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Modelling of convective phenomena in forest fire

M. I. Asensio, L. Ferragut and J. Simon

Abstract. We present a model coupling the fire propagation equations in a bidimensional domain
representing the surface, and the air movement equations in a three dimensional domain representing an
air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three
dimensional convective model governed by a bidimensional equation verified by a stream function. We
also present the numerical simulations of these equations.

Modelizacion de la conveccion en incendios forestales

Resumen. Presentamos un modelo que acopla las ecuaciones de propagacién de incendios en un do-
minio bidimensional que representa la superficie y las ecuaciones de movimiento del aire en un dominio
tridimensional que representan una capa de aire. Como el grosor de la capa de aire es pequefio com-
parado con su longitud, un andlisis asintético da un modelo convectivo tridimensional gobernado por una
ecuacion bidimensional sobre una funcion de corriente. Ademas se presentan simulaciones numéricas de
estas ecuaciones.

1. Introduction

We present a model coupling the fire propagation equations in a bidimensional domain representing the
surface, and the air movement equations in a three dimensional domain representing an air layer. As the
air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional
convective model governed by a bidimensional equation verified by a stream function k. We also present
the numerical simulations of these equations.

More precisely, we compute explicitly the three dimensional air velocity as a function of the vertical
coordinate z, the stream function k(¢, x), the surface temperature ¢(t, 2) and the surface height h(z), where
x = (x1, z2) are the horizontal coordinates.

The combustion model presented here is based on the model proposed in Asensio and Ferragut [1]
incorporating solid phase and gaseous phase. The convection model is an adaptation to the forest fires
convective phenomena of the shallow water models proposed in Bresch et al. [3].

2. Combustion equations

Lets d C R? be a bidimensional bounded domain, representing the projection of the three dimensional
geographical surface, x be any of its points and ¢ be the time. We use small letters for quantities concerning
the bidimensional problem, and capital letters for the tridimensional problem.
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Fire development is described by the amount of solid fuel, gaseous fuel and oxygen, and also by the
temperature. We now give the corresponding nondimensional equations.
The solid fuel amount y, is driven by
Vs
a (1)
where ¢ is the temperature and 9; = 9/0;. The right-hand side represents the solid fuel transform into

gaseous fuel due to the pyrolysis.
The gaseous fuel amount y,, is driven by

Orys = _ﬁsy367

g s

atyg +uv- szg - ’ngzyg = _agygyoe_? + ﬂsyse_ q (2)

where v is the wind. The first term of the the right-hand side represents the amount of gaseous fuel burned
with the oxygen. The oxygen amount y, is driven by

_Je

NYo + v+ Valo = Kolulo = —QoYgYoe 9 . 3)

Finally, the temperature ¢ is driven by the equation

3 _Js
Oq+v-Vuq—Vy- (f%qq VmQ) = 1YgYoe 9, (4)
where radiation is modelled as in Weber [7].
We complete these equations with the following initial conditions

Yslimo = Yss Yglio =0s Yolyg = Xo  dJs_g = ¢" (5)

where 40 is the initial solid fuel amount, ¢° the initial temperature, that we suppose known, and  is the
initial oxygen amount, that is constant; and with the boundary conditions

— _ _ 0
yg|3d - 07 y0|3d - X7 q|3d - q |3d (6)
Greek letters represent several strictly positives coefficients, non depending on t or .

Remark 1 There is no boundary condition on ys because (1) is an ordinary differential equation in ¢, for
fixedrandq. W

3. Convection equations
Lets consider now the three dimensional domain
D= {(z,2):zed, h(z) <z <4}

representing the air layer. We assume that the ratio of the height to the width, , is very small, and the height
of the surface at point x, h(z), is smaller than §. We denote by an index ,, the three dimensional operators,
thatis, V. = (9, 0p,y,0:) and Ay, = 02, +02,,, + 02..

The air velocity U = (Uy,Us,Us) and the potential P satisfy the Navier—Stokes equations. On one
hand, the momentum equation, reads

1
KU +U Vool = 5=V + Vi P = ¢Qe (7)

where () is the temperature and e3 = (0,0, 1). The right-hand side represents the Archimedes force due
to the expansion under the effect of heat, which has the form ¢(Q — Qo). Notice that the part of the force
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corresponding to the reference temperature Qg is ¢Qoes = V. (¢Qoz2), that allows to include it into the
potential term V., P. The density variations due to the temperature have been neglected into the other
terms of the equation. On the other hand, the air compressibility is also neglected, so that

Ve. U =0. (8)

In order to specify the boundary conditions, we decompose the boundary into 0D = S U AU L, where the

Z
)
X2
h(x) ok
X
X
X2
X

Figure 1. Domains in 2D and 3D.

surface S, the air upper boundary A and the air side boundary L are respectively

S={(z,2):xz€d, z=h(z)}, A={(z.2):2€d, 2=},
L={(z,2): 2 €dd, h(z) < z < d}.

On surface S,
oUu

8_N tang = <U7 (9)

where IV is the inner unit normal vector field to 9D, and the subscript tang denotes the tangential component,
thatis, fiang = f — (f + N) N for any vector field f. The first condition in (9) express that the air does not
cross the surface, and the second condition express that the traction force is proportional to the tangential
velocity. Indeed, the tangential stress o N |mng is equal to cg—JL\’, |mng whenU - N = 0.

On the air upper boundary A,

U-N=0,

| _
ON ltang N

that is, the air does not cross this boundary and there is no traction forces. Since this part of the boundary is
horizontal, this condition reads U3 = 0 and V,U; = V.U = 0.

U.N=0, (10)
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On the air side boundary L,
U], = (0m,0) (11)

more precisely U(t,z,z) = (vm(t,2),0) where v, is the meteorological wind, that we assumed to be
known, horizontal, non depending on z and with null flux, that is,

0,V = 0, / (0 —h)vmnds=0 (12)
ad

where n = (n1,n2) is the inner unit normal vector field to Jd.
We complete these equations with the initial condition

Ulmo = Uo (13)
where Uy is the initial velocity, that we assume to be known.

Remark 2 The equations (7) to (13) are well posed: for given @), v,,, and Uy, there exists a solution (U, P)
if the data are “smooth enough”, that is, if the data are given in appropriate functional spaces; the solution
is unique (up to an additive constant for P) if the data are “small enough ”. This can be proved as in Bresch
etal., [3], where a similar problem is considered. W

Remark 3 We prove in § 4. that hypothesis (12) is needed when the condition on L is given by (11).
Nevertheless, it is not necessary that the meteorological wind be neither horizontal, nor independent on z ;
that is, we replace (11) by U|;, = w,, with u,, such that fL Um + N dS = 0.

But, in the asymptotic convection model of § 5. the condition on L will only concern the normal compo-
nent of the vertical average of the horizontal velocity, cf. (24) (because equation (7) degenerates, on vertical
direction becomes (19) and (20)). The vertical component and vertical variations on L of the meteorological
wind, have not influence on the model to be solved, and therefore they can be chosen nulls. W

4. Horizontal flux

An important property of such a velocity field is that its horizontal flux is incompressible. More precisely,
we distinguish the vertical velocity from the horizontal one denoting

V =(U,Uz), W=Us
and we define the horizontal flux on a point 2 € d at time ¢ by

5
Vi(t,z) = /h( )V(tmmz) dz. (14)

The incompressibility and the fact that the air does not cross .S and L involve
V.- V=0 (15)

that is, this flux is incompressible. Indeed, (8) reads V, - V + 9. W = 0, and thus

5 s
V- V(t,e,z)dz = Ve V(t,z,z)dz — V(t,x, h(zx)) - Vh(x)
h(z) h(z)

= -W(t,z,0)+W(t,z, h(z)) = V(t,z,h(x)) - V,h(z)
= (U N)(t,2,6) +c(@)(U - N)(t.2, h(z))
that is null due to (10), that shows (15).
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Remark 4 Lets verify that the hypothesis (12) is necessary for the equations (8) to (11) have a solution.
By the Stokes formula and (15), [,V +nds = [, V, -V dx = 0. Then it follows (12) as V = (6 — h) vy,
ondddueto (11). H

Remark 5 As the meteorological wind is almost constant on a fire scale (it is an expected wind, not a
measured wind) we can take it in general in the form
cpm(t)
t,r) = —F~ 16
Um( 7$) (5 _ h(x) ( )

where m is the “global” expected wind in the area and cp is the average value of 1/(6 — h) on dd, that is
cp = [y,1/(6—h)ds ] [,,ds,and so cp/(6 — h) has an average 1. Then vy, is the “local” corresponding
wind, adapted to the surface ; Moreover, it verifies the hypothesis (12) as [, gqMds = 0.

Particularly, the hypothesis (12) is satisfied for all meteorological constant wind v,,, when the surface is
flat, thatis when h = 0, and thencp = landm =v,,. N

5. Convection asymptotic model

We now use the fact that the layer thickness where the convective air motion due to the fire takes place , is
small in relation to its width, that is

0K 1. (17)
We also assume that the wind in not too strong, more precisely
§’Re < 1. (18)

Preserving only the dominant terms and rescaling P, then equations (7) and (8) give, as we see on next
section,

-02,V +V,P =0, (19)
0.P = )\Q, (20)
Ve V+0,W=0. (21)
where A = pRe. The conditions (9), (10) and (11) give, particularly,
2,V =V, (VVIW).N=0 on S, (22)
0,V=0, W=0 on A, (23)
Ven=(5—h)v,-n on dd. (24)

Remark 6 Equations (19) to (24) are well posed : for given ) and v,,, there exists a unique solution
(V,W, P) (except for P which is unique up to an additive constant) that we compute on sections § 8.
and9. H

6. Justification of the asymptotic analysis

Obtaining the incompressibility equation (21)
Notice that z ~ 1 (as the characteristic length is the one of d) and z ~ 4, so
Ve~1, 9. ~1/4. (25)

For an appropriate choice of the characteristic velocity (V, W) ~ 1, so the incompressibility condition (8),
whichreads V, - V 4+ 9, W = 0, gives
V~l, W, (26)

and (21) holds.
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Obtaining the vertical diffusion equation (19)

We now consider the operators appearing in the momentum equation (7). First ¢ ~ 1 (for an appropriate
choice of the characteristic time), so 9; ~ 1. Second, with (25) and (26), U -V,. =V -V, + W9, ~ 1.
Moreover, (25) implies, A,. = A, + 92, ~ 92, so with (18), A,./Re ~ 1/(§°Re) > 1. All this gives

1 1
Vo — — Ay ~——02 2
O+ U -V, =l Reau (27)

As the horizontal component of (Jeg is null, then the horizontal component of (7), in the limit, is
L
—ﬂasz +V,.P=0. (28)

Here, the term V,, P cannot be neglected because on the contrary we would have 82,V = 0, and V would
be determined by the conditions on S and A, so it would not depend on either meteorological wind or

temperature, and this is absurd. The term ﬁ@sz cannot be neglected either because on the contrary, V'

would be solely governed by the incompressibility equation ant it would be partly indeterminate. As no
term of (28) is negligible, this equation can be written as (19) using ReP a the new potential.
Obtaining the hydrostatic equilibrium equation (20)
From (27), and the above rescaling of P, the vertical component of (7) in the limit gives

—02,W +9.P = )\Q. (29)
From (25) and (26), 82,W ~ 1/§. From (19) P ~ 1/ and then 9, P ~ 1/§3. As this term control the
previous one, (29) reduces to 9, P = A\(Q, that is (20).

Obtaining the conditions on the surface (22)

The slide condition in (9) reads U - N = V - N, + WN, = 0 where N, = —V,h/C, N, = —1/C and
C = (14 |V h|?)~"/2. As h ~ 4, we have

N, ~6, N,~1.
From (25) and (26), it follows that V'« N, ~ W N, so the slide condition is preserved. It can be written

(V,IW)«N =0.
Lets consider the traction condition in (9), where

e = (5 = (5 ) % 3~ (5 ) %)

ou
ON

As9d/ON =N-V,, =N, -V, + N,0, ~ 9, thenU/ON N ~9,U-N =9,V -N, +9,WN, ~ 1
and then OU/ON|iang ~ (9.V,0). Moreover U ~ (V,0), so the traction condition OU/ON |tang = (U
gives to the limit 9,V = (V.

Obtaining the equilibrium conditions on the air (23)

It is exactly condition (10) since A is an horizontal plane.
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Obtaining the lateral flux condition (24)

The equality with the meteorological wind (11) particularly shows that V' = v,, on L. Integrating over z
between h(z) and 4, for a fixed z € 9d, it follows V = (6 — h) vy, and so V «n = (6 — h) v, » n, that
is (24).

We cannot impose any other conditions on L because, for fixed () and x, equations (19) and (20)
determine V (x, z) up to a polynomial function az? + bz + ¢, and conditions (22), (23) and (24) determine
a, b and ¢. Likewise, (21) and (23) determine W (z, z).

The approximation of the solution of the convective equations (7) — (13) by the solution of (19) — (24) is
only possible up to a limit layer on L. This limit layer has no physical meaning. As an evidence notice that
given a domain d’ D d such that dd’ # dd, there is no limit layer on d : it has been “displaced” on d’. The
limit layer appears because, on a thin air layer, the vertical wind variations are asymptotically determined
by the conditions “on the upper and lower boundaries”. In more mathematic terms, the operator degenerates
into the vertical direction, and this involves a loss of boundary conditions on the vertical boundary. The
limit operator does not contain the horizontal diffusion term that allowed to fit the initial problem solution
to any given boundary condition.

Remark 7 The previous asymptotic analysis can be mathematically justified when 0Re <« 1, which is a
more restrictive condition that (18). The idea of the proof is to use a vertical scaling with rate ¢ in order to
get a problem in a fixed domain independent of & with coefficients proportional to some powers of d, for
which convergence follows from some energy estimations.

This study is made in Bresch et al. [3] for a similar model to the one described here. In fact, the problem
described there is a model of a lake, where the depth (6 — h in the present model) is null on dd (the lake
shore). This involves to use weighted spaces, so the demonstration is more complex than in the present
case. On the contrary, there is no limit layer, since depth is null on dd, so the demonstration is more simple
than in the present case.

This is also solved in Bayada et al. [2] for a similar model of lubrication. H

7. Coupling with temperature

The temperature ¢ considered in the combustion equations (1) to (3) is obviously the value of () on the
surface, that is ¢(¢,z) = Q(¢, z, h(x)). We assume that

Q(t,2,2) = q(t, ) (30)

6—z
5—hia)
that is, the air temperature linearly decreases with the height and vanishes on the upper boundary of the air
layer.

The velocity v considered in the combustion equations is the value of V' on the surface, that is the
horizontal component of the wind velocity U on the surface; in other words,

v(t,z) = V(t,x, h(x)).
Indeed d is the projection of the surface S (that is a R® surface) on the z-plane, so the propagation velocity

v in d, at a point x at time ¢, is the projection on .S of propagation velocity U, that is V/, at point (x, h(x))
and at time .

Remark 8 The hypothesis (30) about the linear variation of the temperature as a function of height z could
be justified by an asymptotic analysis of heat diffusion equations. H
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8. Solution of the convection asymptotic model

Lets compute explicitly P(t, z, z) and V (¢, z, z) in terms of z, ¢(t, z), h(x) and V,p(t, x) where p is a 2D
potential.
For a fixed x, equation (20), that is 9, P = AQ, with ) given by (30) provides

P(t,z,z) =p(t,z) + %(52 — %22) (31)

for some p(t, ).

Equation (19), thatis —92,V = V, P, together with conditions 9,V (t, z,d) = 0 and 8,V (¢, x, h(z)) =
¢V (t,z, h(x)) included in (23) and (22), then provides

V(t,z,2) = (32° — 62 — 0% (2) + (0 + Eh(z) — £6) Vaup(t, x)
+ (=2t + 5027 — $6%2 + h'(2) (32)
— 103 (2) (0 + &) + L6517 (2) + £6°h(2) — $£8°) VL q(t, 2)

where M(t.2)
1 N o Aq(t,w

Notice that q(¢,2) = (A/d) Q(¢,,0), ¢f (30). Up to the factor A/4, it is the temperature at a height z = 0.

&=

9. Stream function 2D equations

We now assume that
dd is connected. (34)

Since it is bounded, d is then connected, simply connected (this means that it does not possess “holes” be-
cause dimension is 2) and it is “inside” its boundary dd. The hypothesis (12), that is fad(é—h) U ends = 0
gives the existence of a function v}, such that

Vayevs, =0, v -n=(5—h)vy,-nondd (35)

Since V.-V = 0, ¢f (15), it follows that V, - (V — v¥) = 0 therefore, again thanks to (34), ¢f. for
example Simon, [6], there exists a function k£ such that

Vak=V —vh, k|,y=0, (36)

where the superscript - denotes a rotation of 7 /2, thatis (f1, f2)* = (— fa, f1) forany vector f. Integrating
(32) with respect to z, from h(x) to §, we obtain, ¢f. definition (14),

V =—aVup—bV,.q (37)

where

a(z) = %(53 + 6% —0(0 +26)h(x) + (6 + E)h*(x) — %h?’(x)
= 5(6 = h(x))*(3¢ + & — h(x)),
b(z) = £6° + 2£6* — £6° (8 + Oh(x) + §6°(6 — 39 R*(x)
+ L6(8 + 4R (z) — (6 + M (2) + £1°(2) (39)
(6 — h(2))?(26% (26 4 5¢) — 26(8 — 5E)h(x) — (36 + 5E)A*(z) + hP(x)).
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This implies
\Y 1V k)= k|,, =0 40
- x'(a .’L‘)_f7 |3d_’ ( )
where A
f=vi. 7“1; V., (41)
Indeed, (36) and (37) give
Vik=—(aVyp+bV.q+v) (42)
therefore, dividing by a, taking the orthogonal +, and taking into account that f++ = —f, we get

—V.k/a = —(V.p + (bV.q + v%,)/a)*. Taking the divergence, this gives the first equation of (40),
with f = =V, « (Vop+ (bV,.G+v%,)/a)*. Ttyields (41) because V, - V+ =0and -V, - g+ = VI . g.
The second equation of (40) follows from (36).

Remark 9 Equation (40) is elliptic because, by (38),
a(z) >n >0

where np = £6% + %QS and 0 = 6 — sup,cq4 h(x) > 0. Therefore it has a unique solution k. W

10. Velocity on the surface
The velocity on the surface is v(t, x) = V (¢, x, h(x)), therefore (32) gives
o(t,z) = =€ (6 — h(z)) (Vep(t,2) + (36° + L6h(z) — 11*(2)) V40)

and with (42) it follows

o(t,x) = %(ij(tw) + e(x)V,q(t, x) + v, (t, x)) (43)
where

c(x) = (6 = h(2)) (0 + 3¢ = h(x)), e(x) = 35(6 — h(2))". (44)

Remark 10 For a given meteorological wind v,,, on dd, verifying f 5 d(5 — h) vy, +nds = 0, there exist
infinitely many solutions v}, of (35) however all of them give the same value to v.

Indeed, the general solution of (35) is v}, = vg + V1g where vy is a particular solution of (35) and
where g is any function null on dd. Then (40)—(41) can be written

bV.q+ v
:vi'TO’ (k+g)|3d:0a

—Va- (%Vm(k+g))

and then k + g does not depend on the choice of g. In other words, all v}, give the same value to £ + g, and
also to Vi (k + g) + v, thatis to VL k + v, and also to V,.p due to (42), and also to the velocity V' thank
to (32), and particularly of the flux V" and of the velocity on the surface v, cf. (43).

The same conclusion could be obtained observing that conditions V, « V = 0and V «n = (§—h)vp, + n
on dd give, with (37),

_ ~ dp  bdg 6—h
~Va+(aVep) =V, « (bV.q) = 0, = " adn +

Um * N

that determine V,p in a unique way, that is, independently of the choice of vy,. W

307



M. I. Asensio, L. Ferragut and J. Simon

11. Resume of the convection model

For a fixed time ¢, to any temperature field ¢ defined on d, we associate a velocity field v defined on d by

v = %(V;‘k +eV.g+ur)

where £k is the unique solution of

_ vl bV .q + vf,

kl,, =0
a ’ |3d ’

-V, (lvxk)
a
and where ¢ = ¢/ (6 — h) is the normalized temperature. Functions a(z), b(x), ¢(x) and e(x), that model
the influence of the surface, are defined by (38), (39) and (44).
The meteorological wind v,, is a data on dd such that fad(5 — h) vy, - nds = 0, and v, is any velocity
field defined in d such that

Vay-vy =0, v -n=(5—h)uv,-nondd
This gives
v = L(q,Vm,h)
where L is a time ¢ independent operator, affine with respect to ¢ and v,,,, and non linear with respect to h.

Remark 11 It can be shown that, given h in C(d), the application (¢, vy, ) + v is continuous from H*(d) x
(L?(0d))? into (L?(d)?. If the boundary conditions are defined “in the sense of H}”, it is enough that d be
an open bounded set. W

12. About the validity of the asymptotic model

Condition (18), that is §?Re < 1, makes negligible the nonlinear terms as seen in § 6. This is the Reynolds
approximation, classic in lubrification, see Bayada et al. [2].

If Reynolds number is not small enough for that, it can be lowered as it is made in oceanography when
the molecular viscosity is replaced by the turbulent viscosity. This is equivalent to replace the nonlinear
transport terms by linear diffusion terms. Briefly, we can say that, in oceanography, the vortex of size lower
than mesh size are removed, whereas here, are removed the vortex of size lower than the height of the air
layer perturbed by the fire. In oceanography, this is justified by the insufficient of the actual computer; here,
the aim is to obtain a velocity field explicitly computable in terms of z. In both cases, a part of the effects
due to the turbulence (that can be interpreted as instabilities or multiple bifurcations due to the nonlinearity)
are lost.

The obtained approximation is reasonable because it takes into account, on one hand, Archimedes force
due to the air expansion under the effect of heat, and on the other hand, the local movement transmission
generated in the fluid set under the effect of the incompressibility. These two phenomena roughly determine
the air movement.

13. Numerical method

The numerical method employed here is an adaptive finite element method combined with a time-stepping
splitting technique. Each time step is subdivided in three sub-steps, correspondingly equations (1)—(4) are
split into a radiation equation, a convection equation and a diffusion equation. The radiation step is solved
by an implicit Euler method, the convection step by a characteristic method and the diffusion step using P1-
Lagrange finite element approximation. Previously, the velocity at the surface has been computed solving
the stream function problem (40) and using (43). At each step, a mesh adaptation is performed. This

numerical algorithm has been implemented using freeFEM+, a finite element package of O. Pironneau and
F. Hecht [5].
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14. Numerical simulation

As an application, we present the numerical results of a simulated combustion in a normalized rectangle of
size 2 x 1, for an initial fire focus and uniform wind given on the boundary. There is a hill in the center of
the rectangle.

The nondimensional activation energy for gas combustion is vy, = 33 and for solid pyrolysis v, = 20.
We also have taken for diffusion K, = k, = 0.1 and k, = 0.1 for heat radiation coefficient in (4). The
other parameters of the combustion equations has been taken equal to unit.

Concerning convection model, the velocity on the boundary is v,, = (220, 0) (which roughly corre-
sponds to a real velocity between 2 — 5m/s) with a friction coefficient ( = 10 and A = 3 in equation (20).
All this values has been chosen in order to have reasonable results.

The initial fire focus is given by the expression

¢° (1, 29) = 30 200((21-0.25)>+(22-0.5)%) )

After 1000 time steps we obtain the temperature contours shown in figure 2. After this time, a stable
fire front has been obtained. Figure 3 shows the contour plot of the z-component of velocity. Observe that
the velocity near the fire front and the meteorological wind have opposite direction. Comparing this figure
with figure 4, where the fire front is near the top of the hill, we can appreciate the effect of the hill, so that
the combined effect of the meteorological wind and the slope of the terrain surface is bigger than the effect
of the gradient of the temperature in the fire front. We can appreciate the burned area with the contour
lines corresponding to the solid fuel in figure 5. Figures 6 and 7, show the contour lines of the gas fuel and
oxygen respectively. In figure 8, a typical adapted mesh is shown.
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Figure 2. Temperature.
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Figure 3. x-component of velocity after 1000 time steps.

Figure 4. x-component of velocity after 600 time steps.
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Figure 6. Gaseous fuel.
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Figure 7. Oxygen.

Figure 8. Mesh.
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