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Data envelopment analysis efficiency of public

services: bootstrap simultaneous

confidence region

Jesús A. Tapia1, Bonifacio Salvador1 and Jesús M. Rodrı́guez2

Abstract

Public services, such as higher education, medical services, libraries or public administration of-

fices, provide services to their customers. To obtain opinion-satisfaction indices of customers, it

would be necessary to survey all the customers of the service (census), which is impossible. What

is possible is to estimate the indices by surveying a random customer sample. The efficiency ob-

tained with the classic data envelopment analysis models, considering the opinion indices of the

customers of the public service as output data estimated with a user sample, will be an estimation

of the obtained efficiency if the census is available. This paper proposes a bootstrap methodology

to build a confidence region to simultaneously estimate the population data envelopment analysis

efficiency score vector of a set of public service-producing units, with a fixed confidence level and

using deterministic input data and estimated customer opinion indices as output data. The use-

fulness of the result is illustrated by describing a case study comparing the efficiency of libraries.

MSC: 62D05, 90C99.
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1 Introduction

Data envelopment analysis (DEA) is clearly of enormous potential in measuring pub-

lic sector efficiency, particularly in areas where there exists a large number of agen-

cies to compare (see Smith and Mayston, 1987 or chapter 15 of Cooper, Seiford and

Zhu, 2011). In this context, DEA efficiency is usually evaluated using determinist

input/output data. However, the quality of the service delivered by a provider can

therefore have important implications and available results. Bayraktar et al. (2012),

Witte and Geys (2013), Mayston (2015, 2017), Santı́n and Sicilia (2017) and Førsund

(2017) analyse the efficiency of any individual public services producer, where output
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variables can include the quality of the service produced and the said quality is measured

by a consumer satisfaction survey. Tapia, Salvador and Rodrı́guez (2018) study the

relationship between customer sample size and accuracy in estimating the efficiency of

public services. Of course, a public service is more efficient when, with its resources,

it is able to achieve the highest opinion-satisfaction of its users. Customer opinion-

satisfaction surveys are widely used tools to measure the perception of the quality of

the service (Parasuraman, Berry and Zeithaml, 1993), and to obtain outputs and the

DEA efficiency scores (Lee and Kim, 2014). In this paper, using confidence regions,

we estimate the DEA efficiency of a fixed (not random) set of public service-producing

units, i.e., our decision-making units (DMUs). We do so using indices of the service

quality obtained as the mean of the answers given by the sample of surveyed people

in the opinion-satisfaction survey as the data output, and the resources of the services

measured in a deterministic way as the data input. For example, when comparing the

DEA efficiency of all the cinemas in a city, user opinion on the quality of each cinema is

measurable with opinion indices estimated using a survey of the cinemagoers to know

their satisfaction with the location, the staff, the state of the cinema, etc. The number of

seats, screens in the cinema, daily movies on show, or monthly premiering movies are

the resources of the service.

The studies where the DEA efficiency is evaluated in the presence of sampling infor-

mation have had two approaches until now. In the first one, the set of DMUs from which

input/output information is known is considered as a sample of a population of DMUs

and the randomness comes from the DMU sample. In this approach, Banker (1993),

Simar and Wilson (1998, 2000, 2007, 2011, 2013, 2015), Kneip, Park and Simar (1998)

and Kneip, Simar and Wilson (2008), have proved statistical properties of the nonpara-

metric estimators used to estimate the productivity efficiency of DMUs, derived the

asymptotic distribution of DEA estimators and tested hypotheses about the structure of

the underlying nonparametric model.

In the second approach, samples are used to estimate input and/or output data. The

efficiency is evaluated using linear programming (LP) problems subject to constraints

defined in terms of probability, or chance-constrained problems. A great number of pa-

pers have reported a wide range of uses of chance-constrained programming, including:

Charnes and Cooper (1959, 1963), Land, Lovell and Thore (1993), Olesen and Petersen

(1995), Cooper, Huang and Li (1996), Cooper et al. (2002), Huang and Li (2001), Wu

and Olson (2008), Khodabakhshi and Asgharian (2009), Khodabakhshi (2010), Wu and

Lee (2010), Wu (2010) and Tavana, Shiraz and Hatami-Marbini (2014). Charles and Ku-

mar (2014) introduced a chance-constrained model to measure the stochastic efficiency

of the service quality.

In this paper, we assume a fixed set of homogeneous DMUs in terms of the nature

of the operations they perform, the measures of their efficiency, and the conditions un-

der which they operate, as in the classic DEA models (Charnes, Cooper and Rhodes,

1978). The randomness comes solely from the customer sample in each DMU with

which we estimate the output data. However, to evaluate the DEA efficiency with a
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bootstrap confidence region, we do not use chance-constrained programming, only the

classic DEA models with constant (CCR) and variable returns-to-scale (BCC), i.e., LP

problems subject to deterministic constraints.

Using estimated output data with a sample of customers instead of population output

data causes an estimation error to be transferred to the evaluation of the DEA efficiency

(Ceyhan and Benneyan, 2014). The vector of DEA efficiency scores obtained is, there-

fore, an estimation of the vector of the population DEA efficiency scores that would be

obtained if we had the customer population data, i.e., if the output data were obtained

with a customer census in each DMU. In our study, we solve the problem of determining

how many customers need to be surveyed in order to estimate the output data in each

DMU, with a previously fixed estimation error, when estimating the vector of popula-

tion DEA efficiency scores with a bootstrap simultaneous confidence region. With the

same assumptions as in this study, Tapia et al. (2018) obtained the customer sample size

needed in each DMU to estimate the population DEA efficiency with a fixed accuracy

in each DMU; while in this paper, the customer sample size necessary in each public

service-producing unit is determined so that the maximum efficiency estimation error in

the service-producing units will be smaller than a previously fixed value.

Using bootstrap, smooth bootstrap or double-smooth bootstrap methodologies to

evaluate the efficiency of the public sector with confidence intervals is not new (Simar

and Wilson, 1998, 2000, Simar and Zelenyuk, 2006, Kneip, Simar and Wilson, 2011).

For instance, these methodologies have been used to measure the efficiency in health

care (Tsekouras et al., 2010, Chowdhury and Zelenyuk, 2016), universities and research

institutes (Barra and Zotti, 2016), government (Benito, Solana and Moreno, 2014), pub-

lic libraries (Liu and Chuang, 2009), schools (Essid, Ouellette and Vigeant, 2014,

Alexander, Haug and Jaforullah, 2010), tourism (Assaf and Agbola, 2011), banks

(Casu and Molyneux, 2003) or public transport services (Assaf, 2010, Gil, Turias and

Cerbán, 2019). In all these references, the different bootstrap resampling techniques are

used considering the observed DMUs to be a sample taken from a population of DMUs

and the resampling is done over the estimated efficiencies. In our study, we consider

a fixed (not random) set of services, a customer sample in each service to estimate the

client opinion indices (outputs) and a bootstrap resampling on the customer sample. As

far as we know, the bootstrap efficiency simultaneous confidence region introduced in

this paper has not been attempted in the literature. Our confidence region is the prod-

uct of intervals and these intervals allow efficiency rankings, dominance relations and

efficiency bounds to be determined as in Salo and Punkka (2011).

The rest of the paper is organized as follows. The problem is introduced in Section 2.

Section 3 studies the determination of the customer sample size in each public service,

in order to achieve a fixed accuracy in the simultaneous DEA efficiency estimation.

In Section 4, a bootstrap simultaneous confidence region to estimate the population

DEA efficiency in a fixed set of public services is determined. Section 5 contains an

application of the proposed approach using real inputs and opinion indices estimated

with a user sample (output data) of 15 libraries. Finally, the main conclusions are given.
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2 Preliminaries

Consider a fixed set of M service-producing units, our DMUs, m resources of the ser-

vices as known inputs X j = (x1 j, . . . ,xm j) ; j = 1, . . . ,M and s customer opinion in-

dices as unknown outputs. We distinguish between the population and sampling con-

texts. As for the population context, we consider U j =
(
U1 j, . . . ,UN j j

)
; j = 1, . . . ,M the

opinion of all of the N j customers of the jth DMU (DMU j for short). Each Uk j =
(Uk1 j, . . . ,Uks j) is the quantitative answer of the kth customer (k = 1, . . . ,N j) of the

DMU j ( j = 1, . . . ,M) to the s opinion items. The output data Y j in the DMU j is

g(U j) where g : ℜN j×s −→ ℜs. In this paper we consider g as the sample mean Y j =(∑N j
k=1

Uk1 j

N j
, . . . ,

∑N j
k=1

Uks j

N j

)
. The LP model CCR or BCC with the output orientation of

Table 1 (CCR-O or BCC-O), taking data {(X j,Y j)} j=1,...,M, determines the population

DEA efficiency scores {ϕ j} j=1,...,M . The output orientation is selected because the inter-

est is to know which services, with their resources, can improve the opinion indices of

their customers. Keeping in mind the impossibility of getting the opinion of all the popu-

lation of N j customers of the DMU j, the outputs Y j and the efficienciesϕ j , j = 1, . . . ,M,

are unknown.

Table 1: DEA models with constant (CCR) and variable (BCC) returns-to-scale; output orientation.

max ϕ+ε
(∑m

i=1 s−i +
∑s

r=1 s+r
)

s.t.

∑M
j=1λ jyr j − s+r = ϕyro, r = 1, . . . ,s

∑M
j=1λ jxi j + s−i = xio, i = 1, . . . ,m

CCR-O λ j ≥ 0,s−i ≥ 0,s+r ≥ 0; j = 1, . . . , M; i = 1, . . . , m; r = 1, . . . ,s (1)

BCC-O

M∑

j=1

λ j = 1 (2)

where s−i and s+r are slack variables and ε> 0 is a non-Archimedian element.

In the sampling context, in the DMU j, we take a random customer sample
(
U1 j, . . . ,Un j j

)

⊂ U j of size n j and we estimate the output data Y j by Ŷ j =

(∑n j
k=1

Uk1 j

n j
, . . . ,

∑n j
k=1

Uks j

n j

)
.

We denote by ŷ j the observed value of this estimator. The LP model (1) or (2), taking{(
X j,Ŷ j

)}
j=1,...,M

as input-output data, determines the estimators {ϕ̂ j} j=1,...,M of the

population efficiency scores {ϕ j} j=1,...,M, understanding that the model is maximized

with the data {(X j, ŷ j)} j=1,...,M to obtain the estimates {ω̂ j} j=1,...,M . Tapia et al. (2018)
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prove that the estimator ϕ̂ j is statistically consistent in the particular case of the CCR-O

model with one known input and one estimated output.

Therefore, our statistical model (Ω,P) corresponds to independent, random samples

in each DMU, that is, the sample space is Ω = ∏
M
j=1 Ω j, where Ω j = {samples u j of

sample size n j in the DMU j}, and the probability P depends on the sample design used.

The problem in this paper is to estimate the population efficiency scores vector ϕϕϕ =

(ϕ1, . . . ,ϕM) with a simultaneous confidence region. Formally, for any δ ∈ (0,1) and

α ∈ (0,1), we then calculate the customer sample size n j in the DMU j, j = 1, . . . ,M, to

guarantee

P(max j=1,...,M |ϕ̂ j −ϕ j| ≤ δ) ≥ 1−α, (3)

that is,
M

∏
j=1

[ϕ̂ j ± δ] (4)

defines a simultaneous region of confidence 1−α for ϕϕϕ.

3 How many customers to interview?

We analytically solve the problem to determine the customer sample size proposed in

(3) of Section 2, proving Theorem 2 under these assumptions:

C1 Fixed M DMUs

C2 One known input {X j} j=1,...,M and one unknown opinion index (output) {Yj} j=1,...,M

C3 CCR-O model

Lemma 1 is the result used to prove Theorem 2, establishing the relation between

sample size and accuracy, in order to simultaneously estimate the vector of DEA effi-

ciencies.

Lemma 1 Under assumptions C1, C2 and C3, for any 0 < p < 1, we consider the sets

of Ω:

A j =
{

u = (u1 ×·· ·×uM) ∈ Ω /
∣∣∣Ŷj(u j)−Yj

∣∣∣≤ pYj

}
; j = 1, . . . ,M (5)

B j =

{
u ∈ Ω /

∣∣∣ϕ̂ j(u)−ϕ
j

∣∣∣≤ 2p

1+ p

}
; j = 1, . . . ,M (6)

then
M⋂

j=1

A j ⊂
M⋂

j=1

B j.
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Theorem 2 Under assumptions C1, C2 and C3, for any 0 < δ < 1 and any 0 < α < 1,

for every j = 1, . . . , M, let n j be the sample size in the DMU j such that

P

(∣∣∣Ŷj −Yj

∣∣∣ ≤ pYj

)
≥ M

√
1−α (7)

with p = δ
2−δ

∈ (0, 1). Then
M

∏
j=1

[ϕ̂ j ± δ] (8)

defines a simultaneous region of confidence 1−α for the population efficiency scores

vector.

Remark 3 gives the explicit formulas to obtain the sample size under the usual simple

random sample without replacement in a finite population.

Remark 3 If the customer sampling in each DMU is a simple random sample without

replacement and the output is a population mean then

Yj =

∑N j

k=1 uk j

N j

; j = 1, . . . ,M

where uk j is the answer (opinion) of the customer k in the DMU j and N j its population

size; then the sample size n j that it verifies

P

(∣∣∣Ŷj −Yj

∣∣∣≤ pYj

)
≥ α1

is (Särndal, Swensson and Wretman, 2003)

n j ≥
no j(

no j

N j
+1
) (9)

with no j =

τ2

1−
(

1−α1
2

)

(pY j)
2 σ j

2 and τ
1−
(

1−α1
2

) = φ−1
(

1−
(

1−α1
2

))
, where σ j

2 is the popula-

tion variance and φ the normal standard distribution function.

4 Bootstrap efficiency simultaneous confidence region

We carried out a simulation to check the confidence of the simultaneous region (8) in

the case of two known inputs, two outputs estimated with a simple random sample

without replacement of customers of size (9) and BCC-O model (2). This confidence is

approximately one, so the region (8) is very conservative. We propose, as an alternative,
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an algorithm to construct a simultaneous confidence region for the population DEA

efficiency scores vector, using Theorem 2 to determine the sample size, and bootstrap

resampling of the samples of the customers’ answers to the opinion items to estimate

the population efficiency.

The algorithm is, considering M DMUs, each one using m ≥ 1 known inputs

X j = (X1 j, . . . , Xm j) and s ≥ 2 unknown outputs Y j = (Y1 j, . . . ,Ys j):

i. Taking 0 < δ < 1 and 0 < α < 1, we calculate the customer sample size n j in the

DMU j as

n j = max{n1 j, . . . ,ns j} (10)

where nr j is the sample size to estimate the rth output in the DMU j such that

P

(∣∣∣Ŷr j −Yr j

∣∣∣ ≤ pYr j

)
≥ M

√
1−α; r = 1, . . . ,s (11)

with p = δ
2−δ

∈ (0, 1).

ii. In the DMU j, j = 1, . . . ,M, we take the simple random sample without replace-

ment of customers uk j = (uk1 j, . . . ,uks j) of size n j, k = 1, . . . ,n j, and we estimate

the outputs ŷ j = (ŷ1 j, . . . , ŷs j) with the sample mean:

ŷr j =

∑n j

k=1 ukr j

n j

; r = 1, . . . ,s, j = 1, . . . ,M. (12)

iii. We take a bootstrap sample with replacement û∗
k j from uk j of size n j, j = 1, . . . ,M,

with which we obtain the bootstrap version of the s output estimations

ŷ∗j =
(

ŷ∗1 j, . . . , ŷ
∗
s j

)
; j = 1, . . . ,M.

With the data
{(

X1 j, . . . , , Xm j, ŷ
∗
1 j, . . . , ŷ

∗
s j

)}
j=1,...,M

, using a Table 1 model, we

obtain the bootstrap version of the estimated efficiency scores,
{
ω̂∗

j

}
j=1,...,M

.

iv. We repeat step iii B times and the B bootstrap versions of the estimated efficiency

scores for the DMU j, j = 1, . . . ,M, should be
{
ω̂
∗(b)
j

}
b=1,..., B

.

For any 0 < α′ < 1, let 1−α′ be the level of coverage intention; then the observed

bootstrap simultaneous confidence region of the population efficiency vector is

RC∗ =
M

∏
j=1

(
ω̂∗

j

(
α
′

2n

)

, ω̂∗
j

(
1−α

′
2n

))
(13)

where ω̂
∗(α)
j is the α-percentile of the B values

{
ω̂
∗(b)
j

}
b=1,..., B

.

This algorithm is ad hoc. No theory is given to suggest if it permits an estimate of

the confidence region with asymptotically correct coverages, only the simulation study

check the estimate quality.
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4.1 Simulation study

We generate a simulated population model, as in Tapia et al. (2018), using the health

centre data of Cooper, Seiford, and Tone (2006) (Table 2): in the j-th health centre,

j = 1, . . . ,12, a finite patient population U j =
{

u1 j, . . . ,uN j j

}
, of size N j, j = 1, . . . ,12,

is generated where N j are independent random variables with uniform distribution in

[10000,50000], and

uk j = (uk1 j,uk2 j)→ N2

((
z1 j

z2 j

)
,

(
z2

1 j/4 0

0 z2
2 j/4

))
; k = 1, . . . ,N j; j = 1, . . . ,12

and (z1 j,z2 j) are the original value outputs of the jth health centre, columns 4 and 5 of

Table 2.

Table 2: Number of doctors, nurses, outpatients and inpatients in 12 health centres.

DMU Doctor X1 Nurse X2 Outpatient Z1 Inpatient Z2
CCR-O efficiency

score

BCC-O efficiency

score

1 2.0 15.1 10 9 1 1

2 1.9 13.1 15 5 1 1

3 2.5 16 16 5.5 0.883 0.925

4 2.7 16.8 18 7.2 1 1

5 2.2 15.8 9.4 6.6 0.763 0.767

6 5.5 25.5 23 9 0.835 0.955

7 3.3 23.5 22 8.8 0.902 1

8 3.1 20.6 15.2 8 0.796 0.826

9 3 24.4 19 10 0.960 0.990

10 5 26.8 25 10 0.871 1

11 5.3 30.6 26 14.7 0.955 1

12 3.8 28.4 25 12 0.958 1

Source: Table 1.5 Cooper et al. (2006)

Table 3 shows the simulated population model: the patient population size for each

health centre (column 2), the known inputs (columns 3 and 4) and the simulated values

of the two outputs (columns 5 and 6) obtained with the population means

(Y1 j,Y2 j) =

(∑N j

k=1 uk1 j

N j

,

∑N j

k=1 uk2 j

N j

)
; j = 1, . . . ,M (14)

where ukr j is the answer of the kth patient of the jth health centre to the rth opinion

question. Columns 6 and 7 show the population DEA efficiency CCR-O and BCC-O,

respectively.
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Table 3: Simulated population model.

Population

size N j

Doctor

X1

Nurse

X2
Y1 Y2

Population efficiency score ϕ j

DMU CCR-O BCC-O

1 43341 2.0 15.1 9.98 9.01 1 1

2 24438 1.9 13.1 14.98 5.01 1 1

3 45606 2.5 16 15.99 5.50 0.883 0.926

4 12578 2.7 16.8 17.96 7.18 1 1

5 19314 2.2 15.8 9.40 6.58 0.763 0.766

6 21782 5.5 25.5 22.96 8.97 0.835 0.957

7 19024 3.3 23.5 21.99 8.77 0.901 0.998

8 36271 3.1 20.6 15.17 8.01 0.797 0.826

9 30691 3 24.4 19.02 10.04 0.963 0.991

10 28385 5 26.8 24.89 10.01 0.871 1

11 28005 5.3 30.6 26.11 14.69 0.958 1

12 49077 3.8 28.4 25.09 11.98 0.960 1

Supposing a simple random sample without replacement of patients in each health

centre, having fixed an efficiency estimation error δ= 0.1 and a probability 1−α= 0.95,

Table 4 shows the customer sample size n j, j = 1, . . . ,12, calculated using (10) and (11).

Table 4: Patient sample size obtained for each DMU, fixed δ = 0.1 and α= 0.05.

DMU n j

1 985

2 674

3 779

4 1078

5 900

6 1415

7 795

8 814

9 765

10 617

11 1194

12 682

With this sample size: we first repeat the bootstrapping methodology steps ii. -

iv. 1000 times, obtaining 1000 observed bootstrap efficiency simultaneous confidence

regions,
{

RC∗(k)}
k=1,...,1000

, as in (13). The confidence of the bootstrap efficiency simul-

taneous confidence region is approximated through
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C∗ =
1

1000

1000∑

k=1

I(ϕ1,...,ϕ12)∈RC∗(k) . (15)

Having fixed a percentile bootstrap confidence 1−α′ = 0.9, Table 5 shows the approxi-

mated confidence (15) of the bootstrap confidence region to simultaneously estimate the

population efficiency score vector. This result confirms that, by determining the sample

size in each DMU using (10), we get the fixed accuracy with the percentile bootstrap

efficiency simultaneous confidence region.

Table 5: Confidence approximation of the bootstrap efficiency simultaneous confidence region taking 1−
α′ = 0.9 and fixed δ = 0.1 and α= 0.05. CCR and BCC model with output orientation.

CCR-O BCC-O

C∗ 0.975 0.983

In order to justify the basic percentile method to obtain bootstrap confidence inter-

vals, we analyse the bias of the bootstrap process. Using the 1000 data{
ω̂ j − ω̂

∗(b)
j

}
b=1,...,1000

for each DMU j, we represent graphically the nonparametric den-

sity estimates with kernel N(0,1) and smoothing parameter selected with rule-of-thumb

(Silverman (1986)). The smooth density estimates obtained are approximately symmet-

rical with respect to 0, therefore the bias is negligible.

5 A Case Study

This section provides an empirical DEA efficiency analysis of libraries using real data

input. Table 7 corresponds to the database from 15 libraries used in Tapia et al. (2018).

The data input are the number of book loans, (X1), the library’s seating capacity and

the number of computers for users, (X2), and the data are scaled 0-10. Column 2 shows

the distribution of the user population in each of the 15 libraries. In each library, we

use only the output given by the users’ mean, monthly time use of the library, in hours,

measured for each user, on a scale of 0-10. In order to determine the user sample size n j

in the jth library, j = 1, . . . ,15, using Remark 3 in each library, we take a previous user

simple random sample without replacement of 0.1% of the user population size and we

estimate the output and the population variance, shown in columns 2, 3 and 4 of Table

7, respectively. Having fixed the efficiency estimation error δ = 0.1 and a probability

1−α= 0.9, we determine the sample size n j; j = 1, . . . ,15 with (10) and (11). We then

take the user sample in each library and estimate the mean monthly time of permanence

in the library {ŷ j} j=1,...,15
, column 6 of Table 7.
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Table 6: Results of the previous simple random sample without replacement: User sample size, Estimation

of monthly time use mean and of population variance.

DMU Sample size n
(0)
j

Estimation of the monthly time

use library mean

Estimation of the

population variance

1 89 6.61 14.34

2 79 5.78 13.76

3 64 3.87 12.93

4 59 5.06 13.26

5 57 6.12 14.48

6 51 2.88 8.67

7 42 5.41 17.08

8 37 4.31 13.79

9 35 6.06 12.79

10 32 4.10 10.24

11 24 4.57 15.16

12 21 5.27 16.97

13 19 3.09 13.10

14 17 4.37 14.55

15 13 7.81 10.63

Table 7: Database for 15 libraries: User population size, book loans and user posts (inputs), user sample

size to estimate the mean monthly library time use (output) with δ = 0.1 and α= 0.1.

DMU
User population size

N j

Book loans

X1

User posts

X2

User sample size
n j

Estimated monthly time

use library mean

ŷ j

1 89300 7.04 7.82 855 6.03

2 78500 7.81 6.87 1065 5.33

3 64000 5.41 5.60 2190 3.26

4 59100 2.66 5.18 1326 5.33

5 56500 3.96 4.95 998 6.13

6 50700 3.28 4.44 2601 3.37

7 41600 4.36 3.64 1476 5.79

8 37000 6.29 3.24 1850 3.44

9 34600 5.82 3.03 891 5.14

10 32000 7.69 2.80 1523 3.48

11 23600 2.61 2.07 1761 5.28

12 21200 3.61 1.86 1492 5.87

13 18900 4.73 1.65 3028 5.33

14 17200 2.12 1.51 1791 3.40

15 12900 2.16 1.13 442 5.77

The estimated efficiency scores, {ω̂ j} j=1,...,15
and the intervals whose product de-

termines the bootstrap efficiency simultaneous confidence region (columns 2 and 3 in

Table 8, respectively) are obtained using the data {(X1 j, X2 j, ŷ j)} j=1,...,15
and the BCC

model with orientation output. The libraries {1, 5, 7, 14, 15} can be considered efficient
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because the corresponding intervals of the bootstrap efficiency simultaneous confidence

region contains the value 1.

Table 8: Estimated efficiency scores and intervals whose product determines the bootstrap efficiency si-

multaneous confidence region, taking 1−α′ = 0.9. BCC model with output orientation.

DMU
Estimated

efficiency score
Intervals

1 0.983 [0.904, 1]

2 0.870 [0.797, 0.942]

3 0.531 [0.493, 0.567]

4 0.908 [0.841, 0.982]

5 1 [0.959, 1]

6 0.562 [0.524, 0.596]

7 0.962 [0.902, 1]

8 0.574 [0.529, 0.611]

9 0.862 [0.791, 0.925]

10 0.585 [0.539, 0.625]

11 0.900 [0.826, 0.981]

12 1 [0.913, 1]

13 0.914 [0.839, 0.959]

14 1 [1, 1]

15 1 [1, 1]

6 Conclusions

Over the last decade, the use of opinion-satisfaction surveys on customers of public

services has been an essential tool in measuring the quality of the service given. Without

a doubt, a public service will be more efficient when, with its resources, it is able to

have the highest opinion-satisfaction of its customers. The questionnaire is a common

tool to find out customer opinion-satisfaction with the service received. The mean of

the opinion-satisfaction answers of the sample of customers are indices, indicators of

the service quality, that can be considered as output data. If we add the deterministic

information of the resources of the public service-producing unit as input data, we will

have the necessary input and output data to calculate the DEA efficiency in the set of

services.

We focus on this DEA efficiency problem as a statistical one, considering an un-

known population efficiency vector that would be obtained if we had the opinion of the

entire service customer population (census). We estimate this parametric vector with a

confidence region using the outputs estimated with the opinion of the user sample, the

known inputs and the classical DEA models (LP models subject to deterministic con-

straints). To our knowledge, this statistical view of the DEA is totally novel and the

use of a simultaneous confidence region is a statistical concept that has not been used
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in DEA efficiency analysis in the form that we propose. From a practical point of view,

the application in library datasets shows the usefulness of the bootstrap region confi-

dence efficiency methodology. This region, based on the product of confidence intervals

in each library, detects whether the library is “efficient in any case” because the lower

bound is equal to unity, or if the library is “efficient” because the upper bound is equal

to unity and “inefficient” because the upper bound is less than unity. More public ser-

vice examples where it may be interesting to apply the results of this paper are: leisure

centres (where there are attractions for which it is necessary to maximize the demand,

which can be evaluated by carrying out customer surveys), marketing or electoral polls

(where the effect of the advertising or electoral campaign is evaluated with a survey),

hospitals, airports, banks, universities, supermarkets, government services or schools

(where existing resources can explain customer opinion-satisfaction).

In this paper, we obtain two types of confidence region for the population efficiency

scores vector. Theorem 2 allows us to define the first simultaneous region, finding a rela-

tion between the accuracy of the simultaneous confidence region and the customer sam-

ple size needed to guarantee an output estimation error in each public service-producing

unit. By simulation, we check that this confidence region is very conservative. As an

alternative, we propose to determine the sample size of customers necessary using The-

orem 2 and Remark 3 and to obtain an efficiency confidence region based on the basic

percentile bootstrap method. The simulation shows that we are able to reach the con-

fidence of the bootstrap efficiency simultaneous confidence region close to the desired

level.

Other possible extensions currently under investigation by the authors also include

considering stochastic inputs estimated with a provider sample or using other bootstrap

methods, such as the adjusted percentile method or the ABC method, and comparing

them with the method used in this paper.

7 Appendix section

7.1 Proof of Lemma 1

Let u = (u1 ×·· ·×uM) ∈
⋂M

j=1 A j.

Let us consider the DMUr. Then, ϕr = 1 or ϕr < 1:

• If ϕr = 1, it is because Yr
Xr

= max j
Y j

X j
.

The most unfavourable situation, where Br is verified, is that the output of the

DMUr is as small as possible and the rest of the DMUs are as big as possible, that

is to say

Y ∗
j = (1− p)YjI( j=r)+(1+ p)YjI( j 6=r).
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Let ϕ∗
j , j = 1, . . . ,M be the efficiencies of the DMUs obtained with the data{

(X j,Y
∗
j )
}

j=1,...,M
, therefore

ϕ∗
r =





1 if
(1−p)Y r

Xr
≥ max j 6=r

(1+p)Y j

X j
(a)

(1−p)Y r

(1+p)
Yk
Xk

Xr

if (1+ p) Yk

Xk
= max j 6=r

(1+p)Y j

X j
>

(1−p)Y r
Xr

(b)

and

|ϕr − ϕ̂r(u)| = 1− ϕ̂r(u)≤ 1−ϕ∗
r

where the first equality is obtained because ϕr = 1 and the second inequality is

verified because, as the efficiency of a DMU decreases when the output of this unit

decreases, while the outputs of the rest of the DMUs also increase, ϕ̂r(u) ≥ ϕ∗
r ,

then

|ϕr − ϕ̂r(u)| ≤
{

0 if (a)

1− (1−p)
(1+p) =

2p

1+p
if (b)

and it is verified that u ∈ Br ∀r / ϕr = 1.

• If ϕr < 1

Let k 6= r / Yk
Xk

= max j
Y j

X j
and ϕr =

Yr
Xr
Yk
Xk

< 1.

There are two more favourable situations for Br to be verified

Case (I) Y ∗
j = (1− p)YjI( j=r)+(1+ p)YjI( j 6=r).

Case (II) Y ∗∗
j = (1+ p)YjI( j=r)+(1− p)YjI( j 6=r).

Case (I): Let ϕ∗
j , j = 1, . . . ,M, be the DMU efficiencies obtained with the

data
{
(X j,Y

∗
j )
}

j=1,...,M
, then

ϕ∗
r =

(1− p) Yr
Xr

(1+ p) Yk
Xk

=
(1− p)

(1+ p)
ϕr < ϕr.

As the efficiency of a DMU decreases when the output of this unit

decreases, while the outputs of the rest of the DMUs also increase,

|ϕr − ϕ̂r(u)| ≤ |ϕr −ϕ∗
r |

and therefore

|ϕr − ϕ̂r(u)| ≤ ϕr −ϕ∗
r = ϕr

(
2p

1+ p

)
<

2p

1+ p
.
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Case (II): Let ϕ∗∗
j , j = 1, . . . ,M, be the DMU efficiencies obtained with the

data
{
(X j,Y

∗∗
j )
}

j=1,...,M
, then

– If max
(
(1+p)Y r

Xr
,max j 6=r

(1−p)Y j

X j

)
=

(1+p)Y r
Xr

then ϕ∗∗
r = 1 and ϕr ≥ (1−p)

(1+p) and therefore

|ϕr − ϕ̂r(u)| ≤ |ϕr −ϕ∗∗
r | = 1−ϕr ≤

2p

1+ p
.

– If max
(
(1+p)Y r

Xr
,max j 6=r

(1−p)Y j

X j

)
=

(1−p)Y k

Xk
for k 6= r then ϕr <

(1−p)
(1+p) and ϕ∗∗

r =
(1+p)Yr

Yr

(1−p)
Yk
Xk

= (1+p)
(1−p)ϕr > ϕr and therefore

|ϕr − ϕ̂r(u)| ≤ ϕ∗∗
r −ϕr ≤

2p

1− p
ϕr <

2p

1+ p
.

In consequence u ∈ Br ∀r / ϕr < 1.

7.2 Proof of Theorem 2

It is enough to prove that

P
(

max j=1,...,M

∣∣∣ϕ̂ j −ϕ
j

∣∣∣≤ δ
)
≥ 1−α. (16)

Using the notation of (5) and (6), by Lemma 1, we know that

M⋂

j=1

A j ⊂
n⋂

j=1

B j

and, as the events {A j} j=1,...,M are independent, then

P

(
M⋂

j=1

B j

)
≥ P

(
M⋂

j=1

A j

)
=

M

∏
j=1

P(A j)≥
(

M
√

1−α
)M

= 1−α.
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