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controllability of Stackelberg-Nash strategies for some
environmental problems
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Dedicated to the memory of Jacques-Louis Lions

Abstract. Two problems arising in Environment are considered. The first one concerns a conjecture
possed by von Neumann in 1955 on the possible modification of the albedo in order to control the Earth
surface temperature. The second one is related to the approximate controllability of Stackelberg-Nash
strategies for some optimization problems as, for instance, the pollution control in a lake. The results of
the second part were obtained in collaboration with Jacques-Louis Lions.

Sobre el problema de von Neumann y la controlabilidad aproximada de
estrategias de Stackelberg-Nash para cieros problemas de medio ambiente

Resumen. Se consideran dos problemas planteados en medio ambiente. El primero de ellos se re-
fiere a una conjetura propuesta por von Neumann en 1955 sobre la posibilidad de actuar sobre el albedo
para modificar la temperatura superficial de la Tierra. El segundo problema aborda la controlabilidad
aproximada de estrategias de Stackelberg-Nash para la optimizacién en temas tales como el control de la
polucién en un lago. Los resultados de la segunda parte fueron obtenidos en colaboracién con Jacques-
Louis Lions.

1. Introduction

In this paper we consider several environmental problems under the common formulation of a general
control problem of the type

6‘_}161 + A(y) = sources+sinks+actions (D
and with the initial state supposed to be given
y (2, 0)=yo(2). )

Here by actions we mean some active controls and they are the unknowns of the problem. Suppose, for
instance, that we are not satisfied with the initial state and that it would be better to be near a given (ideal
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target state) y'. Given T > 0, can we “drive the system” (by choosing the actions) in such a manner that
y(.,T) let as close as possible to y7'? When our interest is fixed in a concrete target state, y* , the problem
can be understood as a typical inverse problem. Nevertheless, if our interest is in to know the answer for
a large family of target states y” belongning to some functional space X then we arrive to the notion of
approximate controllability in X.

Before to be more precise, let us mention that the AMS Mathematical Classification devotes a special
issue to related problems arising in Environmental economics (see 91B76). Many different examples of
antropogenerated actions are being applying today. Most of them are local actions as for, instance, the
“cloud seeding” (see, e.g., Dennis [6]). In a more global level, the present global actions (such as limitations
laws for the athmospheric pollution of Rio, Kyoto, the proposals by the IPGC, etc.) coexist with some
speculations (see, e.g. the article by Thomson [37]) of unclear interest breaking the Precautionary Principle
(see Harremoés [20]).

The first part of this paper deals with an inverse problem suggested by John von Neumann in 1955

([30D:

Microscopic layers of colored matter spread on an icy surface, or in the atmoshpere above
one, could inhibit the reflection-radiation process, melt the ice and change the local climate.
Probably intervention in atmospheric and climate matters will come in a few decades, and will
unfold on a scale difficult to imagine at present.

The idea of von Neumann was to act on the atmospheric climate by acting on the albedo. This type of
problems corresponds to the case of a single control v, in the terminology of Control and Games Theories.

We present some recent results on a mathematical formulation expressed in terms of the, so called,
Energy Balance Models, introduced, in 1969, independently by M. 1. Budyko and W. D. Sellers. Roughly
speaking, the problem is to find v(x) such that y(7 : v) =y with y(T : v) solution of the problem

Yyt —Ay + By + C = QS(x)(B(y) +v(z)H(y)) in(M—I)x(0,T),
(Pu)§ vy =i onT x (0,7),
y(0.-) =yo() on M — 7.

The meaning of the different terms involved in the above formulation will be given in Section 2.

In the second part of the paper we consider a different environmental control problem involving several
players (non necessarely cooperating among them) according to a formulation introduced, in Economy,
by H. von Stackelberg in 1934 ([36]). As a typical example (an academic scenario) we can mention the
problem of to mantain clean a resort lake represented by an open and bounded set 2 of R?. The state of the
system is denoted by y. It is a vector functiony = (y1,...,yn), each y; being a function of time, ¢, and
space, x € ). The y;’s correspond to concentrations of various chemical products or of living organisms
in the lake 2. The y;’s are therefore given by the solution of a set of diffusion-convection equations. We
assume the presence of several local agents or local plants Py, P, ..., Py. Each plant decide its policy
(here represented by an unknown function w; (¢, x)). We also assume the existence of a different action (the
unknown v (¢, x)) taken by a representative autority, or general manager (leader), in contrast to the rest of
the players (followers).

The general goal of the manager is “to drive the state of the system” at time T, y(T : v), as close as
possible to an ideal state y”, by means of the control v. Each plant has (essentially) the same goal but it
will be particularly careful to the state y near its location. To express that we introduce a smooth function
pi given in Q) such that

pi(x) > 0, p; = 1 near the location of P;. 3)

Then P; will try to choose w; such that the state at time T, y(x, T'), will be “close” to p;y " and to achieve
this at minimum cost. This leads to the introduction of

1 Qa; 2
Jiwswn, o wn) = Sllwill® + 5 o) =y @
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On the von Neumann problem for some environmental problems

where |||w;]|| represents the cost of w;, «; is a given positive constant and ||pi(y(~, T)—-yT) H is a measure
of the “localized distance” between the actual state at time 7" and the desired state y” .

The “local” controls wy, . . ., wy assume that the leader has made a choice v and they try to find a Nash
equilibrium ([29]) of their cost .J;, i.e., they look for wy, ..., wy (as functions of v) such that
Ji(viwi, o Wi, Wiy Wit - wN) S T (VW1 Wi, Wi Wi - WD, )
Vw;, fori =1,..., N.

If w=(wy, ..., wy) satisfies (5) one says it is a Nash equilibrium.

We assume that the leader v wants now that the global state (i.e. the state y(-, 7") in the whole domain
Q) to be as close as possible from y™. This will be possible, for any given function y7, if the problem is
approximately controllable, i.e. if

(6)

y(z,t;v;wy, ..., wy) describes a dense subset of the given
state space when v spans the set of all controls available to the leader.

We give some sufficient conditions for the existence (and uniqueness) of a Nash equilibrium. We shall
prove also that, if there is existence and uniqueness of a Nash equilibrium for the followers, then the leader
can control the system (in the sense of approximate controllability). Most of the results of Section 3 are
originated from the paper [11] written in collaboration with Jacques-Louis Lions. We also present here
a new proof, of a constructive nature, of the approximate controllability. Some remarks on the case of
nonlinear state equations are also given.

2. The von Neumann problem

We shall formulate the von Neumann problem in terms of the so called Energy Balance Models, introduced,
independently by M. 1. Budyko [4] and W. D. Sellers [35] (some pionering model is due to S. Arrhenius
in 1896). Such type of climatological models have a diagnostic character and intended to understand the
evolution of the global climate on along time scale. Their main characteristic is the high sensitivity to the
variation of solar and terrestrial parameters. They have been used in the study of the Milankovitch theory
of the ice-ages (see, e.g. Mengel, Short and North [27]). They study a distribution of temperature, y(z, t),
which is expressed pointwise after some averaging process in space (the spatial variable  is in a small
neighborhood B(z) in the Earth’s surface) and in time (on a small interval (¢t — 7,¢ + 7))

1 t+7

y(r,t) = -——— / T(a, s)dads.
( 27|B(@)] Ji—r JB() (@.5)

The pointwise temperature T'(a, s) is obtained from the thermodynamics equation of the atmosphere primi-
tive equations(see e.g., Lions, Temam and Wang [26] for a mathematical study of those equations and Kiehl
[22] for the application of averaging processes in this context). More simply, the energy balance model can
be formulated by using the energy balance on the Earth’s surface: internal energy flux variation= R, — R+
D, where R, (respectively R.) represents the absorbed solar (resp. the emitted terrestrial energy flux) and
where D is the horizontal heat diffusion. By identifying the Earth’s surface with a compact Riemannian
manifold without boundary M (for instance, the two-sphere S?), the distribution of temperature, y(x,1),
becomes a function of the spatial # and ¢ time variables. The time scale is considered relatively long. The
absorbed energy R, depends on the planetary coalbedo [3. The coalbedo function represents the fraction of
the incoming radiation flux which is absorbed by the surface. In ice-covered zones, reflection is greater than
over oceans, therefore, the coalbedo is smaller. One observes that there is a sharp transition between zones
of high and low coalbedo. In the energy balance climate models, a main change of the coalbedo occurs in
a neighborhood of a critical temperature for which ice become white, usually taken as y = —10°C'. The
coalbedo can be modelled by different monotone increasing fuctions (discontinous in case of Budyko mod-
els and Lipschitz continuous for Sellers model). A more realistic albedo parametrization can be obtained
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by assuming that the coalbedo fuction 5(x,y) also depends on the spatial coordinates of each point of the
Earth (specially on its latitude: see [19], Section 3.3)

Bi(x) o u < U,
Blu) = Bleu) = 3 Bile) + () (Bul@) = i(e)) i S u < ™
ﬂw(fﬂ) u > uwa

with 0 < u; < u, < 1 (the coalbedo values for the ice-covered zone and the free-ice zone whic can be
estimated by observation from satellites).

To simplify the presentation we assume that the internal energy flux variation is simply given as the
product of the heat capacity ¢ (a given constant which can be assumed equal to one by rescaling the vari-
ables) and the partial derivative of the temperature y with respect to the time. In both models, the absorbed
energy is given by R, = Q.S(z)f(x,y) where S(x) is the insolation function and @ is the so-called solar
constant.

The Earth’s surface and atmosphere, warmed by the Sun, reemit part of the absorbed solar flux as an
infrared long-wave radiation. This energy R, is represented, in the Budyko model, according to the Newton
cooling law, that is,

R. =By +C. (8)

Here, B and C' are positive parameters, which are obtained by observation, and can depend on the green-
house effect (however, in the Sellers model, R, is expressed according to the Stefan—Boltzman law R, =
oy, where o is called emissivity constant and now y is in Kelvin degrees).

The heat diffusion D is given by the divergence of the conduction heat flux F, and the advection heat
flux F,. Fourier’s law expresses F, = k.Vy where k. is the conduction coefficient. The advection heat flux
is given by F, = v-Vy and itis known (see, e.g., Ghil and Childress [17]) that, to the level of the planetary
scale, it can be modeled in terms of &, Vy for a suitable diffusion coefficient k,. So, D = div(kVy) with
k = k. + k,. In the pioneering models, the diffusion coefficient k was considered as a positive constant.

A mathematical study of actions on the emmisions can be found in Diaz ([9]). Concerning the von
Neumann conjecture, a possible formulation of the action proposed on the coalbedo could be the following

ﬂi u < Uj,
Blavii o) = & fiot (22 ) (Gt o))~ 6) w0 S0 S ©)
Buw + v(x)xw(x) U > Uy,

with 3,, > (; constants and with y,, () being the characteristic function of a small region w where the
albedo modification is taking place. Notice that we can write 5(z, u: v) = f(u) + v(2)xw () H (u) with

0 u < Uj,
H(u) = (u“ __“u> ui < u < g, (10)
1 U > U

Some additional conditions are neded in order to simplify the formulation of the question. The first one is
that we shall assume that the local modifications on the albedo does not introduce any important change
on the region occupied by the polar and perpetuum ices (i.e. onthe set Z = {x € M : y(z,0) > wu;}).
Our arguments will be valid also for the opposite case in which the modifications are made unically on a
neighborhood of the region {z € M : y(,0) < wuy}. So, in the rest of this section we shall assume that
w=M-1.

Given a target temperature function y” (z) (for instance, the temperature distribution before the indus-
trial era), we consider the problem of to find v(x) such that y(T : v) = y%, with y(T : v) solution of
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yi — Ay + By + C = QS(@)(B(y) + v@)H(y)) in (M —1) x (0,T),
(Po)$ ¥y =i onT x (0,T),
y(0,-) = yo() on M -1,
where I' = 9Z. Our main goal is to give a positive answer by means of a suitable application of a fixed
point argument.

We point out that the controls v (i.e. the albedo modification) must satisfy the constraint S(y) +
v(z)H(y) € [0,1]. If, in particular, we want to reach a target temperature function y”'(x) considerably
less that the present (i.e. without any voluntary action: v = 0) then the relevant controls must take negative
values (otherwise there is a growth of the temperature). So we shall assume that

v(z) € [-p,0], x € M — I, with u = 8, — ;. (11)
Notice that by the strong maximum principle we can assume that y(x,t : v) > wu; for any control v and
almost every point (z,t) € (M —7) x (0,T).
It is important to see that the target state y* () must be in good correspondence with the limitations on
the controls. So, by the maximum principle, given v verifying (11), necessarily

y(T:—p) <y(T:v) <y(T:0)in M-I,
and so, if y(T" : v) = y”, we get the necessary condition on y”":
y(T:—p) <y" <y(T:0)in (M -1).

Our goal is to made explicit some class of functions y” in the attainability set associated to such controls.
Notice that for fixed 7,8 > 0, if we assume y? = w; on T, the existence of the searched control v(z) is
reduced to the existence of a fixed point for the map v — T v given by

_ (T :0)+By(T:v) 4+ C+QS(x)(wlyy(T : v) +6) — BT : v))) — Ay
QS(x)(H(y(T : v)) +vy(T : v) +0)

Indeed, if v is such fixed point then we get that Ay” = Ay(T : v) and functions 7 and y(T : v) satisfy
the same boundary conditions. So we deduce that y” = (T : v) in M — T.

Notice that parameters v and & > 0 have been introduced in order to avoid the indetermination arising
when the denominator of 7 v vanishes (a more technical reason will be mentioned later). We shall take
~ > 0 large enough insuring that function v — v(yy(T : v) + ) — B(y(T : v)) is non-decreasing when v
verifies (11). By the maximum principle, y(7 : v) depends monotonically from v and so it will be enough
to assume that

ﬂw B ﬂz

(Tw) () ,x€M-T.

5> . (12)
U — Uj
To keep positive the denominator of 7 we shall assume that
&> y(—uy). (13)

A result giving a positive answer to the von Neumann conjecture is the following:

Theorem 1 Assume (12), (13) and let yo € C**(M — T) verifying the compatibility condition yo = u;
on I and such that

Ayo — Byo — C + QS(z)B(yo) <0 on M —T. (14)

LetyT € C*%(M — T) such that y* = u; on T and satisfiyng that
Ay(T :0) < AyTon M — T, (15)
Ay" < AY(T : 0) + QS(x)(Buw — Bi) (H(y(T : 0)) + ) on M —T. (16)

Then, there exists v € C%%(M — I) with v(z) € [—pu,0], Yo € (M — T) such that y(T : v) = yT in
M-1T.
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PROOF. Let us prove that operator 7 is monotone but reversing the order. Let v; < vo.Then

yie = Ayr + Byr + C = QS () (B(y1) + vi(2)(H(y1) +0)) < QS(2)(B(y1) + v2(2)(H(y1) +9))

and so, by the comparison principle for the problem satisfied by y-, we deduce that y; < y2 on (M — 7) x
(0,T). Let us see that, in fact, we also have that y1; < yo;. To do that, we approximate 3 and H by smooth
functions (which we denote again by 8 and H). By differentiating in the equation we get that

Yiee — Ayir + By = QS(2)[8' (1) + v1 (@) H' (y1)]y1:-

By the maximum principle and assumption (14) we get that y;4(¢,v) < 0 for any v and almost every
t € (0,7). In consequence, since §'(r) + v(x)H'(r) is decreasing when v(z) € [—pu,0] and r > wu;, we
deduce that
Yire — Ay + By = QS(2)[B'(y1) +vi(x)H' (y1)]y1e
< QS(@)[B'(y2) + vi(2) H' (y2)]y1:-

On the other hand, since y1; = yar = 0on T X (0,7") and y1+(0, ) < y2:(0, ) forx € M —Z, from
the comparison principle,we conclude that y;; < yo; in (M —Z) x (0,T). Notice that this inequality
remains true when passing to the limit in the process of approximation of 5 and H. Now, to check that 7
is monotone it is enough to observe that from (12) and (15) we deduce that

(T :v) + By(T : v) + C + QS () (v(yy(T : v) +0) = B(y(T : v)))
< (T :0) +By(T : 0) + C — QS(2)B(y(T : 0) = Ay(T : 0) < Ay”,

and so, the numerator of 7 is less or equal to zero and the conclusion is obtained from (12) and the mono-
tonicity of H(y(T : v)) with respect to v.

Now, condition (15) implies that 7 (—u) < 0 and assumption (16) leads to —p < T (0). Then, the “interval
of functions” [y, 0] = {w € C®*(M — ) with —pu < w(x) < 0,V € M — I} is invariant by T, i.e.
T ([=p,0)) C [, 0].

Finally, the solution regularity L>(0,T : W2?(M — 1)) N HY(0,T : L>*(M — 1)), for any p > 1,
implies that T is relatively compact and the conclusion is obtained by the Amann fixed point theorem
[1]. =

Remark 1 For some related results for other inverse problems see Choulli [5] and Zeghal [38] (see many
other previous works in their list of references). We also point out that the sucesive iterations of the operator
T applied to v = 0 and v = —pu, respectively, lead to a constructive algorithm of the fixed points of 7 (non
necessarily be unique). W

Remark 2 Notice that, by taking the inverse operator to the Laplacian (with the boundary condition given
in (P,)) in both terms of the condition (15) we get that necessarily y(T : 0) — § < yT < y(T : 0) in
(M = I). with () == (B — B;) (=A) QS (2)(H(y(T : 0)) +6). ™

3. The Stackelber-Nash strategies for the approximate con-
trollability in some parabolic problems

Let A be a second order elliptic operator in {2 :

N N
J— a .. —ago . _699
A(p - = i ]§:1 83}1 (ah] (x) 8%) + ;:1 al(x) 8xl + a0($)¢ 5 (17)
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where all coefficients are smooth enough and where

N N
Z aij(x)&&; > aZf?, a>0,zeN (18)
3,j=1 i=1

We assume that the state equation is given by

N
dy
E+Ay:vx+;wixi (19)
where
x is the characteristic function of O C Q2 } 20)

X 1s the characteristic function of O; C Q.

The control function v(x, t) of the leader is distributed in O and the control function w;(x,t) of the
follower “i” is distributed in ;. We assume that the initial state is

y(x,0) =0,z € Q. 2D

Since the system is linear there is no restriction in assuming the initial state to be zero, in the same way as
there is no restriction in assuming in (19) that there is not any source neither sinks (as a function f(x,t)).
We assume that the boundary conditions are

y=00n90 x (0,T). (22)
We introduce now functions p; such that
pi € L>(Q), p;i >0, (23)
p; = linadomain O; C €, )

and we define the cost function .J;
17 9 Q; T2
Ji(viwy, ..., wN) = 3 w; dxdt + 5 ||pz~y(T;v7w) — piy H , 24)
o Jos
where ||-|| is the norm in L?(£2). We assume that v € L*(Ox(0,T)),w; € L?*(O; x (0,T)) and that

y(x, t; v, w) is the solution of (19), (21), (22).
Givenv € L?(O x (0,T)), we now define

w ={wi,... ,.wN} , a Nash eqyilibrium for the cost } 25)
functions .J1, ..., Jy given by (24).
We will show that this Nash equilibrium can be defined as a function of v :
w =w(v) orw; = w;(v), i =1,..,N. (26)
We then replace in (19) w; by w;(v) :
Jdy al
o T Ay =ox+ Y wi(o)y @7)

i=1
subject to (21) and (22). System (27), (21) and (22) admits a unique solution y(x, t; v, w(v)). We have
Theorem 2 Assume
the set of inequalities (5) admits an unique solution (a Nash equilibrium). (28)

Then, when v spans L*(O x (0,T)), the functions y(-,T;v,w(v)) describe a dense subset of L*(). In
other words

there is approximate controllability of the system } (29

when a strategy of the Stackelberg-Nash type is followed.
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3.1. A non constructive proof of Theorem 2.

We start with some considerations about the Nash equilibrium. We have (5) iff

T
/ / wiwidrdt + ai/ o2 (y(T;v,w) —y1)gs(T)dx = 0, Vay, (30)
0 O; Q
where ¢; is defined by

o P .
% + Agi = wixi, inQx(0,7),
7:(0) =0, in Q, @D
9; =0, on 90 x (0, 7).

In order to express (30) in a convenient form, we introduce the adjoint state p; defined by

_ I

+ A*p; =0 inQ x (0,7),
pi(x, T) = p3(2)(y(a, T;0,w) — yT(x)), inQ, (32)
pi =0, on 90 x (0,7T),

where A* stands for the adjoint of A. If we multiply (32) by y; and if we integrate by parts, we find

T
[ Ao w) — D@ = [ [ pidede,
Q o Ja
so that (30) becomes
T
/ / (w; + a;pi)widzdt = 0, Yy,
o Jo;

i.e.
w; + a;pixi = 0. (33)
Then, if w = (wy, ..., wy) is a Nash equilibrium, we have
Ay N
E+Ay+2aipixi:vx, inQx(0,7),
i=1
—a—lj:+A*pi:0,i:17...,N7 in Q x (0,7), 3
y(0) = 0, pi(2,T) = pi () (y(2, T50,w) —y"(2)), inQ,
y=0.p =0, on 90 x (0,T).

We recall that here we are assuming the existence and uniqueness of a Nash equilibrium (see (28)).
PROOF OF THEOREM 2. We want to show that the set described by (-, T;v) is dense in L?(f2), where y is
the solution given by (34) and when v spans L?(O x (0,T)). We do not restrict the problem by assuming
that y” = 0. Let f be given in L2(£2) and let us assume that

(y(-,T;v), f) =0, Yo € L*(2). (35)

We want to show that f = 0. Let us introduce the solution {¢, %1, ..., 1%y} of the adjoint system

_1;_9; _|_ A*(p = O7
Oy
5 T Ay = —aipxi,

@(T) = f+ 3 9:(T)p},
¥:(0) =0,

p=0,1; =0in 90 x (0,T).
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We multiply the first (resp. the second) equation in (36) by y (resp. p;). We obtain

~(+ Doty // —+Ayd:cdt+2wz (T
+Z/ /dh +A*p, dadt = Zal/ /@pzxzdxdt

Using (34) (where y” = 0) (37) reduces to
T
+/ / poxdzdt = 0.
o Ja

@=00n0 x (0,T).

Therefore if (35) holds, then

(38)

(39)

Using the Unique Continuation Theorem (see Mizohata [28] or Saut and Scheurer [34]) it follows from

(36)1 and (39) that
p=00n0x(0,7).

Then (36)2, (36), and ¥; = 0in 9Q x (0,T) imply that
Y; =0inQ x (0,7),Vi=1,...,N,
so that (36)3 gives f =0. H

3.2. A criterion for the existence and uniqueness of Nash equilibria.

We consider the functionals (24). Let us define

Hi=L*(0; x (0,T)), H =L, M,
Liw; = 5;(T) (cf. (31)) which defines L; € L(H;; L*(2)).

Since v is fixed, one can write

y(T;v,w) ZLwl—kz , 27T fixed.

With these notations (24) can be rewritten

1 2 0%
Ji(v;w) = 3 lwill5,, + > ﬂz(z Ljw; =n")
J

where nT = yT — 7. Then w € H is a Nash equilibrium iff
(wivl/U\i)Hi + az(pl(z ijj - nT)aszﬂ/U\z) = OaV'L = 1a --va VU)A,
J
or
N
wi + i L} (p} > Ljw;) = euLi(pin"),¥i=1,..,N,
=

(where L€ L(L?*(2); H;) is the adjoint of L;), or equivalently

{ Lw =givenin H, L €L(H;H)
(Lw), = w; + a; L} (p? 1 Lyjw;).

Then we have

(40)

(41

(42)

(43)

(44

(45)

(46)

(47)
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Proposition 1 Assume that
a; = a, Vi, (43)

and that
allpi — ijLOO(Q) ||pi||Loo(Q) is small enough, for anyi,j =1, .., N. (49)

Then L is invertible. In particular there is a unique Nash equilibrium of (24).

Remark 3 Of course, if N = 1 the situation is much simpler. In that case

(Lw, w) = [Jun]]® + ay ||pr Liwn |

Hence L is coercive and so the existence and uniqueness of a minimum w of J; (v;w), when v is fixed, is a
classical result. M

PROOF OF PROPOSITION 1 In the general case IV > 1, one has

(Lw, w) ZHw,HH —|—Zal p,ZL wj, piLiw;). (50)

Then one can write

szL w;

Applying Young’s inequality it follows that, under hypothesis (49), L is coercive, i.e.

+a Z 2(Ljwj, piLiw;). (51

3,j=1

(Lw,w) ZHwZHH +a

(Lw,w) >~ ||w||3{ , for some v > 0. (52)

The conclusion is now consequence of the Lax-Milgram theorem. MW

Remark 4 Assumption (49) is certainly satisfied if p; = p Vi, in which case there is only one function
J; = J1Vi, and we are back to Remark 3 (with w = (wq, ..,wy)). W

Remark 5 It is possible to show (see [11]) that the assumptions are optimal in some suitable sense. See
also [32] for some related results. W

Remark 6 It is easy to see that, in fact, there are infinite controls v leading to the approximate controlla-
bility. B

3.3. The optimal leader action: a constructive proof.

Given § > 0, we want to find the best leader control v in the sense of solving the problem

1

inf —/ v dwdt, y(T,v) € y" +6Br2q) ¢
veL2(0x(o,T)){2 (’)><(0,T)|| y(T,v) €y 12(Q)

where B is the unit ball of L?(Q).
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Theorem 3 i) The minimum v is given by v = X from the unique solution {y, p1,p, {1} of the “Opti-
mality System”

0

Yy Ay + aap1x1 = vy,

ot,
op1

t
4 —%—FA*(,D:O
ot
W+A¢l = —ai1pxi,
y=m=¢ =91 =00n%,
o(T) = f, pi(T) = p}(y(T;v,w1) —yT), y(0) = 0,41(0) = 0,

with f given as solution of the minimization dual problem
T
— dzx ;.
L2(Q) /Q Ty }

. 1 2
inf - / dxdt + 6 Hﬂ
FEL*(Q) {2 0x(0,T) i

ii) The minimization dual problem has a unique solution.

+ A*p1 = 0,

PROOF. 1) Let

F(v) = —/ |v)? dedt
2 Jox(o,1)

and
G(f) = 0 iffGyT+6BL2(Q)
T | +oco otherwise on L?(Q)

Then, an equivalent formulation is

veLQ(gli(O,T))(F(v) +G(Ly))

where Lv = y(T : v). By Fenchel and Rockafellar’s (see e.g. Rockafellar [33]) duality

DEL2(1(£1£(O’T))(F(’U) + G(Lv)) = — feianf;m(F*(L*f) +G*(=f)),

where L* is the adjoint operator and F'* the conjugate function

F*(p) = sup((¢, @) — FI(9)).

But it is easy to check that

F*(p) =9, G*'(f) =6 HfHB(Q) + /Q fytdz, and L* f = px

which gives conclusion i). The proof of ii) follows from some well-known arguments (see [31], [14]
and [12]) and comes from the fact that I(f) is is strictly convex, continuous and coercive (by the unique
continuation theorem: see [14] and [12]). B

Remark 7 As in Lions [24], f is characterized as the unique solution of the Variational Inequality

W@ ) —y" F-H+3|f]

n 2
2@ O fllpzy = 0,Vf € L7(©). W
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Remark 8 The approximate controllability result seems to be true for some non linear state equations
when operator A is given by

Ay = —Ly + f(y), or Ay = — Ly + divf(y),
with f (respectively f) sublinear at the infinity: i.e.
lf(8) < Ci1+Cals|, VsER, |s|>M

(with analogous condition for f). Some different methods can be applied to show this type of results:
controllability via lienarisation and fixed point arguments for the state equation (see [21], [14] and [12]).
Another possibility is to show the controllability via some penalized optimal control problem as, for in-
stance, the associated to the functional

1 9 k T
Ji(v) = 3 vl 0% (0,my) + 5 |y(T:0) —y ||L2(Q)
and passing to the limit, as k increases to infinity. This idea due to Lions [23] can be also applied in [15]. B

Remark 9 In the case of non linear state equations with a superlinear term (e.g. f(s) = A |s|m_1 s with
m > 1) it may arises the, so called, obstruction phenomenum, implying the non approximate controllability
for general yT. This was shown by A. Bamberger (see [21]) by means of an energy method. Another
proof can be found by means of the construction of universal super and subsolutions over the exterior to the
control subdomains (see [7] and [12]). This kind of technique applies to the Burger equation (see [8]) and
is inspired in the pionering work by Brezis and Lieb [3]. B

Remark 10 Some related numerical experiences can be found in [13]. In particular, it is illustred there
how the cost of control decreases with complexity (a philosophy which can be shown rigurously in some
cases: see [10] ).
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