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A zoology of boundary layers
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Abstract. In meteorology and maghetohydrodynamics many different boundary layers appear. Some of
them are already mathematically well known, like Ekman or Hartmann layers. Others remain unstudied,
and can be much more complex. The aim of this paper is to give a simple and unified presentation of the
main boundary layers, and to propose a simple method to derive their sizes and equations.

Una zoologia de capas finas

Resumen. En meteorologia y magnetohidrodindmica aparecen numerosas capas limites. Algunas de
ellas son perfectamente conocidas, como es el caso de las capas limites de Ekman y de Hartmann. Otras
permanecen desconocidas y pueden ser mucho méds complejas. El objetivo de este articulo es ofrecer una
presentacion unificada de las capas limites mads importantes y proponer un método sencillo para obtener
sus tamafios y ecuaciones.

1. Introduction

One of the main features in oceanography and meteorology, and also in magneto-hydro-dynamics is the
presence of one or more small parameters. Typically in oceanography, after appropriate time and space
rescaling, the rotation speed of the Earth (which creates the Coriolis force) is pretty large (10? to 10%), the
aspect ratio (ratio between the depth and the horizontal sizes) is small (like a few kilometers over several
thousands kilometers), parameters describing the stratification (like the so called Brunt Vassaila frequency)
are large. In MHD, in the study of the Earth magnetic field, the rotation speed is even larger (after rescaling,
something like 10%), the strength of the magnetic field is very important (108 also).

In the interior of the domain these large parameters lead to some reduced behavior (for instance the
velocity field may be independent of some spatial variable), behavior which is often incompatible with
boundary conditions. This leads to boundary layers, small zones near the boundary where the system
adapts itself to the boundary conditions.

In some cases, the size and equation of the layers are easy to derive, like in the study of viscous per-
turbations of hyperbolic systems. In other problems, like the one of Ekman layers, we have to find our
way in asymptotic expansions, which are more or less well written in the classical physical monographs

Presentado por Haim Brezis

Recibido: 3 de Julio de 2002. Aceptado: 9 de Octubre de 2002.

Palabras clave / Keywords: 76D10, 76N20, 76 W05

Mathematics Subject Classifications: Boundary layers, meteorology, magnetohydrodynamics.
(© 2002 Real Academia de Ciencias, Espafia.

401



D. Gérard-Varet and E. Grenier

(see [2, 4]). But many other layers (Stewartson, equatorial layers) are much more subtle. Usually they are
studied either by explicit but cumbersome solutions (using Bessel’s functions) or by using refined physical
arguments, without justification. The fundamental papers of Stewartson [8, 7] and Proudman [5] are typical
of such approaches. In a rotating sphere for instance, boundary layers of size E'/2, EY/3, EY/4 E2/5, ..
are expected, where E is the Ekman number (see figure). Only the E'/2 has been fully studied and has a
very clear derivation (see for instance [3]).
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Figure 1. Boundary layers of rotating fluids, near a sphere and at the circumscribing cylinder (following
Stewartson [7])

The aim of this paper is to clarify this situation and to give a global method to derive the various
layer sizes and equations. We hope this work will help mathematicians to get interested in the numerous
existence, unicity and stability related problems. This note will be detailed and parts of it rigorously justified
in a forthcoming paper [1].

Let us now introduce two typical systems, on which we will illustrate our method throughout next
sections. The first one describes an incompressible viscous fluid in a highly rotating domain. Governing
equations are Navier Stokes Coriolis equations

Outu-Vat+ S By XU (1)
€ € 13

Vou=0, 2)

u =0 on o0, 3)

where e is a given fixed vector e = (0,0, 1), E and ¢ are two small parameters called Ekman and Coriolis
numbers. Typically E and 2 are of the same order. Domains of interest are Q = T? x [0, 1] (where T? is
the two dimensional periodic flat torus), w x [0, 1] where w is a two dimensional domain, B(0, 1) (ball of
center 0 and radius 1), B(0,1) — B(0, R) with R < 1 (between two spheres). The main boundary layer is
the classical Ekman layer of size E'/2. However near vertical boundaries, or near points where the tangent
plane of 9 is vertical, boundary layers of size E'/? and E'/* may appear. More complex layers of size
E?/5 and E?/7 are expected in spherical cases.
The second one is the following MHD system

ex]

atu+u-Vu+¥—Au+ =0 4)
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j=Vo+uxe &)
V-u=V-35=0 (6)
u=0, j-n=0, ondQ @)

This system describes an incompressible viscous fluid under the action of a strong magnetic field e~ 'e x j,

where 7 is the current density, linked to u through Ohm’s law. There again, physical studies have shown a
variety of boundary layers (see [6]) : £1/2,e'/4, ...

The rest of this note is structured as follows. Section 2 is devoted to the general presentation of the
method. Sections 3 and 4 detail some of its applications, resp. to “flat” and spherical layers and Section 5
raises the problem of stability of boundary layers.

2. Presentation

The first idea is that boundary layers already appear on linear equations, therefore in a first step we can
dismiss the transport term (v - V)u. This is a very classical approach, underlying all the physical studies.
This is often a posteriori justified, since in many cases the nonlinear term appears to be a higher order
perturbation of the linear case. However this nonlinear term is important when we look at stability issues.
It is this term which destabilizes many flows and causes the transition of boundary layers from a laminar to
a turbulent regime. In a crude way we can say that the nonlinear term does not create the boundary layer,
but may destabilize it.

The second idea, once we have a linear equation, is to take the Fourier Laplace transform in space and
time. This is of course not new, however a careful analysis of the transform leads to the desired sizes and
equations.

Let us formalize a little these ideas. Equations like Navier Stokes Coriolis are of the form

AU + Q°(U?) = F* ®)

where for instance U® = (u®, p®), F is some forcing term. In (8), A is the linear part of the equation, and
Q¢ the nonlinear part (in this case (u®.V)u®).
The first step is to dismiss the Q¢ term and to look at

A*U® = F*. ©)]

Of course this simplification needs to be justified. A first formal argument is to compute the size of Q¢ (U¢)
for the solution U*® of (9) and to compare it with A°U*®.

The second step is to take Fourier Laplace transform of (9). Let 7 and £ be the dual variables of ¢ and
x. Notice that 7 and & are complex numbers. We have

A® FU® = FF* + boundary and initial terms. (10)

Notice that the boundary and initial terms depend on U* itself, therefore (10) does not give simply U€ as a
function of F*©. These terms combine traces of U¢ and its time and spatial derivatives on ([0 + oco[x(2).
In any case, a first step in the study of (10) is to forget these terms and concentrate on

A*FU® = FF*, (11)

an equation which is much more simple than (8)! The main point is that in all the boundary layers we know,
the study of (11) is sufficient to get the sizes and the equations of all the layers. This gives a simple way to
attack the usual intricate and cumbersome analysis of the boundary layers. To go back to (8) then needs a
careful analysis and justification, but on clearly identified equations and layers, which greatly helps ! See
section 5 for more details.
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Let us go on with the analysis of (11). Let 3. be the characteristic manifold

EE = {(7,57’0) | AE (T7 6)’1} = O} (12)
and let
O = {(Ta g) | aE(Tv ‘f) = 0} (13)
where
a® = det A®

be its projection in the spectral plane.

Homogeneous solutions of (11) are simply solutions with Fourier transform with support in X.. A
particular solution of (11) reflects the effect of the forcing term on the system. Of course if we take an
arbitrary forcing term we can get almost anything, and any type of layers. We have therefore to restrict to
physically admissible forcings. A natural one is a smooth forcing term. For instance we may assume that
F* is smooth, or equivalently that its Fourier transform F F* is rapidly decreasing in all the variables, or
even has compact support, and is independent on &.

Boundary layers then appear as the reaction of the system at small spatial lengths, or equivalently at
large imaginary part of £. Hence they are described by the behavior of o, for large complex €. As e goes
to 0, 0. may have parts which go to infinity. These parts will describe boundary layers or oscillations
(depending whether £ or 7 or both, or only their imaginary parts go to infinity). Therefore the boundary
layer sizes are obtained by studying the asymptotic branches Notice that 3. then gives more information,
keeping track of the “polarization” of the layer.

Let us be a little more precise. Let us consider the domain 2 = {z4 > 0} with boundary 9Q = {z4 = 0}.
The aim of the game is to find a sequence of homogeneous solutions of the form

vseir‘et+i§5z

)

that is a sequence (7¢,£°,0v°) € X, such that &y, . .., &4—1 are independent of e (Fourier mode in tangential
variables) and that one of the following assertions is true

e 7° remains bounded and Zm ¢ — Zoo as ¢ — 0. This corresponds to a boundary layer type
behavior, with a boundary layer size of order (Zm £5)™".

e &5 and Zm 7° remain bounded, and Re 7° — %00, which corresponds to an high frequency oscilla-
tion in the domain, with frequency of order Re 7¢.

e Zm 7° remains bounded, and Re 7° — F00 and Zm & — =oo. This corresponds to an highly time
oscillatory boundary layer.

e &5 bounded and Zm 7 — +oc: initial (time) boundary layer.
e Im¢&; — oo and Zm 7° — +4o0: initial time layer in the boundary layer.

To look for such behaviors then reduces to the search of asymptotic behaviors of solutions of a® = 0.
Often, a® is polynomial. In this case we are left with the problem of finding the possible asymptotics
behaviors of roots of polynomials of usually small degree, but with parameters. These behaviors then give
the possible sizes of the boundary layers.

The next step is to look for an equation on the boundary layer. Once we have the size, it is already
easier. But moreover a look at ¥, gives the possible sizes of each of the components (sizes of the velocity
field, of the pressure,...). This greatly facilitates the derivation of the boundary layer equation. In fact a
more detailed study of A°U® = 0 directly gives the desired equation. Let us now detail the method on
a few cases (we refer to [1] for an extensive study), namely the classical Ekman layers, vertical rotating
layers, MHD layers and a few spherical layers. In this latest case, the arguments are purely formal.
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3. First applications
3.1. Rotating fluids

We consider in this section equations (1, 2) of a rotating fluid, with the physical scaling E = £2. After we
drop the u - Vu term, this system can be written.

u

Ave =0, ve=( " 14
(4) (14)

where A° = A®(—i0;, —i0x) is the differential operator with matricial symbol (&2 = &7 + €2 + £2) :

it +ef?  —! 0 e~
el it + &2 0 el

€ —
A = 0 0 it +e82 el

e 14 e 1&g e 1g 0

The determinant, obtained by expansion along the last row, is
(r6) = (ir 42 + 5 (15)
a®(1,€) = (it +¢ 2

As explained in section 2., we derive the different boundary layers by looking at elements (7¢, £, v°) € X,
satisfying different asymptotics as € goes to zero. Note that every solution v of A%(7,&)v = 0 satisfies
relations

—e7 1y +e726 —e 1oy + 724

T Uk T g vz = —e~ ' &us. (16)

v =

3.1.1. Ekman layers

We first derive the possible horizontal boundary layers. They correspond to elements (7°, £°, v°) € X, with
&1, & independent of ¢,

7¢ bounded with e, Zm £5 — +o0.

As (1°,£°) € 0. we have

€2
(i + ey + 8 =0
We deduce as ¢ goes to zero
£)2
()" ~ —(5532) : (17)
+1 41
&~ —— (18)

V2e

which gives a possible size O(¢) = O(E'/?): that is the so-called “Ekman layer”. We now want to derive
informations on the “boundary layer solutions” U® = ¢'™ e’¢"*y° of (14), where &5 has behaviour given
by (18). Namely, we want to know the size of the components of U#, and the equation it satisfies at leading
order in € (boundary layer equation). The size of the U¢ components is defined up to a multiplication by an
arbitrary function of €. Using (16), we get

v~ O, w5 ~C, v5~Ce v~Ce

where C' stands for various constants. Back to U® we get
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Us = (U°(C,e2) +eUt (e tz) + ).

52

Equation on U is obtained by rescaling the matricial symbol: if we set

1
3 € - 1
A%(1,61,6,83) = A°(7,61, 62,67 163) -
&2
we have A° = A% + cA' + .., with leading symbol :
£ -1 .0 0
o_| 1 & o0 0
A= 0O 0 0 0
&G & & 0
which corresponds to equations
uy +0%ud = 0 (19)
ud —o%Zuy = 0 (20)
Oy + 0yu + dzud = 0. 1)

All these results match the derivation obtained in [3] through an asymptotic expansion.
Remark 1 Let us now compute the size of the components of the nonlinear term. We find
w.Vur = 0(1), wVus =0(1), wuVuz=O0(e).

Itis small compared to the other terms involved in the equation of the layer (since —cAu = O(¢7!)), which
justifies a posteriori that we neglect the nonlinear terms in the derivation of the equation of the boundary
layer. W

3.1.2. Vertical layers
According to section 2, we look this time for elements (7, £%, v®) of X¢ with &, &5 fixed and
7¢ bounded with e, Zm £ — +o0.
Looking at equation a® = 0, there are two cases to consider
° & #0.
In this case, we get
246 3

13 1~ 5

which shows that £2/3 is a boundary layer size. Proceeding as above, we get the size of velocity and pressure
in the layer
w =0E?), us=0(1), uz=0(1), p=0("?).
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If we rescale these quantities by

£2/3

Ue = (U0(~,5_2/3z) F2BUY (L3 + )

£2/3

equations of the layer are

ug —0,p° =

uf + 9yp° — Puy =
azpo + aazcug =

Opuf + Oy + Ouy =

o o o o

Note that whereas horizontal Ekman layers are described by ordinary differential equations, these vertical
Ekman layers lead to a genuine two dimensionnal partial differential equation. It leads to a single equation
on pressure

=0 (22)

T€
EN:E _
GRENG

which depends on time scale 7¢. If the boundary layer has a “natural” time scale of order 1, the layer has
size 1/2 (E1/%), whis is the second scale expected from [8]. Note that E1/4 ~ 11/2 in our case, therefore
this layer has the same size as the famous Prandtl layer. As Prandtl layer is highly unstable, it is very likely
that this £'/* vertical layer is also linearly and nonlinearly unstable ...

3.2. MHD

We do not detail computations here, and refer to [1] for completeness. Determinant a° is given by

2
Sy —ir o 5B
a’(r,§) =it + & + 2
which gives
e an horizontal layer with size £'/? (horizontal Hartmann layer)

e avertical layer with size £!/*

Equations of the horizontal layer are for instance :

oZud —ud = 0 (23)
oZuy —uy = 0 (24)
Oy + 0yuf +dzud = 0. (25)
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4. Spherical cases

The case of spherical layers is central with regards to its applications in geophysics. In order to derive its
main features, we may adapt (in a completely formal way at that time) considerations of section 2.. Let us
consider the case of a boundary layer at latitude 6. The natural directions of the problem are those tangent
and perpendicular to the sphere, so that we make the change of variables

x' = Rox, v = Rpv

where Ry is the rotation of angle 6 in the (x, 2) plane, v being any 3-D vectorial quantity in the equations
(fluid velocity, current density, ...). This leads to a new linear system

A5V =0 (26)

The main difference with the flat case is the geometrical constraint on the length scales brought by spheric-
ity: if § (resp. h) is the typical length scale of the layer perpendicularly (resp. tangently) to the sphere, we
have i = O(v/3). Following this, we look for solutions V' = e 4 of (26) with & independent of
&, 7€ bounded with ¢, and

Im & — 400, ImE — +oo, |Im&| ~ C|Im &]1/2, (27)

Note that £ corresponds to §, and goes faster to infinity than £5. Of course all this section is purely formal.

4.1. Rotating fluids

After rotation of angle 6, we get the system

!
AU =0, U' = ( z, )

iT+ef2  —eLcos() 0 et
-1 . 2 —1 o3 —1
0 | e lteos(8) it +eg e tsin(f) e71&
AT Q) = 0 e7lsin(f) it +ef? e71G
eta e e 0

The determinant A is given by
A0(1,6) = 2 (i + £€6°)* + sin* (B)€7 + cos”(6)&] — 2 cos(6) sin(8)&:1 €.
We must distinguish two cases

e 0 # 0 (away from the equator).

We obtain

e'(&0)° ~ —sin®(9)(&7)?
which gives a boundary layer with size | sin(6)|~'/2¢. This layer is similar to the flat Ekman layer. Its size
increases as 6 goes to zero, that is as we get closer to the equator.

e §=0.

The above layer degenerates at the equator as sin(f) = 0. At § = 0, the leading terms of a*? change and
we get

2(E)! ~ —(6)?
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which leads with (27) to the new size § = ¢%/5. This size matches the results of Stewartson. As in section
3., we get the size of velocity and pressure in the layer at the equator

up =0, uhb=0Q1), uy=0(1), p =0,
After rescaling, equations of the layer are (rescaled variables)

uy — 9,p° =
uy + Opus
9.p° + ou =
opuf + d.uy =

o O O O

and it leads again to
020° + 9%1° = 0.

4.2. MHD

With similar computations, there is a boundary layer with size ¢1/2 away from the equator, and £2/3 at the
equator.

5. Some justification

Note that in the derivation of the size of the boundary layer, the nonlinear term does not play anyrole and
can be dismissed. For stability issues on the contrary, it plays a central role. Let us go back to the rotating
fluids. Let us assume that we are able to construct an approximate solution u®?? of the form u™™ + %
where u®™ describes its behavior away from the boundaries, and where 1 describes boundary layers. Of
course u® will solve some of the equations derived in the previous section.

The problem is now to know whether ”true” solutions u® converge to u®PP as ¢ goes to 0, assuming for
instance that they have the same initial conditions. This problem is a stability question: if u*PP is a stable
solution, then we will get convergence. If on the contrary u*PP is unstable then «* will split from ©*PP, and
thus very quickly (typically within times of order O(gloge™1)).

A classical way to investigate the convergence of v = u® — u®PP is to make an energy estimate on it.
For rotating fluids we have

E
5tv+(Uapp-V)v+(U~V)u‘”’p+(v-V)v+%—; v+e>€<v:0’

V-v=0.

An L? energy estimate gives, using divergence free condition,

2 E
at/%+/U(U'V)uapp+g/|VU|2:O.

The problem lies in the second term of this identity since Vu®PP is very large in the boundary layer (typically
of order O(¢71). Therefore without any further argument we only get

v? B , _C [P
Z 4+ = <=2 [
6t/ D) + - /|VU| =7 / B

for some constant C, which is of course not enough to prove convergence. A more detailed analysis then
uses Hardy inequality to bound [ v(v.V)u®? by Coe [ |Vo|?. This ends the proof provided Cy is small
enough, in order to be absorbed in E /2. But Cy depends on u®PP and in fact on ||u™|| . Therefore we
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have convergence of u® — u®PP to O under a smallness assumption. Physically, with the scaling we assume,
||ui"|| L~ plays the role of a Reynolds number, and what we mention is a particular case of a basic property
of fluid flows: they are stable at low Reynolds numbers and unstable at high Reynolds numbers.

At low Reynolds number, the viscosity dominates the transport term and no instability can occur: the
approximate solution is very near the true solution. At high Reynolds numbers on the contrary, the viscosity
is no longuer sufficient to control the transport term and instabilities arise, which prevent convergence of
the approximate solution to the true solution.

Physically it is therefore expected that there exists some constant C; such that if ||u?"||p~ < C; then
we have convergence and if ||u?"||p~ > C; we have no convergence. For the time being stability and
convergence is proved using L? energy methods for ||u‘™ ||z~ < Cy < C; and instability is proved above
(1. The area between Cy and C is widely open.
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