixed models

This section introduces two unit-level GLMMs. Let D denote the number of small ar-

eas (or domains) under consideration. Both models have a set of random area effects

{vd : d = 1, . . . ,D} that are i.i.d. N(0,1). In matrix notation, we have v = col
1≤d≤D

(vd) ∼

ND(0,ID), i.e.

fv(v) = (2π)−D/2 exp
{

−
1

2
v

T
v
}

.

For d = 1, . . . ,D, j = 1, . . . ,nd , the GLMMs assume that the conditional distribution of

the target variable yd j, conditioned to vd, belongs to the exponential family, i.e. yd j|vd
∼

Exp(θd j,νd j;a,b,c), with the probability density function (p.d.f.)

f (yd j|vd) = f (yd j|θd j,νd j;a,b,c) = exp
{yd jθd j−b(θd j)

a(νd j)
+ c(yd j,νd j)

}

, (1)

where a(·) > 0, b(·) and c(·) are known real-valued functions specifying the selected

distribution and νd j > 0. Further, we assume that b(·) is one-to-one and three times

continuously differentiable with one-to-one first derivative. This is to say, we consider

a nested data structure where subindexes d and j denote domain and unit (within do-

main) respectively and nd is the sample size of domain d. Under (1), the expectation and

variance of yd j, given vd, are

µd j = E[yd j|vd ] =
∂b(θd j)

∂θd j

= ḃ(θd j) var[yd j|vd] = a(νd j)
∂ 2b(θd j)

∂θ2
d j

= a(νd j)b̈(θd j).

Parameters µd j and νd j are called mean and shape parameters respectively. For a twice

continuously differentiable and monotonous link function g(·) of the mean parameter,

we assume that

ηd j = g(µd j) = x
T

d jβββ+φvd, d = 1, . . . ,D, j = 1, . . . ,nd ,

where φ > 0 is a standard deviation parameter, βββ = col
1≤k≤p

(βk) is a vector of regression

parameters and xd j = col
1≤k≤p

(xd jk) is a vector of auxiliary variables which are assumed to
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be constant (fixed regression design). Further, we assume that the yd j’s are independent

conditioned to v. The sample size is n = ∑D
d=1 nd and the domain target vector is yd =

col
1≤ j≤nd

(yd j). The conditional p.d.f. of y = col
1≤d≤D

(yd), given v, and the marginal p.d.f. of

y are

f (y|v) =
D

∏
d=1

nd

∏
j=1

f (yd j|vd), f (y) =
∫

RD
f (y|v) fv(v)dv.

Let us note that the assumption of normality of the random effects is typical for mixed

models used in SAE. Sinha and Rao (2009) and Benavent and Morales (2016) carried

out simulation experiments to investigate the robustness of EBLUPs of linear parame-

ters against deviations from the hypothesis of normality under nested error regression

and Fay-Herriot models respectively. They showed that EBLUPs works well when de-

viations are small, but their behaviour become poor when deviations are big. Similar

conclusions hold also for EBP under the presented model. A specific comment concern-

ing this issue is given in Remark 8.1 in Section 8.

An example of unit-level GLMM is the GMM, where

yd j|vd ∼ Gamma(νd j, µd j/νd j), d = 1, . . . ,D, j = 1, . . . ,nd .

For yd j > 0, the conditioned p.d.f. is

f (yd j|vd) =
( νd j

µd j

)νd j y
νd j−1

d j

Γ(νd j)
exp

{

−
νd j

µd j

yd j

}

(2)

= exp







yd j

(

− 1
µd j

)

− logµd j

1
νd j

+νd j logνd j− logΓ(νd j)+(νd j−1) logyd j







.

Under (2), the expectation and variance of yd j, given vd, are

E[yd j|vd ] =
νd j

νd j/µd j

= µd j, var[yd j|vd ] =
νd j

ν2
d j/µ

2
d j

=
µ2

d j

νd j

.

The natural parameter and the functions a(·)> 0, b(·) and c(·) of GMMs are

θd j =−
1
µd j
, b(θd j) = logµd j = log

(

− 1
θd j

)

=− log(−θd j),

a(νd j) = 1/νd j, c(yd j,νd j) = νd j logνd j− logΓ(νd j)+(νd j−1) logyd j.

For the mean parameter in GMMs, we consider the link function

ηd j = g(µd j) =
1

µd j

= x
T

d jβββ+φvd, d = 1, . . . ,D . (3)
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Depending on the assumptions on the shape parameters, we consider two GLMMs.

Model 1 assumes that νd j = ν > 0, d = 1, . . . ,D, j = 1, . . . ,nd and ν is unknown. Model

2 assumes that νd j = ad jϕ with ad j > 0 known and ϕ > 0 unknown, d = 1, . . . ,D,

j = 1, . . . ,nd . This is to say, Model 1 is Model 2 with ad j = 1 and ν = ϕ> 0 unknown.

Under the gamma distribution (2) with the link function (3), these models are called

gamma Model 1 and 2 respectively. For some distributions of the exponential family,

Model 1 can be fitted with the glmer function of lme4 library of the R programming

language. However, glmer cannot be applied to estimate the parameters of Model 2.

Section 3 presents the ML-Laplace algorithm for fitting GLMMs, with a particulariza-

tion to gamma Model 2.

Model 1 is quite popular in Gamma regression modelling. Under Model 1, the condi-

tioned variance is var[yd j|vd] = ν−1µ2
d j. The direct proportionality to the mean is a rigid

condition that sometimes does not allow a good fit of the model to the data. This fact

was observed in the application to real data and motivated the use of Model 2. Under

Model 2, a good selection of ad j for the conditioned variance will produce a better fit of

the GMM to the data. This is illustrated in Section 8.

Alternative link functions for gamma regression models are g(µd j)=µd j and g(µd j)=

logµd j. The link function (3) allows giving linear predictors of the natural parameter θd j

and moreover it is the canonical link function for the Gamma distribution which implies

some good properties of the ML estimators. That is why we investigate GMMs with the

inverse link function in the simulations and we use it in the application to real data.

3 The Laplace approximation algorithm

This section describes an approximation of the loglikelihood of GLMMs and the cor-

responding algorithm for estimating the unknown parameters of Model 2. In what fol-

lows ψ−1(·) denotes the inverse mapping of a one-to-one real valued function ψ(·). As

µd j = g−1(ηd j) and θd j = (ḃ)−1(µd j), it holds that

∂µd j

∂ηd j

=
1

∂ηd j

∂µd j

=
1

ġ(µd j)
,

∂θd j

∂µd j

=
1

∂µd j

∂θd j

=
1

b̈(θd j)
,

∂ηd j

∂vd

=
∂ (xT

d jβββ+φvd)

∂vd

= φ.

Therefore

∂µd j

∂vd

=
∂µd j

∂ηd j

∂ηd j

∂vd

=
φ

ġ(µd j)
,

∂ ġ(µd j)

∂vd

=
∂ ġ(µd j)

∂µd j

∂µd j

∂vd

= g̈(µd j)
φ

ġ(µd j)
,

∂θd j

∂vd

=
∂θd j

∂µd j

∂µd j

∂vd

=
φ

b̈(θd j)ġ(µd j)
,

∂b(θd j)

∂vd

=
∂b(θd j)

∂θd j

∂θd j

∂vd

=
φ ḃ(θd j)

b̈(θd j)ġ(µd j)
.
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The vectors y1, . . . ,yD are unconditionally independent with marginal p.d.f.

f (yd) =
∫ ∞

−∞

nd

∏
j=1

f (yd j|vd) f (vd)dvd

= κd

∫ ∞

−∞
exp

{

−
v2

d

2
+

nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

dvd = κd

∫ ∞

−∞
exp

{

h(vd)
}

dvd,

where κd = (2π)−1/2 exp
{

∑nd
j=1 c(yd j,νd j)

}

,

h(vd) =−
v2

d

2
+

nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)
, (4)

ḣ(vd) = −vd +
nd

∑
j=1

1

a(νd j)

{ φyd j

b̈(θd j)ġ(µd j)
−

φ ḃ(θd j)

b̈(θd j)ġ(µd j)

}

,

= −vd +φ
nd

∑
j=1

1

a(νd j)b̈(θd j)ġ(µd j)

(

yd j−µd j

)

,

and

ḧ(vd) =−1+φ2
nd

∑
j=1

1

a(νd j)b̈2(θd j)ġ2(µd j)

·

{

−
b̈(θd j)ġ(µd j)

ġ(µd j)
− (yd j−µd j)

[ ...

b(θd j)

b̈(θd j)ġ(µd j)
ġ(µd j)+ b̈(θd j)

g̈(µd j)

ġ(µd j)

]}

=−1−φ2
nd

∑
j=1

1

a(νd j)b̈2(θd j)ġ2(µd j)

{

b̈(θd j)+(yd j−µd j)

[ ...

b(θd j)

b̈(θd j)
+ b̈(θd j)

g̈(µd j)

ġ(µd j)

]}

.

The Laplace algorithm looks for v0d maximizing the function h(vd), i.e. such that ḣ(v0d)=

0 and ḧ(v0d)< 0. The Laplace approximation to f (yd) is

f (yd)≈

∣

∣

∣

∣

∣

1+φ2
nd

∑
j=1

1

a(νd j)b̈2(θ0d j)ġ2(µ0d j)

{

b̈(θ0d j)+(yd j−µ0d j)
[

...

b(θ0d j)

b̈(θ0d j)

+ b̈(θ0d j)
g̈(µ0d j)

ġ(µ0d j)

]}

∣

∣

∣

∣

−1/2

· exp
{

−
v2

0d

2
+

nd

∑
j=1

yd jθ0d j−b(θ0d j)

a(νd j)

}

exp
{

nd

∑
j=1

c(yd j,νd j)
}

,
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where θ0d j = (ḃ)−1(µ0d j), µ0d j = g−1(xT

d jβββ+φv0d). The GLMM loglikelihood is ℓ =

∑D
d=1 ℓd and

ℓd = log f (yd)≈ ℓ0d =
nd

∑
j=1

c(yd j,νd j)−
1

2
logξ0d−

v2
0d

2
+

nd

∑
j=1

yd jθ0d j−b(θ0d j)

a(νd j)
, (5)

where

ξ0d =

∣

∣

∣

∣

∣

1+φ2
nd

∑
j=1

1

a(νd j)

{

1

b̈(θ0d j)ġ2(µ0d j)

+ (yd j−µ0d j)

[ ...

b(θ0d j)

b̈3(θ0d j)ġ2(µ0d j)
+

g̈(µ0d j)

b̈(θ0d j)ġ3(µ0d j)

]}∣

∣

∣

∣

∣

.

For the GMMs, we have θd j = −
1
µd j

, g(µd j) =
1
µd j

, ġ(µd j) = −
1

µ2
d j

, g̈(µd j) =
2

µ3
d j

,

b(θd j) =− log(−θd j), ḃ(θd j) =−
1
θd j

= µd j, b̈(θd j) =
1

θ2
d j

= µ2
d j,

...

b(θd j) =−
2

θ3
d j

= 2µ3
d j,

h(vd) =−
v2

d

2
+

nd

∑
j=1

{

νd j log(xT

d jβββ+φvd)−νd jyd j(x
T

d jβββ+φvd)
}

,

ḣ(vd) =−vd +
nd

∑
j=1

{ νd jφ

xT

d jβββ+φvd

−φνd jyd j

}

=−vd +φ
nd

∑
j=1

νd j(µd j− yd j),

ḧ(vd) =−
(

1+φ2
nd

∑
j=1

νd j

(xT

d jβββ+φvd)2

)

=−
(

1+φ2
nd

∑
j=1

νd jµ
2
d j

)

.

In this particular case, it holds that ḧ(vd) < 0 for all possible values of vd. The compo-

nents of the Laplace approximation to the GMM loglikelihood are

ℓ0d =
nd

∑
j=1

{

νd j logνd j +(νd j−1) logyd j− logΓ(νd j)
}

−
1

2
logξ0d−

v2
0d

2

+
nd

∑
j=1

{

νd j log(xT

d jβββ+φv0d)−νd jyd j(x
T

d jβββ+φv0d)
}

, (6)

where ξ0d = 1+φ2 ∑nd
j=1 νd jµ

2
0d j and µ0d j = (xT

d jβββ+φv0d)
−1. Under gamma Model 2,

i.e. under the assumption νd j = ad jϕ, Appendix A gives the partial derivatives of ℓ0d

with respect to the components of θθθ = (βββT,φ,ϕ)T. It also gives the score vector U0(θθθ)
and the Hessian matrix H0(θθθ) containing the first and the second partial derivatives of

ℓ0d respectively.



Tomáš Hobza, Yolanda Marhuenda and Domingo Morales 11

A first Newton-Raphson algorithm maximizes ℓ0(θθθ) = ∑D
d=1 ℓ0d , with fixed vd = v0d ,

d = 1, . . . ,D. The updating equation is

θθθ(k+1) = θθθ(k)−H−1
0 (θθθ(k))U0(θθθ

(k)). (7)

For d = 1, . . . ,D, a second Newton-Raphson algorithm maximizes h(vd) = h(vd,θθθ), de-

fined in (4), with θθθ = (βββT,φ,ϕ)T = θθθ0 fixed. The updating equation is

v
(k+1)
d = v

(k)
d −

ḣ(v
(k)
d ,θθθ0)

ḧ(v
(k)
d ,θθθ0)

. (8)

Algorithm. By combining the two Newton-Raphson algorithms, the ML-Laplace ap-

proximation algorithm for Model 2 is obtained. The steps are

1. Set the initial values i = 0, ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, θθθ(0), θθθ(−1) = θθθ(0) + 1,

v
(0)
d = 0, v

(−1)
d = 1, d = 1, . . . ,D.

2. Until |v
(i)
d − v

(i−1)
d |< ε3, d = 1, . . . ,D, ‖θθθ(i)−θθθ(i−1)‖2 < ε4, do

(a) Apply algorithm (8) with seeds v
(i)
d , d = 1, . . . ,D, convergence tolerance ε1

and θθθ = θθθ(i) fixed. Output: v
(i+1)
d , d = 1, . . . ,D.

(b) Apply algorithm (7) with seed θθθ(i), convergence tolerance ε2 and v0d = v
(i+1)
d

fixed, d = 1, . . . ,D. Output: θθθ(i+1).

(c) i← i+1.

3. Output: θ̂θθ = θθθ(i), v̂d = v
(i)
d , d = 1, . . . ,D.

To get some algorithm seed θθθ(0), we can e.g. fit Model 1 (this can be done for several

distributions from the exponential family by using the glmer function of the R statistical

package lme4) to obtain the estimates β̃ββ, φ̃ and ν̃ and use the seedsβββ(0) = β̃ββ, φ(0) = φ̃ and

ϕ(0) = ν̃/ad , where ad = 1/nd ∑nd
j=1 ad j. Let us also note that the Laplace approximation

algorithm gives at convergence not only estimators of the model parameters but also the

mode predictors, v̂d , of the random effects.

4 Predictors of functions of model effects

This section considers a finite population U of N elements partitioned into D domains

Ud of size Nd , d = 1, . . . ,D. From the population, a sample s of size n is selected with

subsamples sd of sizes nd from domains Ud . Let yd = col
1≤ j≤Nd

(yd j) be the random vector
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containing the values of a target variable on the Nd units of domain d. Let yds be the

sub-vector of yd corresponding to the units in the sample sd and ydr the sub-vector of

domain units in the non-sampled domain population Ud− sd. By reordering the domain

units, we can write yd = (yT

ds,y
T

dr)
T. We define ys = col

1≤d≤D
(yds) and yr = col

1≤d≤D
(ydr) and

we follow a fully model-based approach by assuming that y = (yT

s,y
T

r)
T follows Model 2.

We are thus assuming a non-informative sampling setup.

The conditional distribution of ys, given v, is

f (ys|v) =
D

∏
d=1

f (yds|vd),

where

f (yds|vd) = exp
{ nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

exp
{ nd

∑
j=1

c(yd j,νd j)
}

and the p.d.f. of v is

f (v) =
D

∏
d=1

f (vd), f (vd) = (2π)−1/2 exp
{

−
1

2
v2

d

}

.

The conditional distribution of ydr, given yds, is

f (ydr|yds) =
f (ydr,yds)

f (yds)
=

∫

R f (ydr,yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=

∫

R f (ydr|vd) f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

. (9)

The aim of this section is to introduce the EBP and the plug-in predictor of µd j and

µ̄d = 1
Nd

∑Nd
j=1µd j under Model 2. The corresponding predictors under Model 1 can be

obtained in a similar way.

If θθθ = (βββT,φ,ϕ)T is known, the best predictor of µd j = µd j(θθθ,vd) = g−1(xT

d jβββ+φvd)
is µ̂d j(θθθ) = Eθ[µd j|ys]. In this case, we have that Eθ[µd j|ys] = Eθ[µd j|yds] and

µ̂d j(θθθ) = Eθ[µd j|yds] =

∫

R g−1(xT

d jβββ+φvd) f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=
Ad j(yds,θθθ)

Bd(yds,θθθ)
,
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where Ad j = Ad j(yds,θθθ) and Bd = Bd(yds,θθθ) are

Ad j =

∫

R
g−1(xT

d jβββ+φvd)exp
{ nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (vd)dvd,

Bd =
∫

R
exp

{
nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (vd)dvd. (10)

The EBP of µd j is µ̂d j(θ̂θθ) and can be approximated by the following Monte Carlo pro-

cedure.

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and put ν̂d j = ad jϕ̂.

2. For ℓ= 1, . . . ,L, generate v
(ℓ)
d i.i.d. N(0,1) and v

(L+ℓ)
d =−v

(ℓ)
d .

3. Calculate the approximation of the EBP µ̂d j = Âd j/B̂d , where

Âd j =
1

2L

2L

∑
ℓ=1

g−1(xd jβ̂ββ+ φ̂v
(ℓ)
d )exp

{ nd

∑
i=1

ydiθ̂
(ℓ)
di −b(θ̂

(ℓ)
di )

a(ν̂di)

}

,

B̂d =
1

2L

2L

∑
ℓ=1

exp
{ nd

∑
i=1

ydiθ̂
(ℓ)
di −b(θ̂

(ℓ)
di )

a(ν̂di)

}

(11)

and θ̂
(ℓ)
di = (ḃ)−1(µ̂

(ℓ)
di ) for µ̂

(ℓ)
di = g−1(xT

diβ̂ββ+ φ̂v
(ℓ)
d ).

The derived best predictors have minimum MSE in the class of unbiased estimators.

Unfortunately, this property does not hold for EBPs which are obtained by substituting

the true parameters by their estimates and therefore they are not unbiased. The EBPs

are asymptotically unbiased under the assumption that the estimates of the model pa-

rameters are consistent but the domain sample sizes are usually small in SAE problems.

Thus, it make sense to empirically investigate the behaviour of the plug-in predictors

which are less computationally demanding. The plug-in predictor of µd j is

µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d), (12)

where β̂ββ, φ̂ and v̂d are taken from the output of the ML-Laplace approximation algo-

rithm. The EBP and the plug-in predictor of µ̄d =
1

Nd
∑Nd

j=1µd j are

ˆ̄µE
d = ˆ̄µE

d (θ̂θθ) =
1

Nd

Nd

∑
j=1

µ̂d j, ˆ̄µP
d =

1

Nd

Nd

∑
j=1

µ̃d j. (13)
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5 Predictors of additive parameters

This section introduces predictors of additive parameters of small areas under Model 2.

Similar predictors can be obtained under Model 1. An additive domain parameter is

δd =
1

Nd

Nd

∑
j=1

h(yd j),

where h is a known measurable function. If j ∈ sd , then Eθ[h(yd j)|yds] = h(yd j). If j ∈

Ud− sd, then f (yd j|yds) is obtained from (9). Therefore, the best predictor of δd is

δ̂B
d =

1

Nd

Nd

∑
j=1

Eθ
[

h(yd j)|yds

]

=
1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

Eθ
[

h(yd j)|yds

]

}

,

where

Eθ[h(yd j)|yds] =

∫

R

∫

R h(yd j) f (yds|vd) f (yd j|vd) f (vd)dyd j dvd
∫

R f (yds|vd) f (vd)dvd

=
Ahd j(yds,θθθ)

Bd(yds,θθθ)
,

Ahd j =
∫

R

∫

R
h(yd j)exp

{
nd

∑
i=1

ydiθdi−b(θdi)

a(νdi)

}

f (yd j|vd) f (vd)dyd j dvd

and Bd was defined in (10). The EBP of of δd is

δ̂E
d =

1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

Eθ̂

[

h(yd j)|yds

]

}

, Eθ̂

[

h(yd j)|yds

]

=
Ahd j(yds,θ̂θθ)

Bd(yds,θ̂θθ)
.

If j ∈ Ud − sd, then the numerator and denominator of Eθ̂[h(yd j)|yds] can be approx-

imated by Monte Carlo simulation. The numerator is a bivariate integral that can be

written in the form of two iterative univariate integrals. Therefore, we implement an

iterative Monte Carlo algorithm which approximates the inner integral by simulating

positive random numbers y
(ℓ1,ℓ2)
d j from f (yd j|v

(ℓ1)
d ) and approximates the outer integral

by simulating random numbers v
(ℓ1)
d from f (vd). Under Model 2, the iterative Monte

Carlo algorithm is

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and ν̂d j = ad jϕ̂.

2. For ℓ1 = 1, . . . ,L1, generate v
(ℓ1)
d i.i.d. N(0,1) and v

(L1+ℓ1)
d =−v

(ℓ1)
d , calculate µ̂

(ℓ1)
d j =

g−1(xT

d jβ̂ββ+φ̂v
(ℓ1)
d ) and θ̂

(ℓ1)
d j =(ḃ)−1(µ̂

(ℓ1)
d j ). For ℓ1 = 1, . . . ,2L1, ℓ2 = 1, . . . ,L2, gen-

erate y
(ℓ1,ℓ2)
d j ∼ Exp

(

θ̂
(ℓ1)
d j , ν̂d j;a,b,c

)

.
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3. Approximate the EBP Êθ̂[h(yd j)|yds]≈ Âhd j/B̂d , where

Âhd j =
1

2L1L2

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

} L2

∑
ℓ2=1

h(y
(ℓ1,ℓ2)
d j ),

B̂d =
1

2L1

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

}

. (14)

The plug-in predictor of δd is

δ̂P
d =

1

Nd

{

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

h(µ̃d j)
}

, µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d).

Simulation 2 shows that the plug-in predictor does not work well in some situations. For

this reason we propose another predictor of the additive domain parameter δd . Instead of

using the conditional distribution deriving the EBPs, we consider the predicted marginal

distribution of yd j with parameters ν̂d j and θ̃d j = (ḃ)−1(µ̃d j), where µ̃d is the plug-in

predictor of µd j. This is to say, we consider the p.d.f. f (yd j|θ̃d j, ν̂d j;a,b,c) from the

exponential family. Based on the marginal distribution, we define the marginal predictor

of δd ,

δ̂M
d =

1

Nd

(

∑
j∈sd

h(yd j)+ ∑
j∈Ud−sd

ĥM
d j

)

,

where

ĥM
d j , E

[

h(yd j)| θ̃d j, ν̂d j;a,b,c
]

=

∫

R
h(y) f (y|θ̃d j, ν̂d j;a,b,c)dy.

For calculating the empirical best, the plug-in and the marginal predictors, we need two

files: (1) a survey file with the unit-level sample data (main file), and (2) a census file

containing the values of the employed explanatory variables in all the population units

(auxiliary file). However, not all the values xd j, d = 1, . . . ,D , j = 1, . . . ,Nd , are available

in many practical cases. If in addition some of the auxiliary variables are continuous,

the three introduced predictors are not applicable. An important particular case, where

these predictors can be calculated under the assumed fixed regression design, is when the

number of values of the vector of auxiliary variables is finite and the ad j’s take a common

value adk in the domain d and the covariate class k. In this situation, called “categorical

setup”, we only need a smaller auxiliary file containing the aggregated (domain-level)

values of the explanatory variables. More concretely, the categorical setup is

xd j ∈ {z1, . . . ,zK}, ad j = adk if xd j = zk, j = 1, . . . ,Nd , d = 1, . . . ,D. (15)
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Under the categorical setup (15), the EBP of δd is

δ̂E
d = δ̂E

d (θ̂θθ) =
1

Nd

[

∑
j∈sd

h(yd j)+
K

∑
k=1

Ndk−ndk

∑
i=1

Eθ̂

[

h(ydki)|yds

]

]

=
1

Nd

[

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)Eθ̂
[

h(ydk)|yds

]

]

, (16)

where the size Ndk of Udk = { j ∈Ud : xd j = zk} is available from external data sources

(aggregated auxiliary information), ndk is the size of sdk = { j ∈ sd : xd j = zk} and ydki

denotes the value that the target variable takes in the ith unit of the subset Udk − sdk.

Under Model 2, the expectation Eθ̂

[

h(ydk)|yds

]

is approximated (similarly to (14)) by

Monte Carlo integration as follows.

1. Estimate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T and put ν̂dk = adkϕ̂.

2. For ℓ1 = 1, . . . ,L1 generate v
(ℓ1)
d i.i.d. N(0,1) and v

(L1+ℓ1)
d =−v

(ℓ1)
d , calculate µ̂

(ℓ1)
dk =

g−1(zT

kβ̂ββ+ φ̂v
(ℓ1)
d ) and θ̂

(ℓ1)
dk = (ḃ)−1(µ̂

(ℓ1)
dk ). For ℓ1 = 1, . . . ,2L1, ℓ2 = 1, . . . ,L2, gen-

erate y
(ℓ1,ℓ2)
dk ∼ Exp

(

θ̂
(ℓ1)
dk , ν̂dk;a,b,c

)

.

3. Calculate Eθ̂

[

h(ydk)|yds

]

= Âhdk/B̂d, where

Âhdk =
1

2L1L2

2L1

∑
ℓ1=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

} L2

∑
ℓ2=1

h(y
(ℓ1,ℓ2)
dk ),

B̂d =
1

2L1

2L1

∑
ℓ=1

exp
{

nd

∑
i=1

ydiθ̂
(ℓ1)
di −b(θ̂

(ℓ1)
di )

a(ν̂di)

}

. (17)

If (15) holds, the plug-in predictor of δd is

δ̂P
d =

1

Nd

{

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)h(µ̃dk)
}

, µ̃dk = g−1(zT

kβ̂ββ+ φ̂v̂d),

and the marginal predictor of δd is

δ̂M
d =

1

Nd

{

∑
j∈sd

h(yd j)+
K

∑
k=1

(Ndk−ndk)ĥ
M
dk

}

, ĥM
dk =

∫

R
h(y) f (y|θ̃dk, ν̂dk;a,b,c)dy.
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5.1 Predictors of small area means

This section introduces predictors of the small area mean

Y d =
1

Nd

Nd

∑
j=1

yd j,

which is an additive parameter with h(y) = y. The best predictor of yd j is ŷd j(θθθ) =
Eθ[yd j|ys]. If j ∈ sd , then Eθ[yd j|ys] = yd j. If j ∈Ud − sd , then Eθ[yd j|ys] = Eθ[yd j|yds]

and

ŷd j(θθθ) = Eθ[yd j|yds] =

∫

R

∫

R yd j f (yd j|vd) f (yds|vd) f (vd)dyd j dvd
∫

R f (yds|vd) f (vd)dvd

=

∫

Rµd j f (yds|vd) f (vd)dvd
∫

R f (yds|vd) f (vd)dvd

=
Ad j(yds,θθθ)

Bd(yds,θθθ)
= Eθ[µd j|yds] = µ̂d j(θθθ),

where Ad j = Ad j(yds,θθθ) and Bd = Bd(yds,θθθ) are defined in (10). The EBP of yd j is ŷd j =

ŷd j(θ̂θθ) = µ̂d j(θ̂θθ). Thus, the EBP of yd j is ŷd j = yd j if j ∈ sd and ŷd j = µ̂d j if j ∈Ud− sd ,

where µ̂d j is the EBP of µd j given in (11).

The EBP and the plug-in and marginal predictors of Y d are

Ŷ
E

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̂d j

]

,Ŷ
P

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̃d j

]

,

Ŷ
M

d =
1

Nd

[

∑
j∈sd

yd j + ∑
j∈Ud−sd

µ̂M
d j

]

,

where µ̃d j is the plug-in predictor of µd j given in (12) and

µ̂M
d j , E

[

yd j| θ̃d j, ν̂d j;a,b,c
]

=
∫

R
y f (y|θ̃d j, ν̂d j;a,b,c)dy = g−1(xT

d jβ̂ββ+ φ̂v̂d) = µ̃d j,

so that Ŷ
M

d = Ŷ
P

d . Under the categorical setup (15), the EBP and the plug-in predictors

of Y d are

Ŷ
E

d =
1

Nd

[

∑
j∈sd

yd j +
K

∑
k=1

(Ndk−ndk)µ̂dk

]

, Ŷ
P

d =
1

Nd

[

∑
j∈sd

yd j +
K

∑
k=1

(Ndk−ndk)µ̃dk

]

,

where µ̃dk = g−1(zT

kβ̂ββ+ φ̂v̂d), µ̂dk = Âz
dk/B̂d, B̂d is defined in (10) and Âz

dk is the Monte-

Carlo approximation of
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Az
dk =

∫

R
g−1(zT

kβββ+φvd)exp
{ nd

∑
j=1

yd jθd j−b(θd j)

a(νd j)

}

f (vd)dvd.

This is to say, Âz
dk can be calculated as

Âz
dk =

1

2L

2L

∑
ℓ=1

g−1(zT

kβ̂ββ+ φ̂v
(ℓ)
d )exp

{ nd

∑
j=1

yd jθ̂
(ℓ)
d j −b(θ̂

(ℓ)
d j )

a(νd j)

}

,

where v
(ℓ)
d are i.i.d. N(0,1) and v

(L+ℓ)
d =−v

(ℓ)
d , ℓ= 1, . . . ,L, θ̂

(ℓ)
d j = (ḃ)−1(µ̂

(ℓ)
d j ) and µ̂

(ℓ)
d j =

g−1(xT

d jβ̂ββ+ φ̂v
(ℓ)
d ).

5.2 Predictors of poverty proportions

This section deals with the estimation of domain poverty proportions, which are the

proportion of people in the domain whose welfare is below the poverty line. Let yd j be

a welfare variable (i.e. income or expenditure) for individual j from domain d and let z

be the poverty line. Then, the poverty proportion is the additive parameter

pd =
1

Nd

Nd

∑
j=1

h0(yd j) ,

where h0(yd j) = I
(

yd j < z
)

. The EBP of pd is

p̂E
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

Eθ̂ [h0(yd j)|yds]
)

,

where Eθ̂ [h0(yd j)|yds] is calculated by applying (14) with h = h0.

The plug-in and the marginal predictors of pd are

p̂P
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

h0(µ̃d j)
)

, p̂M
d =

1

Nd

(

∑
j∈sd

h0(yd j)+ ∑
j∈Ud−sd

p̂M
d j

)

,

where µ̃d j = g−1(xT

d jβ̂ββ+ φ̂v̂d) and

p̂M
d j = E

[

I(yd j < z)|θ̃d j, ν̂d j;a,b,c
]

= P

(

Exp(θ̃d j, ν̂d j;a,b,c)< z

)

, F(z|θ̃d j, ν̂d j;a,b,c).

In the previous formula, F(·) denotes the cumulative distribution function of the corre-

sponding distribution from the exponential family.
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Under the categorical setup (15), the EBP of pd is

p̂E
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk)Eθ̂
[

h0(ydk)|yds

]

]

,

where Eθ̂

[

h0(ydk)|yds

]

is calculated by applying (17) with h = h0. The marginal and the

plug-in predictors of pd are

p̂M
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk) p̂M
dk

]

,

p̂P
d =

1

Nd

[

∑
j∈sd

h0(yd j)+
K

∑
k=1

(Ndk−ndk)h0(µ̃dk)
]

,

where p̂M
dk = F(z|θ̃dk, ν̂dk;a,b,c), θ̃dk = (ḃ)−1(µ̃dk), ν̂dk = adkϕ̂ and µ̃dk = g−1(zT

kβ̂ββ +

φ̂v̂d).

6 Bootstrap estimation of the MSE

This section presents a parametric bootstrap estimator of the MSE of ˆ̄µE
d and δ̂E

d appli-

cable to the categorical setup (15). Under Model 2, the algorithm steps are

1. Fit the model to the sample and calculate θ̂θθ = (β̂ββ
T

, φ̂, ϕ̂)T, put ν̂dk = adkϕ̂.

2. Repeat B times (b = 1, . . . ,B):

(a) The population. For d = 1, . . . ,D, k = 1, . . . ,K generate v
∗(b)
d i.i.d. N(0,1)

and calculate µ
∗(b)
dk = g−1

(

zT

kβ̂ββ + φ̂v
∗(b)
d

)

and θ
∗(b)
dk = (ḃ)−1(µ

∗(b)
dk ). For j =

1, . . . ,Nd generate

y
∗(b)
d j ∼ Exp

(

θ
∗(b)
dk , ν̂dk;a,b,c

)

, where k is such that xd j = zk.

Calculate the true bootstrap quantities

µ̄
∗(b)
d = µ̄d(θ̂θθ,v

∗(b)
d ) =

1

Nd

K

∑
k=1

Ndkµ
∗(b)
dk , δ

∗(b)
d =

1

Nd

Nd

∑
j=1

h(y
∗(b)
d j ).

(b) The sample. The bootstrap sample has the same units as the real data sam-

ple. It is not extracted at random. The model is on the population, therefore
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the source of randomness comes from the generation of the population. For

each bootstrap sample, calculate θ̂θθ
∗(b)

and the EBPs

ˆ̄µ
E∗(b)
d = ˆ̄µE

d (θ̂θθ
∗(b)

), δ̂
E∗(b)
d = δ̂E

d (θ̂θθ
∗(b)

).

3. Output: mse∗( ˆ̄µE
d ) =

1
B ∑B

b=1

(

ˆ̄µ
E∗(b)
d − µ̄

∗(b)
d

)2
, mse∗(δ̂E

d ) =
1
B ∑B

b=1

(

δ̂
E∗(b)
d −δ

∗(b)
d

)2
.

The above algorithm can be easily modified to the case of fitting a GLMM with at

least one continuous auxiliary variable. For this sake, a census file is needed with the

values of xd j for all the units of the population. In addition, the census file must have

the same unit identifier variable as the sample file. This modification is equivalent to

adapting the parametric bootstrap method of González-Manteiga et al. (2007) to the

current unit-level GLMMs.

7 Simulation experiments

This section presents three simulation experiments for gamma Model 2. Simulation 1

analyses the behaviour of the ML-Laplace approximation algorithm for estimating pa-

rameters. Simulation 2 compares the performances of the EBPs, the plug-in predictors

and the marginal predictors. Finally, Simulation 3 empirically studies the bootstrap es-

timators of the MSEs.

In all the experiments data are simulated in the following way. For d = 1, . . . ,D

and j = 1, . . . ,nd , define regressors representing four possible classes of labour sta-

tus. This is to say, (xd j1,xd j2) = (0,0) for unemployed, (xd j1,xd j2) = (0,1) for em-

ployed, (xd j1,xd j2) = (1,0) for inactive and (xd j1,xd j2) = (1,1) for ≤ 15. Generate

(xd j1,xd j2) ∈ {(0,0),(0,1),(1,0),(1,1)}with probabilities p00 = 0.1+ (d−1)
D−1

0.2, p01 =

0.5− (d−1)
D−1

0.2, p10 = 0.2, and p11 = 0.2, respectively. For each covariate class and do-

main d, the constants ad j (which are assumed to be known in Model 2) are generated

independently from a normal distribution with mean 1.5 and standard deviation 0.2 in

order to be close to the values appearing in the application to the real data. The auxil-

iary variables, xd j1, xd j2, and the shape constants, ad j, are generated before starting the

simulation loop, so they are constant in the three simulation experiments. The model

parameters are taken as β0 = 0.8, β1 =−0.15, β2 = 0.2, φ= 0.1 and ϕ= 2.5.

Within each iteration, the three simulation algorithms generate the random effect

vd ∼N(0,1), d = 1, . . . ,D, and the income variable yd j ∼Gamma(νd j,
νd j

µd j
), where νd j =

ad jϕ and

µd j = (β0 + xd j1β1 + xd j2β2 +φvd)
−1, d = 1, . . . ,D, j = 1, . . . ,nd .
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7.1 Simulation 1

The target of Simulation 1 is to check the behaviour of the fitting algorithm. We take

D = 30,60,120,180 and nd = 10,25,50. The steps of simulation 1 are

1. Repeat I = 1000 times (i = 1, . . . , I)

1.1. Generate a sample {y
(i)
d j : d = 1, . . . ,D, j = 1 . . . ,nd} from Model 2.

1.2. Calculate β̂
(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

2. Output: For θ ∈ {β0,β1,β2,φ,ϕ}, calculate the relative bias and relative root-MSE,

i.e.

RBIAS =
1

|θ|

1

I

I

∑
i=1

(θ̂(i)− θ), RRMSE =
1

|θ|

(1

I

I

∑
i=1

(θ̂(i)− θ)2
)1/2

.

Tables 1, 2 and 3 presents the results of the simulation experiment for nd = 10, nd =
25 and nd = 50 respectively. The relative bias is basically negligible. The relative root-

MSE decreases as D or nd increases. Simulation 1 empirically illustrates the consistency

of the implemented ML-Laplace approximation algorithm.

Table 1: RBIAS (left) and RRMSE (right) in % for nd = 10.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.9932 0.6967 0.7074 0.6254 6.1918 4.5492 3.3014 2.5208

β̂1 0.3361 0.5187 −0.0944 0.0275 32.9073 24.1085 16.6784 13.0500

β̂2 −0.2629 0.0504 0.0892 0.3631 25.7537 18.1448 12.4199 9.8741

φ̂ −11.1515 −3.9887 −0.5083 0.1928 41.0300 27.3513 18.3789 15.0615

ϕ̂ 1.5736 0.9871 0.5349 0.3370 8.5560 6.0136 4.1093 3.4281

Table 2: RBIAS (left) and RRMSE (right) in % for nd = 25.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.8245 0.9708 0.8585 0.9259 4.2377 3.2867 2.2593 1.9043

β̂1 −0.4093 0.3290 0.9417 0.2324 20.0357 14.1744 10.1065 8.3685

β̂2 0.4219 0.2353 −0.1183 0.0690 14.8132 11.1234 7.7572 6.3451

φ̂ −4.1686 −2.7112 −1.3648 −0.7450 22.0699 15.8384 10.9345 8.6654

ϕ̂ 0.6263 0.2041 0.2512 0.2021 5.1735 3.5982 2.5533 2.0827
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Table 3: RBIAS (left) and RRMSE (right) in % for nd = 50.

RBIAS RRMSE

D = 30 D = 60 D = 120 D = 180 D = 30 D = 60 D = 120 D = 180

β̂0 0.9193 1.2258 1.1286 1.2008 3.4704 2.6633 2.0673 1.8352

β̂1 0.1209 0.2595 0.0680 −0.0676 14.3711 10.0332 7.3633 5.8110

β̂2 0.5331 −0.0164 −0.0452 0.0878 11.1165 7.7034 5.3727 4.4457

φ̂ −5.3541 −2.2712 −1.3643 −1.1853 18.5763 12.1674 8.7474 6.9339

ϕ̂ 0.2439 0.1738 0.1221 0.0634 3.4888 2.5094 1.8352 1.4415

7.2 Simulation 2

The target of Simulation 2 is to investigate the behaviour of the EBP, the marginal and

plug-in predictors of the mean Y d and the poverty proportion pd. Before starting the sim-

ulation loop, a first set of target variables {y
(0)
d j : d = 1, . . . ,D, j = 1, . . . ,Nd} is generated

and the poverty threshold z is taken as the first sample quartile of these variables.

The model is fitted by the ML-Laplace approximation algorithm. The EBP is approx-

imated with L1 = L2 = 100 Monte Carlo iterations and the domain sizes are Nd = 1000,

d = 1, . . . ,D. The steps of Simulation 2 are

1. Repeat I = 104 times (i = 1, . . . , I)

1.1. Generate the i-th population {y
(i)
d j : d = 1, . . . ,D, j = 1 . . . ,Nd} in the same

way as the sample in Simulation 1.

1.2. Calculate Y
(i)
d = 1

Nd
∑Nd

j=1 y
(i)
d j , p

(i)
d = 1

Nd
∑Nd

j=1 I(y
(i)
d j < z), d = 1, . . . ,D.

1.3. For d = 1, . . . ,D, select a sample s
(i)
d of size nd . The indexes of the samples

s
(i)
d remain constant across the iterations. Calculate β̂

(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

1.4 Calculate the predictors Ŷ
E ,i

d , Ŷ
P,i

d , Ŷ
M,i

d , p̂
E ,i
d , p̂

P,i
d , p̂

M,i
d and the direct estima-

tors Ŷ
dir,i

d = 1
nd

∑nd
j=1 y

(i)
d j , p̂

dir,i
d = 1

nd
∑nd

j=1 I(y
(i)
d j < z), d = 1, . . . ,D.

2. For ξ
(i)
d ∈{Y

(i)
d , p

(i)
d } and ξ̂

(i)
d ∈{Ŷ

dir,i

d ,Ŷ
E ,i

d ,Ŷ
P,i

d ,Ŷ
M,i

d , p̂dir,i
d , p̂E ,i

d , p̂P,i
d , p̂

M,i
d }, d = 1, . . . ,D,

calculate the performance measures

ξd =
1

I

I

∑
i=1

ξ
(i)
d , REd =

(1

I

I

∑
i=1

(

ξ̂
(i)
d − ξ

(i)
d

)2
)1/2

, RBd =
1

|ξd |

1

I

I

∑
i=1

(ξ̂
(i)
d − ξ

(i)
d ),

RREd =
REd

|ξd |
, RB =

1

D

D

∑
d=1

|RBd|, RRE =
1

D

D

∑
d=1

RREd.
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Table 4 presents the results of Simulation 2 for sample sizes nd = 10,25,50,75,100,

which are of similar magnitude to most of the county sample sizes presented in Table

10. For estimating the domain mean, the EBP Ŷ
E

d has had lower RB but higher RRE than

the marginal/plug-in predictor Ŷ
P

d = Ŷ
M

d . Further, the model-based predictors are more

efficient than the direct estimator. For estimating the domain proportion, the plug-in es-

timator is not recommended and the marginal and EB predictors are both more efficient

than the direct estimator. The marginal predictor has obtained slightly better results than

the EBP in relative bias and root-MSE. This fact can be explained by the variability

derived from approximating the EBP with L1 = L2 = 100 Monte Carlo iterations.

Table 4: RB (left) and RRE (right) in % for D = 30.

nd 10 25 50 75 100 10 25 50 75 100

Ŷ
Dir

d 4.27 2.18 1.63 1.43 0.98 17.69 10.99 7.71 6.22 5.25

Ŷ
E

d 0.33 0.31 0.38 0.23 0.25 11.11 8.50 6.57 5.54 4.82

Ŷ
P

d 0.79 0.53 0.46 0.24 0.25 11.09 8.45 6.54 5.46 4.75

Ŷ
M

d 0.79 0.53 0.46 0.24 0.25 11.09 8.45 6.54 5.46 4.75

p̂Dir
d

7.53 4.21 3.03 2.49 1.78 55.10 34.32 24.03 19.33 16.37

p̂E
d 0.57 0.56 0.68 0.43 0.39 21.18 16.62 13.17 11.29 10.06

p̂P
d 98.99 97.50 95.01 92.55 90.04 101.78 100.22 97.65 95.15 92.55

p̂M
d 0.76 0.49 0.31 0.27 0.21 21.17 16.56 13.08 11.18 9.97

Remark 7.1 Since it is complicated to calculate analytically the error of the Monte
Carlo approximation because we approximate the integrals of numerator and denom-
inator, we tried to study the accuracy numerically. Namely, for one choice of nd = 25
and one selected iteration of Simulation 2 we have approximated the EBP 1000 times
for each domain and different values of L. Then we calculated the standard deviation of
these approximations in each domain. This quantity express the variability of the Monte
Carlo approximations. The means of the obtained standard deviations over areas are
presented in Table 5 for the two cases of predicting the area mean Y d and the area
proportion pd .

Table 5: Standard deviations of 1000 MC approximations of EBP for nd = 25 and different values of L.

Predictor L = 50 L = 100 L = 200 L = 300 L = 500

Ŷ
E

d 0.01370 0.00960 0.00665 0.00552 0.00421

p̂E
d 0.00593 0.00380 0.00250 0.00202 0.00152

In the simulation experiments we have used L = 100 from time reasons but from the

Table 5 it follows that in practical applications a higher value of L, e.g. L = 300, could

be recommended. Higher values of L than 300 increase substantially the computing

time.
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As a consequence of the results of Simulation 2, we will consider only the marginal

predictor in Simulation 3 and we recommend using the marginal predictor in applica-

tions to real data.

For explaining the poor behaviour of plug-in predictors p̂P
d of domain proportions

pd, we recall that

p̂P
d =

1

Nd

[

∑
j∈sd

I(yd j < z)+
K

∑
k=1

(Ndk−ndk)I(µ̃dk < z)
]

,

where K = 4 and the poverty threshold z is taken as the lower sample quartile of the

generated target variables. Since µ̃dk is the predictor of the expectation of the target

variable distribution, then µ̃dk tends to be greater than z in most of the iterations of the

simulation experiment. This is to say, the probability that one of the terms I(µ̃dk < z) is

equal to 1 is very small. In other words, the observed value of a Bernoulli variable is a

bad estimator of the probability of success. This means that the summands in the second

sum will be equal to zero with high probability and therefore the auxiliary information

is almost not taken into account. Moreover, only the sample sd is used in the first sum as

in the case of direct estimators, but this sum is divided by the population size Nd instead

of the sample size nd .

7.3 Simulation 3

Simulation 3 investigates the behaviour of the bootstrap MSE estimator of the marginal

predictors. We take D = 30, nd = 50, Nd = 1000, I = 500 and B = 25,50,100,200,300,

400. We take Ed = (REd)
2 from the output of Simulation 2. The steps of Simulation 3

are

1. Repeat I = 500 times (i = 1, . . . , I)

1.1. Generate the population in the same way as sample in Simulation 2.

1.2. For d = 1, . . . ,D, select a sample sd of size nd with fixed indexes and calculate

β̂
(i)
0 , β̂

(i)
1 , β̂

(i)
2 , φ̂(i), ϕ̂(i).

1.3. For each ξ̂
(i)
d ∈ {Ŷ

M,i

d , p̂M,i
d }, calculate mse

∗(i)
d = mse∗d(ξ̂

(i)
d ).

2. Calculate the relative performance measures

Rbd =
1

|Ed |

1

I

I

∑
i=1

(mse
∗(i)
d −Ed), Red =

1

|Ed |

(1

I

I

∑
i=1

(mse
∗(i)
d −Ed)

2
)1/2

,
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Rb =
1

D

D

∑
d=1

|Rbd |, Re =
1

D

D

∑
d=1

Red.

Table 6 summarizes the results of Simulation 3. Figure 1 presents the boxplots of the

relative biases Rbd (left) and the relative root-MSEs Red (right) of MSE estimators for

average incomes. Figure 2 presents the same boxplots for poverty proportions.

Table 6: Relative biases and root-MSEs (in %) of MSE estimators for average incomes (top) and poverty

proportions (bottom).

B = 25 B = 50 B = 100 B = 200 B = 300 B = 400

Y d Rb 5.91 5.59 6.46 6.91 6.87 6.47

Re 32.74 24.65 19.51 16.76 15.54 14.84

pd Rb 1.77 1.51 1.62 2.06 1.57 1.77

Re 31.10 23.20 18.09 14.83 14.23 13.29

From the figures we observe that the parametric bootstrap method slightly under-

estimate the MSEs of the marginal predictors and that root mean squared error of the

estimates is decreasing with increasing B. On the basis of the results we recommend

to use at least B = 200 bootstrap iterations for estimating the MSEs of the marginal

predictors.
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Figure 1: Boxplots of relative biases Rbd (left) and root-MSEs Red (right) of MSE estimators of average

incomes.
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Figure 2: Boxplots of relative biases Rbd (left) and root-MSEs Red (right) of MSE estimators of poverty

proportions.

8 Application to SLCS data

This section presents an application to unit-level data from the 2013 SLCS of the region

of Valencia. The SLCS is carried out in all the Spanish territory and the planned domains

are the regions. The counties, within the region of Valencia, have rather small sample

sizes and they are considered as small areas by the Spanish Statistical Office. We esti-

mate average incomes and poverty proportions. The SLCS contains data from D = 26

Valencian counties and these counties are the domains of interest. The target variable

yd j is the average annual net income (in 104 euros) of individual j from domain d. The

selected auxiliary variables are the labour status categories (employed, unemployed,

inactive and below 15 years old). In addition to the SLCS data, we take auxiliary aggre-

gated data from the SLFS, which contains survey data about the labour market. As the

regional sample sizes of the SLFS are much greater than the corresponding ones of the

SLCS, the sizes of counties crossed by the labour status categories are estimated from

the SLFS and considered as known quantities.

We start the data analysis by doing a preliminary step. We fit gamma Model 1 to the

data (yd j,xd j1,xd j2), d = 1, . . . ,D, j = 1, . . . ,nd , where xd j1 and xd j2 are the dichotomic

variables indicating if an individual is employed and unemployed (yes = 1, no = 0)

respectively. The K = 3 covariate classes are z1 = (1,0), z2 = (0,1) and z3 = (0,0)
for employed, unemployed and rest (≤ 15 or inactive) respectively. For d = 1, . . . ,D,

j = 1, . . . ,Nd , we consider the population model (Model 1)

yd j|vd
∼ Gamma

(

ν, ν/µd j

)

, g(µd j) =
1

µd j

= β0 +β1xd j1 +β2xd j2 +φvd.
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By using the glmer function of the R statistical package lme4, we fit Model 1 by ap-

plying the ML-Laplace approximation algorithm. Table 7 (left) gives the estimates of

the regression parameters and their estimated standard deviations and p-values. Table

7 (right) presents the estimates of parameters φ and ν and the corresponding quantile-

based 95% confidence intervals calculated from 1000 parametric bootstrap samples.

Table 7: Regression (left) and var/shape (right) parameter estimates under Model 1.

estimate standard error p-value estimate 95% conf. interval

β̃0 0.771 0.0310 < 2E-16 φ̃ 0.093 (0.0496, 0.0991)

β̃1 -0.142 0.0163 < 2E-16 ν̃ 2.858 (2.270, 2.952)

β̃2 0.142 0.0287 7.42E-07

Let us note that initially we have calculated the EBP’s and marginal predictors of

average incomes and poverty proportions under Model 1 but the results were unsatis-

factory. The predicted values had very small variability between domains and for large

sample sizes nd they did not correspond to direct estimators. So the assumption νd j = ν

for all d and j is too rigid in this case and a more general model is needed.

We take the plug-in predictors µ̃d j = (β̃0+ β̃1xd j1+ β̃2xd j2+ φ̃ṽd)
−1 calculated under

Model 1 as a preliminary step and we use them as inputs of the algorithmic procedure

for fitting the more complex unit-level gamma Model 2. For d = 1, . . . ,D, j = 1, . . . ,Nd ,

we consider the population model (Model 2)

yd j|vd
∼Gamma

(

νd j, νd j/µd j

)

, νd j = ad jϕ, g(µd j) =
1

µd j

= β0+β1xd j1+β2xd j2+φvd.

For fitting Model 2 to the data, we first need the constants ad j. Since they are not known

in our case, we estimate them by the following algorithmic procedure.

1. For a grid of values of t in the interval (0.25, 3) and step equal to 0.01, fit the Model

2 to the data, assuming that ad j = µ̃t
d j is known. If t = 2 and ad j is equal to µt

d j,

then var[yd j|vd ] = 1/ϕ, which corresponds to the homoscedastic case. Calculate

the estimator ϕ̂(t) for each considered t.

2. For each considered t, calculate the plug-in predictors µ̂
(t)
d j , the raw residuals ê

(t)
d j =

yd j− µ̂
(t)
d j and the sum of the squared residuals r2(t). Select t∗ minimizing r2(t).

3. Do the inferences with Model 2 and ad j = µ̃t∗
d j known, i.e. νd j = ϕ̂(t∗)µ̃

t∗
d j.

For the considered data set, the selected optimal choice of t is t∗ = 0.60. Figure

3 presents a plot of the function r2(t) and a boxplot of the optimal shape constants

ad j = µ̃t∗
d j.
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Figure 3: Function r2(t) (left) and boxplot of ad j (right).

Table 8 gives the parameter estimates of Model 2. The signs of the regression param-

eter and the form of the link function indicate that employment (unemployment) has a

positive (negative) effect on income.

Table 8: Parameter estimates under Model 2.

estimate standard error p-value

β̂0 0.775 0.0132 < 2E-16

β̂1 -0.141 0.0157 < 2E-16

β̂2 0.140 0.0300 3.09E-06

φ̂ 0.1113 0.0112 < 2E-16

ϕ̂ 2.4646 0.0675 < 2E-16

For the sake of comparisons, we also fit the unit-level log-linear normal mixed model

(Model 3)

zd j = b0 +b1xd j1 +b2xd j2 +ud + ed j, d = 1, . . . ,D, j = 1, . . . ,nd ,

where zd j = log(yd j + 1), ud ∼ N(0,σ2
u), ed j ∼ N(0,σ2

e) and the random effects ud ∼
N(0,σ2

u) and the random errors ed j ∼ N(0,σ2
e) are mutually independent. By using

the lmer function of the R statistical package lme4, we fit Model 3 by applying the

REML method. The estimates of the model standard deviations are σu = 0.0886 and

σe = 0.3036. Table 9 presents the estimates of the regression parameters of Model 3.

Table 9: Parameter estimates under Model 3.

estimate standard error p-value

b̂0 0.803 0.0201 < 2E-16

b̂1 0.137 0.0135 < 2E-16

b̂2 -0.112 0.0180 5.41E-10
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Figure 4: Q-Q plot of random effects for models 2 (left) and 3 (right).

In order to check the assumption that the random effects have the standard normal

distribution, we take the mode predictors v̂d and ûd of the random effects under Model

2 and Model 3 respectively and we plot the normal Q-Q plots in Figure 4. We do not

observe significant deviations from normality. Moreover, the Kolmogorov-Smirnov test

does not reject the hypothesis H0 : Fv̂1,d
= FN(0,1) with p-values equal to 0.763 (Model

2) and 0.925 (Model 3).

Remark 8.1 In Figure 4 (left) there are two domains that are far from the straight line

indicating normality in the bottom-left corner. To illustrate robustness of the method we

have investigated what happens if we drop out all the observations of these two domains.

We have fitted Model 2 without the mentioned observations and the results are presented

in Table 11 of Appendix B. Since the parameter estimates are very similar to those given

in Table 8, we can say that the methodology is robust with respect to small deviations

from the hypothesis of normality of the random effects.

Figure 5 presents graphs of raw residuals for Model 2 (left) and Model 3 (right).

There are not significant visual differences between both models.

The sum of squares of raw residuals for models 2 and 3 are

r2
2 =

D

∑
d=1

nd

∑
j=1

(yd j− µ̂d j)
2 = 1897.35, r2

3 =
D

∑
d=1

nd

∑
j=1

(yd j− (exp(ẑd j)−1))2 = 1938.30.

As we observe that Model 2 has a slightly better fit to data, we do the estimation of

the small area parameters (average income and poverty proportion) under Model 2. This

application illustrates that it may have sense to consider more general GLMM instead

of using normal mixed model for some transformation of data.
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Figure 5: Dispersion graphs of raw residuals for Model 2 (left) and Model 3 (right).

Remark 8.2 In order to study the importance of the random area effects in the model,

we have fitted the following Gamma model without area effects (referred to as Model 0)

yd j|vd ∼ Gamma(ν, ν/µd j), d = 1, . . . ,D, j = 1, . . . ,nd ,

ηd j = g(µd j) =
1

µd j

= x
T

d jβββ, (18)

and calculated the corresponding marginal predictors based on this model. The param-

eter estimates can be obtained by the R function glm and are presented in Table 12 in

Appendix B. Unfortunately this model has a bad fit to data (the sum of squares of raw

residuals r2
0 = 2010.56 in comparison with r2

2 = 1897.35 obtained for model 2) and

it does not explain the between domain variability which is not described by the aux-

iliary variables. Since the sizes of population classes are quite homogeneous between

domains, it results in a quite over-smoothed behaviour of the predictors as can be seen

from Table 13 of Appendix B. This table presents the marginal predictors under Model

2 and Model 0 and the corresponding bootstrap estimates of the MSE. The results for

proportion predictions are presented also in Figure 8. From this figure one can see the

smoothing effect of Model 0 and also that the estimated MSEs are for this model higher

than the estimated MSEs of the direct estimators for sample sizes higher than 60.

In order to get the marginal predictor of proportions, we need the ad j values for the

whole population or at least the values adk for the covariate classes zk, k = 1,2,3. Figures

6 and 7 were obtained by the choice

adk = µ̃t∗
dk,
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Figure 6: Predictions of average incomes in 104 euros (left) and estimated MSEs (right).
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Figure 7: Predictions of poverty proportions (left) and estimated MSEs (right).

where µ̃dk is the predictor of µdk derived under Model 1 (νd j = ν) and t∗ = 0.60 is the

optimal choice of t. This means that for every unit j of domain d and covariate class

zk ∈ {z1,z2,z3}, we take ad j = adk if xd j = zk, d = 1, . . . ,26, j = 1, . . . ,nd , k = 1,2,3.

Table 10 presents county codes (c), sample sizes (nd), population sizes (Nd), marginal

predictions of average incomes in 104 euros (Y M), marginal predictions of poverty pro-

portions (pM), direct estimates of average incomes in 104 euros (Y dir) and direct es-

timates of poverty proportions (pdir). It also gives the corresponding MSE estimates

(mse) based on 500 bootstrap samples generated from the fitted Model 2. As auxiliary

population data, we took the SLFS data file of the region of Valencia in 2013. The

poverty line for the region of Valencia was 6999.6 euros in 2013.

Figure 6 plots the marginal predictions (Y M) and the direct estimates (Y dir) of av-

erage incomes in 104 euros (left) and their corresponding model-based MSE bootstrap

estimates (right). Figure 7 plots the marginal predictions (pM) and the direct estimates

(pdir) of poverty proportions (left) and their corresponding model-based MSE bootstrap

estimates (right). In all cases, the counties are sorted by sample size. We observe that the

model-based marginal predictions have a more smooth behaviour across counties than
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the direct estimates. Further, the marginal predictions and the direct estimates tend to be

close when sample size increases. As expected, the marginal predictors have had lower

estimated MSEs than the direct estimators.

Table 10: Predictions and estimated MSEs for average incomes and poverty proportions.

c nd Nd Y M mse pM mse Y dir mse pdir mse

27 82 124270 1.2496 0.00718 0.2545 0.00051 1.1738 0.01031 0.2909 0.00252

28 57 70944 1.2924 0.00951 0.2374 0.00072 1.2471 0.01253 0.1217 0.00339

29 69 225440 1.5033 0.00680 0.1702 0.00058 1.5825 0.01725 0.0364 0.00339

30 132 227463 1.2945 0.00583 0.2362 0.00040 1.1461 0.01344 0.2998 0.00270

31 56 166774 1.3584 0.01025 0.2127 0.00064 1.2932 0.01600 0.0520 0.00388

32 293 459626 1.6860 0.00243 0.1248 0.00019 1.6821 0.00335 0.0685 0.00076

33 128 268924 1.1260 0.00589 0.3121 0.00043 0.9728 0.00858 0.3436 0.00169

34 59 292243 1.4540 0.00947 0.1809 0.00068 1.6162 0.01536 0.1166 0.00393

3 57 87560 1.0701 0.01149 0.3401 0.00069 0.8361 0.01629 0.4612 0.00364

5 91 246942 1.7397 0.00503 0.1162 0.00039 1.3659 0.02225 0.3263 0.00373

6 82 179798 1.5543 0.00651 0.1555 0.00051 1.5869 0.00885 0.1805 0.00225

7 10 26007 1.3613 0.03368 0.2112 0.00219 1.3245 0.06582 0.0000 0.01899

11 118 189865 1.2552 0.00551 0.2534 0.00040 1.1662 0.00752 0.1668 0.00170

12 15 89136 1.7504 0.02317 0.1144 0.00140 2.0290 0.05904 0.0000 0.01028

13 138 187515 1.4426 0.00454 0.1853 0.00033 1.6057 0.00738 0.0253 0.00154

14 189 370540 1.4513 0.00347 0.1836 0.00026 1.3552 0.00705 0.1438 0.00185

15 405 771129 1.6043 0.00163 0.1419 0.00013 1.5332 0.00279 0.0966 0.00061

16 93 131337 1.6408 0.00536 0.1340 0.00043 1.4531 0.01237 0.0623 0.00353

17 12 33122 1.5576 0.03806 0.1547 0.00211 1.8238 0.07683 0.2857 0.01779

18 35 54545 1.8157 0.01318 0.1057 0.00090 2.1590 0.02103 0.0000 0.00419

20 125 256553 1.6029 0.00543 0.1437 0.00039 1.7224 0.00642 0.0314 0.00145

21 49 52958 1.2107 0.01308 0.2704 0.00090 1.1340 0.01760 0.2205 0.00430

22 13 33126 1.2050 0.03257 0.2727 0.00198 1.0174 0.06239 0.2086 0.01433

23 40 70642 1.1452 0.01513 0.3002 0.00118 1.0109 0.02518 0.1611 0.00591

24 65 80434 1.3719 0.00942 0.2082 0.00070 1.3600 0.01306 0.0000 0.00271

25 79 180619 1.2386 0.00833 0.2598 0.00060 1.2238 0.01157 0.1371 0.00280

9 Concluding remarks

This paper introduces predictors of additive parameters under unit-level GLMMs. The

introduced models are applicable also to continuous positive target random variables

that have asymmetric distributions, like income or expenditure. In some practical cases,

a GLMM can be a good alternative to the log-normal nested error model considered by

Molina and Rao (2010). In the application to real data, we give a three-step procedure to

determine the shape constants ad j of gamma Model 2. This model has a high flexibility

for fitting real data because the ad j’s depend on d and j and therefore they vary within

and between domains.

Among the three considered predictors, the simulations show that the empirical best

and the marginal predictors have a similarly good behaviour. As the computation of the

marginal predictor is less time demanding, we recommend it. Overall when reporting

MSEs estimated by parametric bootstrap.
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The new small area estimation methodology is applied to the SLCS data from Va-

lencia, a region in east of Spain, in the period January-December 2013. The selected

gamma Model 2 has had a slightly better fit to the data than the corresponding log-

normal nested error regression model. Therefore the average incomes and poverty pro-

portions per county are finally estimated by using the marginal predictors with its MSEs

calculated by parametric bootstrap under gamma Model 2.

The simulations and the application to real data have been carried out with the pro-

gramming language R. The codes are available upon request to the authors.
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A Appendix

This appendix gives the partial derivatives of the function ℓ0d , defined in (6), for gamma

Model 2. The first derivatives of µ0d j and ξ0d are

∂µ0d j

∂βr

=−xd jrµ
2
0d j,

∂µ0d j

∂φ
=−v0dµ

2
0d j,

∂µ0d j

∂ϕ
= 0,

η0dr =
∂ξ0d

∂βr

=−2φ2
nd

∑
j=1

ad jϕxd jrµ
3
0d j, η0dϕ =

∂ξ0d

∂ϕ
= φ2

nd

∑
j=1

ad jµ
2
0d j,

η0d =
∂ξ0d

∂φ
=

nd

∑
j=1

{

2φad jϕµ
2
0d j−2φ2ad jϕv0dµ

3
0d j}.

The first derivatives of ℓ0d with respect to βr, φ and ϕ are

∂ℓ0d

∂βr

=−
1

2

η0dr

ξ0d

+
nd

∑
j=1

{

ad jϕxd jrµ0d j−ad jϕxd jryd j

}

,

∂ℓ0d

∂φ
=−

1

2

η0d

ξ0d

+
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{

ad jϕv0dµ0d j−ad jϕv0dyd j},
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∂ϕ
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+
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,

where ψ(z) = d logΓ(z)
dz

is the digamma function. It holds that

∂η0dr
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=
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The second partial derivatives of ℓ0d are

∂ 2ℓ0d

∂βs∂βr
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where ψ̇(z) = dψ(z)
dz

is the trigamma function.

For r,s = 1, . . . , p the components of the score vector and the Hessian matrix are

U0r =
D

∑
d=1

∂ℓ0d

∂βr

, U0p+1 =
D
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d=1
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D
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D
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.

In matrix form, we have U0 =U0(θθθ)= col
1≤r≤p+2

(U0rs) and H0 =H0(θθθ)= (H0rs)r,s=1,...,p+2,

where θθθ = (βββT,φ,ϕ)T.

B Appendix

This appendix presents some additional results in the form of tables and figures.
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Table 11: Parameter estimates under Model 2 without two domains.

estimate standard error p-value

β̂0 0.790 0.0137 < 2E-16

β̂1 -0.142 0.0165 < 2E-16

β̂2 0.134 0.0297 6.68E-06

φ̂ 0.1081 0.0111 < 2E-16

ϕ̂ 2.8269 0.0792 < 2E-16

Table 12: Parameter estimates under Model 0 without random effects.

estimate standard error p-value

β̂0 0.731 0.0130 < 2E-16

β̂1 -0.158 0.0179 < 2E-16

β̂2 0.151 0.0315 1.77E-06

ν̂ 2.532

Table 13: Predictions and estimated MSEs for average incomes and poverty proportions under Model 2

(left) and Model 0 (right).

c nd Nd Y M mse pM mse Y
0
M mse p0

M mse

27 82 124270 1.2496 0.00718 0.2545 0.00051 1.4581 0.06089 0.2155 0.00362

28 57 70944 1.2924 0.00951 0.2374 0.00072 1.4429 0.04642 0.2191 0.00328

29 69 225440 1.5033 0.00680 0.1702 0.00058 1.4554 0.05166 0.2178 0.00342

30 132 227463 1.2945 0.00583 0.2362 0.00040 1.4916 0.05851 0.2069 0.00304

31 56 166774 1.3584 0.01025 0.2127 0.00064 1.4776 0.06149 0.2107 0.00334

32 293 459626 1.6860 0.00243 0.1248 0.00019 1.4871 0.04135 0.2085 0.00286

33 128 268924 1.1260 0.00589 0.3121 0.00043 1.4505 0.05769 0.2176 0.00398

34 59 292243 1.4540 0.00947 0.1809 0.00068 1.4485 0.04983 0.2160 0.00341

3 57 87560 1.0701 0.01149 0.3401 0.00069 1.4739 0.05191 0.2114 0.00373

5 91 246942 1.7397 0.00503 0.1162 0.00039 1.4657 0.04944 0.2140 0.00345

6 82 179798 1.5543 0.00651 0.1555 0.00051 1.4591 0.04928 0.2155 0.00343

7 10 26007 1.3613 0.03368 0.2112 0.00219 1.4591 0.06097 0.2143 0.00382

11 118 189865 1.2552 0.00551 0.2534 0.00040 1.4683 0.05872 0.2137 0.00333

12 15 89136 1.7504 0.02317 0.1144 0.00140 1.4808 0.06417 0.2089 0.00405

13 138 187515 1.4426 0.00454 0.1853 0.00033 1.4804 0.04735 0.2097 0.00298

14 189 370540 1.4513 0.00347 0.1836 0.00026 1.4777 0.04929 0.2112 0.00297

15 405 771129 1.6043 0.00163 0.1419 0.00013 1.4792 0.03782 0.2100 0.00270

16 93 131337 1.6408 0.00536 0.1340 0.00043 1.4422 0.04166 0.2194 0.00322

17 12 33122 1.5576 0.03806 0.1547 0.00211 1.4776 0.05186 0.2100 0.00351

18 35 54545 1.8157 0.01318 0.1057 0.00090 1.4850 0.04623 0.2101 0.00329

20 125 256553 1.6029 0.00543 0.1437 0.00039 1.4736 0.04957 0.2121 0.00350

21 49 52958 1.2107 0.01308 0.2704 0.00090 1.4572 0.05194 0.2147 0.00338

22 13 33126 1.2050 0.03257 0.2727 0.00198 1.4573 0.05235 0.2167 0.00337

23 40 70642 1.1452 0.01513 0.3002 0.00118 1.4558 0.04925 0.2155 0.00342

24 65 80434 1.3719 0.00942 0.2082 0.00070 1.4588 0.05811 0.2155 0.00364

25 79 180619 1.2386 0.00833 0.2598 0.00060 1.4628 0.05700 0.2156 0.00342



38 Small area estimation of additive parameters under unit-level generalized linear mixed models
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Figure 8: Direct estimators and marginal predictors (under Model 2 and Model 0) of poverty proportions

(left) and corresponding estimated MSEs (right).


