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Some results about multiplicity and bifurcation of stationary
solutions of a reaction diffusion climatological model

J. l. Diaz, J. Hernandez and L. Tello

Abstract. In this survey we collect several results concerning S-type bifurcation curves for the num-
ber of solutions of reaction-diffusion stationary equations. In particular, we recall several results in the
literature for the case of stationary energy balance models.

Algunos resultados de multiplicidad y bifurcacion de soluciones
estacionarias de un modelo climatico de difusion-reaccion.

Resumen. Presentamos algunos resultados relativos a curvas de bifurcacién de tipo S en el nimero de
soluciones de ecuaciones estacionarias de tipo reaccién-difusion. Un mayor énfasis es hecho sobre los
resultados en la literatura para el caso de modelos climéticos estacionarios de balance de energia.

1. Introduction

Semilinear parabolic equations have been widely used during the last thirty years as mathematical models
for many problems arising in different fields like mathematical biology, chemical reactions, combustion,
nerve impulses, superconductivity, and so on. In the equation

%—Au:f(x,u) z€eN, t>0, (D
where () is a domain in the space R”, the Laplacian A is used to model (linear) diffusion whereas f(x,u)
is the so-called reaction term. The above equation should be supplemented by boundary and initial con-
ditions. Under rather general assumptions, e.g., if the nonlinear term f(x,u) is Lipschitz continuous, the
corresponding parabolic equation has a unique local solution and in many cases it is also a global (i.e. de-
fined for all ¢ > 0) solution, (see the books [23], [20], where many examples, general results and references
can be found).
The asymptotic (for ¢ — 400) behavior of solutions to (1) is then of interest from both the theoretical
and applied points of view. Convergence to some steady-state solution is one of the possibilities and hence
it is important to know about solutions of the stationary problem

—Au= f(x,u) x €Q, )
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together with some linear (or nonlinear) boundary condition and their stability properties. Very often (but
not always, as we will see below) positive (or non-negative) solutions are the only meaningful ones; this is
the case, for instance, in population dynamics or chemical reactions.

In general it is very difficult to have a good description of the solution set of (2). Existence of solutions
can be proved by using a variety of mathematical tools (sub and supersolutions, degree theory, variational
methods, see [1], [20], [23]) but except in the one-dimensional (or the radial) case, where plane phase
techniques can be used, in general one cannot list all solutions and associated stability properties.

However, some patterns emerging in different problems can be treated in a unified way by using the
same mathematical arguments. One of these situations is the so-called S-type bifurcation curves in the
sense that for some problems where the nonlinear term A f(x,u) depends also on a real parameter A, the
corresponding bifurcation diagram

S-shaped diagram

is such that for some bounded interval of \’s there are at least three solutions. It also happens sometimes
that there is a unique solution for A small and /or large and that the uniqueness proof is easy for A small and
can be rather difficult for A large. The expression S-type bifurcation curve may be misleading in the sense
that in the case of a general domain () the solution set is not actually an smooth curve (or even if it is, one
cannot know how to provide a proof).

Roughly speaking, there are two main methods in order to show existence of S-bifurcation curves. The
first one is to use perturbation methods based on the Implicit Function Theorem as in a paper by Crandall
and Rabinowitz [10]. A more simple, and elegant, alternative approach was given in a paper by Brown,
Ibrahim and Shivaji [8]. They first prove by using sub and supersolutions that there are two different
solutions and then, by using a counting index argument due to Amann ([1], [2]), that if these two solutions
are non-degenerate (in the sense that the corresponding linearized operators are isomorphisms) then there
exists at least a third solution.

An interesting example to which both methods were applied is the semilinear boundary problem

—Au = Ml+u+u®—eu?) in Q,
u = 0 on 01,

where for 0 < € < ¢ for some € “small”, there are at least three positive solutions. The general result in
[8] applies to functions (like f(u) = 1 + u + u?), which are C? and satisfy f(0) > 0 and f"(u) > 0 for
u > 0. It can be shown that similar results can be proved for function f such that f(0) = 0, f is not even
C! and is the sum of a concave and a convex nonlinearities, and also to get rid of the above non degeneracy
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condition (see [16]). The results in [16] apply for example to the problem

—Au = MNu?+uP —eu™) in Q,
u = 0 on 01,

where 0 < ¢ <1 < p <mfor0 < e < €. This is a perturbation of a problem considered by Ambrosetti,
Brezis and Cerami [4] (it is even possible to extend the result to —1 < ¢, see [16]).

In this article we collect several recent results concerning existence of S-type bifurcation curves for
a model problem arising in climatology. However, this model exhibits some rather non-standard features
with respect to the above general picture. First, it is important to consider nonlinear diffusion as well,
generalizing the Laplacian by means of the so-called p-Laplacian A,u = div(|Vu[P~2Vu) for p > 2.
Moreover, the reaction term f(z, u) is in some sense discontinuous in « and it is then convenient to provide
a mathematical formulation in terms of maximal monotone graphs, which is a way of “filling the gap” in
the discontinuity. As a consequence, the model exhibits a loss of uniqueness even for the parabolic problem
(see [12], [14], [25]); however, uniqueness of solutions satisfying some additional interesting property is
obtained ([14]). On the other hand, the unknown function u is a temperature and hence non-positive solution
are specially relevant for the model.

The paper is organized as follows. In section 2 the mathematical model is sketched, together with some
general results concerning existence and properties of the corresponding solutions. Much more information
on these topics can be found in [13], [25] and the references therein. Section 3 contains a sketch of the
results on the existence of S-bifurcation curves obtained in [11] by the authors and section 4 gives an idea
of the paper by Arcoya, Diaz and Tello [6] where results in Section, are improved in the sense of showing
that there exists a continuum of solutions having at least two bending points, something which provides a
more precise setting concerning the S-type curve.

2. The mathematical model.

The so-called energy balance models were introduced independently in 1969 by M. Budyko [9] and W.
Sellers [22] for describing the evolution of the climate. They can be considered as diagnostic models and
provide a qualitative understanding of their evolution. One of its main characteristics is its high sensitivity
with respect to variation of parameters, which can be related with stability properties of solutions and
hysteresis cycles.

The energy balance where the heat variation on the Earth is given by the absorbed energy minus the
emitted energy plus the contribution due to the heat diffusion leads to the parabolic equation

c(x)ur = QS(x)B(u) — Re(u) + D 3)

where u(x,t) is the mean surface temperature in (x,t) € M x (0,T), T > 0, M is a smooth manifold
without boundary modeling the Earth, ¢(z) > ¢p > 0 is the heat capacity, > 0 (which will play the
role of a parameter) is the solar constant, S(z) > Sp > 0 is the insolation function, 5(u) represents the
coalbedo, and the diffusion term D is of the form

D = div(|VulP~?Vu),

the so-called p-Laplacian (p > 2), which includes also (for p = 2) the usual linear diffusion. The particular
instance p = 3 was suggested by Stone in 1972. Different nonlinear terms were proposed for the coalbedo
B(w) in the Budyko and the Sellers models

359



J. I. Diaz, J. Hernandez and L. Tello

M Bv) : Bv)
m —/
‘ v — :
T -10-¢ -10+e
-10
Budyko model Sellers model

(see below for the precise definition of ). The emitted energy also adopts different expressions in both
models: in the Budyko model, R.(u) = Bu + C with B > 0 and C' > 0 following Newton’s law, whereas
R.(u) = 7|u]3u, 7 > 0 from Stefan-Boltzman’s law in Sellers’ model.

3. Multiplicity results: I. Existence of an S-bifurcation curve.
We consider here the stationary problem associated to the parabolic equation (3), namely
—Apu+ G(u) € QS(x)B(u) + f(x) in M 4
where
i) M is a connected, compact C'*° Riemannian manifold without boundary of dimension 2;

i) S: M —Rand0 < Sy < S(x) <5y

iii) G : R — R is an increasing continuous function, G(0) = 0 and lim,_, o, |G(8)| = +00;

iv) f € L*°(M), and there exists C'y > 0 such that

—lIfllee < f(x) < =Cyon M,

v) B : R — 2% is a maximal monotone graph, which is bounded. More precisely, there exist 0 < m <
M and € > 0 such that
Bry={m} if re(-occ,—10—¢)
B(r)y ={M} if re(-10+¢,+00);

Vi) G(—10— &) + C5 > 0
G104+ |fll _ S
Gg(-10—e)+Cy — Sim’

It is clear that condition v) above allows both increasing Lipschitz functions and the corresponding
maximal monotone graph with 5(—10) = [m, M]. We look for weak solutions to (4) in the associated
“energy space”

V ={ue€ L*(M):Vpyue LP(TM)}
where T'M denotes the tangent space to the manifold M. We state the main multiplicity result in [11].
Theorem 1 Under the above assumptions i)—vi) we have:
a) For any Q) > 0, there exists u (resp. u) minimal (resp. maximal) solution to (4) and u < 1.
There exist some constants QQ; 1 = 1, .., 4 explicitly given, such that

b)If0 < Q < @1, then there exists a unique solution u = u,, < —10 which is the minimum of the
associated functional on the set

K={weV: Gw)eL' (M)}
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c) If Q > Qu, there exists a unique solution w = wup; > —10 which is the minimum of the associated
functional on K;
d) If Qs < Q < @3, there exist at least three solutions u;, i = 1,..,3 such that vy = uy > —10,
Ug = WUy, < —10 such that

us < uz < uy on M.

Moreover, uy and us are local minima of the associated functional on V-0 L*° (M) and, forp > 2, on K.

SKETCH OF THE PROOF.
a) Let u,, (resp. ups) the unique solution of problem

—Apu+G(u) = QS(x)m + f(z) in M

(resp. of)
—Ayu+G(u) = QS(@)M + f(x) in M

Itis easy to see that u,, (resp. uys) is a subsolution (resp. supersolution) and this gives existence. Moreover,
a comparison argument shows that u.,, < u < ups for any bounded weak solution.

d) For Q2 < @ < @3, we first prove the existence of two solutions u; and uy which do not cross the
level —10 by finding constant ordered sub and supersolutions

In order to deal with the multivalued 3 we approximate it by the usual Yosida approximation 8y =
(I —(I—=XB)~1), A > 0. We know that, in particular, 3 is a bounded and nondecreasing function for any
A > 0. If 8 is a Lipschitz function, then 8, = 3 any A\. We have thus the approximate problem

(Pé) = Apu+G(u) = QS(x)Ba(u) + f(z) in M.

By using again sub and supersolutions we show the existence of two solutions u7 and u3 to (Pé)
Moreover uy = uy and u3 = us for \ small enough.

Next we show that there is a third solution u3 (different of u3, u3) to (Pg). For this we apply a result
due to Amann [2], which is the following (we use the same terminology and notation in [2]).

Lemma 1 Let X be a retract of some Banach space E and let F' : X — X be a compact map. Suppose
that X, and X+ are disjoint retracts of X, and let Yy, k = 1,2 be open subset of X such that Yy, C Xj.
Moreover, suppose that F(X}) C Xy, and that F' has no fixed points on Xy, — Yy, k = 1,2. Then F has at
least three distinct fixed points x, x1, x5 withzy, € Xy andz € X — (X3 U X,). O

By applying the Lemma in the space L>°(M) and showing that the nonlinear operator defined by
F(v) = (=A, + G)"HQS(-)Bxr(u) + f()) is compact and finding retracts X, X; and X, adequately, we
find a third solution u3 of (Py).

To deal with 3 we need first to obtain a priori estimates for u2 in order to pass to the limit on a sub-
sequence. This can be done by taking u3 as a test function in a weak formulation of (Pé) and there is a
subsequence u, such that u, — u weakly in V and strongly in L?(M). Hence the problem is solved for /3
Lipschitz.

For the general case we consider the family u3 obtained for 35 and prove that there is a u3 such that
u} — uz in L (M) and that uz is a solution to (Pg) such that uz # u1, u3 # u2 and us actually crosses
the level —10. W

4. Multiplicity results: Il. Existence of a continuum of solu-
tions with at least two bending points.

We consider again problem (4) but this time from a slightly different viewpoint. By using global bifurcation
results due to Rabinowitz [21], Arcoya, Diaz and Tello [6] were able to obtain more information on the
structure of the solution set to (4) (see also [3], [5] for previous use of similar ideas).
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The main result in [6] can be described by saying that the solution set is a continuum (in the sense
of topology, i.e. a connected closed subset) of the product space, which is unbounded and having some
additional properties, in particular having more than two bending points. We denote by X the set

YE={(Q,u) € Rx L°(M) : Q > 0, u solution of (4) }.
More precisely we have,

Theorem 2 Under assumptions i)—vi) with f = —C > 0, there exists an unbounded continuum of so-
lutions to (4) having at least two bending points (in the sense that solutions are locally only on one side)
containing the point (0,G~1(=C). O

SKETCH OF THE PROOF.

As before, the result is proved by using a similar approximation procedure. The graph /3 is approximated
by its Yosida approximation 3, for A = % From /3, is bounded lipschitz continuous function and (A, +
G) Y1 QSBn(v) — C) is compact in L>°, we have that ¥ is has an unbounded connected component, C,,,
containing (0, G~1(—C)) thanks to a theorem in [21].

The comparison arguments with auxiliary zero order problem where A, has disappeared are used to see
that the continuum branch is S-shaped.

The second part of this proof consist on the study of the S-shaped branch of ¥,, when n — co. We know
that if Q > @4 then the solution is unique. Moreover, the solutions are uniformly bounded for ) < NN, for
every N. So, the S structure has to be in a bounded rectangle R of Rt x L>°(M). Then C,, "R converges
in the sense of Whyburn [26] to a continuum C. It is possible to show that the bending points are preserved
when passing to the limit.

Again, the comparison arguments with the auxiliary zero order problems used in a) for @ € (0,Q3)
and @ € (@2, Q4) where Q2 < (3 allow us to prove that the branch C' is S-shaped and has at least two
bending points. W

Remark 1

Results of this type were proved by G. Hetzer [17] in case p = 2 and 3 a C'' mapping by using the
implicit function theorem and corollaries due to Amann [2] and Crandall and Rabinowitz [10]. Similar
ideas work for time-periodic problems (see [18]) and also for problems with time-delay and systems ([19]).
There linearized stability and existence of an even number of bending points is also obtained. H

5. Infinitely many solutions for a one-dimensional model.

We consider the one-dimensional boundary problem,
(P) { —(J'|P72u") + G(u) + C € QB(u) =z € (0,1),
u'(0) =d/(1) =0,
where ) > 0 and

(Hy) f is a bounded maximal monotone graph of the Heaviside type defined by

m ifu < —10,
Blu) = [m,M] if u= -10,
M if u > —10,

with0 <m < M,
(Hy) G is continuous increasing function with G(0) = 0 and lims_, 0 |G(s)| = +00.

(H;) G(—10) +C > 0.
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We say that u is a solution of (P) if u € C1([0, 1]) and there exists z € L>=(0,1), z(x) € B(u(x)) a.e.
x € (0,1) such that u verifies the equation —(|u'|P~2u')" + G(u) + C' = Q= in the weak sense.
As a consequence of Theorem 1, we know that
(i) If @ < Q1 or @ > Q- then the stationary problem (P) has a unique solution;
(i) If Q1 < @ < @ then the stationary problem (P) has at least three solutions;

where

g, = EWH+C T h g, = YEI0FC

M m
Theorem 3 (i) If Q1 < Q < Q2 then (P) has infinitely many solutions.

(ii) Moreover, there exists Ko = Ko(p) such that for every K > Ko, K € IN there exists at least a
solution u g which cross the level uxy = —10 exactly K times.

PROOF. We start by computing the intersections between the graphs G(u) + C and Q3(u).
If Q1 < Q < Q- then (P) has three constant solutions

u = G HQm - C) < -10,
Uz = —10,
us = G UQM —C)> —10.

Step 1. We study the phase portrait (u,u') for an auxiliar Cauchy problem. From the equation (P) is
conservative, we get the total energy conservation law

'}

+V(w) = E, VzeR,

for some constant £ and for the following potential function
V| @V =Cu=G), u> 10,
1l (@m—C)u— G(u) —10Q(M — m), u < —10,

u

where G(u) = / G(s)ds. The shape of graph(V') determines qualitatively the phase portrait (u, '), and
0
graph(V') depends on Q).

(@) If Q1 < @ < Q3 then V(uz) < V(uy). There exists a homoclinic orbit with w-limit set equal to ug,
which separates a region of the periodic orbits of the others.

(b) If @ = Q3 then V(uy) = V(us). There exists two heteroclinic orbits with w-limit equal to u; and
ug, respectively.

(©) Q3 < Q < Qs then V(u1) < V(u3). There exists a homoclinic orbit with w-limit equal to ;.

Step 2. (Shooting method). We consider the Cauchy problem depending of the parameter p,
—(Ju'P72u") + G(u) + C € QB(u), =€ RF,
(P W) = 0,
u(0) = p.
Our purpose is to determine the values y such that the solution of (P,) verifies u'(1) = 0.

From the phase portrait, we deduce that the solutions which attain at least two times the value v’ = 0
are the solutions given by the periodic trajectories, that is, the associated ones to energy level V(us) < E <
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min{V (u1), V (ug)}. The idea is to choose the periodic trajectories which start in (u, 0) and arrive to (), 0)
in the time & = 1. That is, integrating the conservation law equation, we obtain

u(l) dS 1
f [
u©0) E£/p(E—V(s)) 0

where the sign of {/p(E — V(s)) is the same of u'. The period of the periodic orbit of the phases portrait
is given by the expression:

5 —10 ds 0 b ds
- / ¢/p(E—V(s)) * /_10 Yp(E-V(s)

Notice that V(b) = V(a) < min{V (uy ),V (u3)}. There exists b* verifying that —10 < b* < ug, V(b*) =
min{V (u1),V (ug)}. If p = 2 and G(u) = Bu where B is a positive constant, it is possible to obtain the
explicit expression for 7, in function of yu, 7 = 7(u). If p > 2 we have obtained the following estimates
for the period 7 of a periodic trajectory which contains the points (a,0) and (b,0) with a < —10 < b,
T(p) < 7(n) < 7m2(p). (See [15] for details). Depending on the point where we do the shot, a and b are
one of these four cases:

()  w0) =p=>  ul)=ua
() w(©) =p=a  u(l) =0,
(I11) w(0) = p = b = u(1),
(IV) u(0) = p = a = u(l).
If p = 2 and G(u) = Bu, the equation
(cases LII) Nt(p)=1 %)
1
(cases IILIV) (N + E)T(,u) =1, (6)
has a solution py forevery N. If p > 2, we analyze, for example, case I. We got 74 (1) < 7 < m(p) Vu E
(=10, b*), where 7, and 7» are continuous and increasing functions on (—10, b*), 71 (—10) = 72(—10) =

and 7 has a vertical asymptote u = b*.
Thus, we get that there exists Vg such that for all N > N there exist uq and p» such that

2
2N +1
Thus, 3p € (p1, p2) such that (N + £)7(p) = 1. We conclude that if Q € (Q1,Q-), then YN > N

there exists a solution of (P) which crosses 2N + 1 times the level —10. Moreover, the obtained family of
solutions is uniformly bounded: u; < u(z) < us.

() = = T2(p2).
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