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A class of goodness-of-fit tests for circular

distributions based on trigonometric moments
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Abstract

We propose a class of goodness–of–fit test procedures for arbitrary parametric families of circular

distributions with unknown parameters. The tests make use of the specific form of the character-

istic function of the family being tested, and are shown to be consistent. We derive the asymptotic

null distribution and suggest that the new method be implemented using a bootstrap resampling

technique that approximates this distribution consistently. As an illustration, we then specialize

this method to testing whether a given data set is from the von Mises distribution, a model that

is commonly used and for which considerable theory has been developed. An extensive Monte

Carlo study is carried out to compare the new tests with other existing omnibus tests for this model.

An application involving five real data sets is provided in order to illustrate the new procedure.

MSC: 62H15, 62G20.
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1 Introduction

Let Θ be an arbitrary circular random variable with cumulative distribution function

(CDF) F . Then on the basis of independent and identically distributed (i.i.d.) copies

ϑ1, . . . ,ϑn of Θ we are interested in testing goodness–of–fit (GOF) of the composite null

hypothesis,

H0 : F ∈ Fβββ (1)

against general alternatives, where Fβββ = {F(·;βββ), βββ ∈ B} denotes a parametric family

of CDFs indexed by the parameter βββ ∈ B ⊂ R
p.
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A well-known class of GOF tests that have been discussed in the literature, is ob-

tained by comparing a nonparametric estimator of the CDF of Θ with the corresponding

parametric estimator of the same quantity reflecting the null hypothesis. To this end,

denote by β̂ββ a consistent estimator of the parameter βββ, and write F(·; β̂ββ) for the CDF

corresponding to (1) with estimated parameter. Also let

Fn(x) =
#{ j : ϑ′

js ≤ x}
n

,

be the empirical CDF. Then, based on a distance function ∆, the CDF–based test statis-

tics may be formulated as

∆n := ∆(Fn(·),F(·; β̂ββ)), (2)

and rejects the null hypothesis H0 stated in (1) for large values of ∆n. The specific type

of distance ∆n adopted in (2) leads to different GOF methods, chief among these are the

Kuiper (1960) and the Watson (1961) tests, which are a variation of the Kolmogorov–

Smirnov and the Cramér–von Mises tests, respectively. Note that both tests are appro-

priately adapted from the case of testing a distribution on the real line to the case of

testing for circular distributions; see e.g. Jammalamadaka and SenGupta (2001) §7.2.1.

In this paper we suggest a new class of GOF tests which is based on the charac-

teristic function (CF) of circular distributions. Such CF-based GOF tests for distribu-

tions on the real-line have proved to be more convenient, and compete well with cor-

responding methods based on the CDF; see for instance the normality test proposed

by Epps and Pulley (1983), the test for the Cauchy distribution of Gürtler and Henze

(2000), and the tests for the stable distribution suggested by Matsui and Takemura (2008),

and Meintanis (2005).

The remainder of the paper is organized as follows. In Section 2 we introduce the

new GOF procedure for circular distributions and prove consistency of the correspond-

ing test criteria. In Section 3 we derive the limit distribution of the test statistic under the

null hypothesis. Given the highly non–trivial structure of this distribution, we investi-

gate in Section 4 the consistency of an appropriate resampling version of our method. In

Section 5 the particular case of testing for the von Mises distribution is studied in detail.

The finite–sample properties of the test are illustrated by means of a Monte Carlo study

in Section 6, while Section 7 provides an application. Section 8 includes a brief sum-

mary and discussion. The paper contains a Supplement that includes the necessary R

scripts for the benefit of potential users. Technical assumptions and proofs are deferred

to the Appendix.

2 Tests based on the characteristic function

In a somewhat similar spirit with the Kuiper and Watson tests that use a distance between

CDFs, we propose to use a distance between CFs instead of the CDFs. To this end, write
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ϕ(r) = E(eirΘ), r ∈ R, for the CF of Θ and define the empirical CF corresponding to

ϑ1, . . . ,ϑn, as

ϕn(r) =
1

n

n∑

j=1

eirϑ j , (i =
√
−1). (3)

Also write ϕ(·;βββ) := ℜϕ(r;βββ)+ iℑϕ(r;βββ) for the CF under the null hypothesis, where

ℜ(z) (resp. ℑ(z)) denotes the real (resp. imaginary) part of a complex number. In this

paper we consider CF–based test statistics in the form ∆ (ϕn(·), ϕ(·; β̂ββ)). As before,

rejection is for large values of the test statistic.

Specifically we consider a Cramér–von Mises type distance. However, since for cir-

cular distributions the CF needs to be evaluated only at integer values (Jammalamadaka

and SenGupta, 2001, §2.2), and taking into account further the symmetry property of

the CF and the empirical CF, our test statistic can be formulated as

Cn,p = n

∞∑

r=0

∣∣∣ϕn(r)−ϕ(r; β̂ββ)
∣∣∣
2

p(r), (4)

where p(·) denotes a probability function over the non–negative integers.

By straightforward algebra we have from (4)

Cn,p = n

∞∑

r=0

{
Rn(r; β̂ββ)+ In(r; β̂ββ)

}
p(r),

with

Rn(r; β̂ββ) =





1

n

n∑

j=1

cos(rϑ j)−ℜϕ(r; β̂ββ)





2

and

In(r; β̂ββ) =





1

n

n∑

j=1

sin(rϑ j)−ℑϕ(r; β̂ββ)





2

.

Because of the one–to–one correspondence between CFs and CDFs, it readily follows

that the test based on Cn,p is consistent against any fixed alternative to H0 provided that

p(r)> 0, ∀ r ≥ 0. (5)

To see this, assume that the estimator β̂ββ of βββ has a strong probability limit, say βββ0,

even under alternatives, and that ϕ(r;βββ) is continuous as a function of βββ. Then since∣∣∣ϕn(r)−ϕ(r; β̂ββ)
∣∣∣
2

≤ 4, we have from (4),
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Cn,p

n
−→

∞∑

r=0

∣∣∣ϕ(r)−ϕ(r;βββ0)
∣∣∣
2

p(r) a.s. as n → ∞, (6)

due to the strong consistency of the empirical CF (see Csörgő, 1981 and Marcus, 1981),

and by invoking Lebesgue’s dominated convergence theorem. In view of the uniqueness

of the CF, the right–hand side of (6) is positive, unless F(·) = F(·;βββ0), which shows the

strong consistency of the test that rejects the null hypothesis H0 for large values of Cn,p

since, from Theorem 1 in next Section, Cn,p is bounded in probability.

In the next section we investigate the large–sample behavior of Cn,p under the null

hypothesis. From now on, it will be assumed that (5) holds.

3 The limit null distribution of the CF test statistic

Let ℓ2
p denote the (separable) Hilbert space of all infinite sequences z = (z0,z1, . . .) of

complex numbers such that
∑

r≥0 |zr|2 p(r)< ∞, with the inner product defined as

〈z,w〉ℓ2
p
=
∑

r≥0

zrw̄r p(r),

for z = (z0,z1, . . .), w = (w0,w1, . . .) ∈ ℓ2
p, where for any complex number x = a+ ib,

x̄ = a− ib stands for its complex conjugate. Let also ‖ · ‖ℓ2
p

denote the norm in this

space. With this notation our test statistic may be written as,

Cn,p = ‖Zn‖2
ℓ2

p
, (7)

where Zn(r) =
√

n{ϕn(r)−ϕ(r; β̂ββ)}.

Also let βββ = (β1, . . . ,βp)
⊤ and write

∇ℜϕ(r;βββ) =

(
∂

∂β1

ℜϕ(r;βββ), . . . ,
∂

∂βp

ℜϕ(r;βββ)

)⊤
,

∇ℑϕ(r;βββ) =

(
∂

∂β1

ℑϕ(r;βββ), . . . ,
∂

∂βp

ℑϕ(r;βββ)

)⊤
.

Next theorem shows convergence in distribution of Zn(·) under Assumptions A, B and

C stated in the Appendix.

Theorem 1 Assume that ϑ1, . . . ,ϑn, are i.i.d. copies of Θ and that Assumptions A, B

and C are fulfilled. Then, under the null hypothesis H0, there is a centred Gaussian

random element Z(·) of ℓ2
p having covariance kernel

K(r,s) = E{ϒ(r,Θ;βββ)ϒ(s,Θ;βββ)},
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such that

Zn
L−→ Z, as n → ∞,

where

ϒ(r,Θ;βββ) = cos(rΘ)−ℜϕ(r;βββ)−∇ℜϕ(r;βββ)⊤L(Θ;βββ)

+ i
{

sin(rΘ)−ℑϕ(r;βββ)−∇ℑϕ(r;βββ)⊤L(Θ;βββ)
}
,

with L(Θ;βββ) defined in Assumption A.

In view of (7), the asymptotic null distribution of Cn,p stated in next corollary is an

immediate consequence of Theorem 1 and the Continuous Mapping Theorem.

Corollary 1 Suppose that assumptions in Theorem 1 hold, then

Cn,p
L−→ ‖Z‖2

ℓ2
p
,

where Z(·) is the Gaussian random element appearing in Theorem 1.

Remark 1 The distribution of ‖Z‖2
ℓ2

p
is the same as that of

∑∞

j=1λ jN
2
j , where λ1,λ2, . . .

are the positive eigenvalues of the integral operator f 7→ A f on ℓ2
p associated with the

kernel K(·, ·) given in Theorem 1, i.e., (A f )(r)=
∑

s≥0K(r,s) f (s)p(s), and N1,N2, . . .

are i.i.d. standard normal random variables. In general, the calculation of those eigen-

values is a very difficult task.

Remark 2 Assumptions A, B and C in Theorem 1 are quite standard in the context of

GOF testing. Specifically Assumption A refers to an asymptotic (Bahadur) representa-

tion of a given estimator of the parameter βββ and is satisfied by common estimators such

as maximum likelihood and moment estimators. Assumptions B and C imply smoothness

of the CF as a function of βββ.

Since our assumptions are relatively weak, our CF approach is quite general and may

be applied for testing GOF for a wide spectrum of circular distributions. In Section 5

we will specialize to a CF–based GOF test for the von–Mises distribution, which is as

popular for circular data as the Gaussian distribution is for linear data.

4 The parametric bootstrap

As pointed out in Remark 1, the asymptotic null distribution of the test statistic Cn,p is

complicated and depends on several unknown quantities in a highly complicated man-

ner. There exists no feasible approximation of the distribution in Theorem 1 which will

allow us to actually carry out the test. We study here a resampling method labelled
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“parametric bootstrap”, which is a computer–assisted automatic procedure for perform-

ing this task. The parametric bootstrap estimates the null distribution of the test statistic

Cn,p by means of its conditional distribution, given the data, when the data come from

F(·; β̂ββ). Although the exact bootstrap estimator is still difficult to derive, it can be ap-

proximated as outlined below within the (fairly general) setting considered in Section

3. Specifically, write for simplicity Co
n,p :=Cn,p(ϑ1, . . . ,ϑn; β̂ββ) for the test statistic based

on the original observations. Then parametric bootstrap critical points are calculated in

practice as follows:

(i) Generate i.i.d. observations, {ϑ∗
j ,1 ≤ j ≤ n} from F(·; β̂ββ).

(ii) Using the bootstrap observations {ϑ∗
j ,1 ≤ j ≤ n}, obtain the bootstrap estimate β̂ββ

∗

of βββ.

(iii) Calculate the bootstrap test statistic, say C∗
n,p :=Cn,p(ϑ

∗
1, . . . ,ϑ

∗
n; β̂ββ

∗
).

(iv) Repeat steps (i) to (iii) a number of times, say B, and obtain {C∗b
n,p}B

b=1.

(v) Calculate the critical point of a test of size α as the order (1−α) empirical quantile

C1−α of {C∗b
n,p}B

b=1.

In next theorem we show that, under Assumptions A∗, B∗ and C stated in the Ap-

pendix, this procedure provides a consistent estimator of the null distribution of the test

statistic. With this aim, as in Section 2, we will assume that the estimator of β̂ββ has a

strong probability limit, say βββ0, even under alternatives. Let Pβ denote the probability

by assuming that the data come from F(·;βββ) and let P⋆ denote the bootstrap probability.

Theorem 2 Assume that ϑ1, . . . ,ϑn, are i.i.d. copies of Θ and that Assumptions A∗, B∗

and C are fulfilled. Then,

sup
x

∣∣∣P∗(C∗
n,p ≤ x)−P

βββ0(Cn,p ≤ x)
∣∣∣→ 0 a.s., as n → ∞.

Theorem 2 holds whether the null hypothesis is true or not. In particular, if H0 is

true, then it states that the bootstrap distribution and the null distribution of Cn,p are

close. Thus the test Ψ∗, which rejects the null when Co
n,p > C1−α, is asymptotically

correct in the sense that limn→∞ P(Ψ∗ = 1) = α, when the null hypothesis is true. Also

an immediate consequence of (6) and Theorem 2 is that the test Ψ∗ is consistent, that is

P(Ψ∗ = 1)→ 1, as n → ∞, whenever F /∈ Fβββ .
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5 Tests for the von Mises distribution

5.1 Goodness-of-fit tests

For data distributed over the unit circle, the von Mises distribution (vMD), also called

the Circular Normal distribution, is the pre-eminent model in circular data analysis when

one has reason to believe the data might be symmetric and unimodal, much as the Nor-

mal distribution is on the real line. Sampling theory and inferential methods have been

developed for this model, and as such it is a natural choice for our consideration. The

density of the vMD with parameter vector βββ := (µ,κ) is given by

f (ϑ;µ,κ) =
1

2πI0(κ)
eκcos(ϑ−µ), 0 ≤ ϑ< 2π, (8)

where Ir(·) denotes the modified Bessel function of the first kind of order r, and 0 ≤
µ< 2π and κ≥ 0 are location and concentration parameters, respectively.

Our CF–based test utilizes the CF corresponding to (8) which is given by

ϕ(r;µ,κ) = eirµAr(κ), r ∈ Z, (9)

where Ar(κ) = Ir(κ)/I0(κ).

Specifically the test statistic figuring in (4) may readily be written as

Cn,p = n

∞∑

r=0

|ϕ̂n(r)−ϕ(r;0, κ̂)|2 p(r) = S1 +S2 −2S3, (10)

with ϕ̂n(r) the empirical CF of ϑ̂1, . . . , ϑ̂n,

S1 =
1

n

n∑

j,k=1

E1(ϑ̂ j − ϑ̂k), (11)

S2 = nE2(κ̂), (12)

and

S3 =
n∑

j=1

E3(ϑ̂ j; κ̂), (13)

where (µ̂, κ̂) is a consistent estimator of the parameter (µ,κ), and ϑ̂ j = ϑ j − µ̂, j =

1, . . . ,n. The series appearing in (11)-(13) are defined as

E1(θ) =
∞∑

r=0

cos(θr)p(r),
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E2(κ) =
∞∑

r=0

A2
r (κ)p(r),

and

E3(θ;κ) =
∞∑

r=0

cos(θr)Ar(κ)p(r).

To proceed further note that all three series above may be viewed as expectations of

corresponding quantities taken with respect to the law p(r), and while these expectations

are generally hard to obtain, they may be approximated by Monte Carlo by means of

simulating i.i.d. variates from the law p(r). In fact certain choices of p(r) lead to closed

form expressions, at least for the expectation in (11). Specifically if we let p(r) be the

Poisson law with parameter λ, we have

E1(θ) = cos(λsinθ)eλ(cosθ−1).

As for the calculation of S2 and S3 and since the corresponding series appearing in (12)-

(13) converge rapidly, instead of Monte Carlo, we decided to approximate them by direct

numerical computation of only a few terms. We have observed through simulations that

summing up to r = 100 gives very accurate results. Strictly speaking this cut–off test is

not universally consistent, but the practical effect on the power is negligible.

5.2 Estimation of parameters and a limit statistic

As for estimating parameters, we suggest the use of the maximum likelihood estimator

(MLE) β̂ββ := (µ̂, κ̂) which is given by the following equations:

1

n

n∑

j=1

sin(ϑ j − µ̂) = 0,
1

n

n∑

j=1

cos(ϑ j − µ̂) = A1(κ̂). (14)

It is well known that the MLE µ̂ of µ satisfies µ̂(ϑ1+a, . . . ,ϑn +a) = µ̂(ϑ1, . . . ,ϑn)+a,

while the MLE κ̂ of κ satisfies κ̂(ϑ1 +a, . . . ,ϑn +a) = κ̂(ϑ1, . . . ,ϑn), for each a, where

the operations of addition in these equations are to be treated mod(2π) for circular data.

Thus if one uses, instead of the original data ϑ1, . . . ,ϑn, the centered data ϑ̂ j = ϑ j −
µ̂, j = 1, . . . ,n, then the distribution of any test statistic that depends on µ̂ via ϑ̂ j, j =
1, . . . ,n, will not depend on the specific parameter–value of µ, and hence without loss of

generality we can set µ= 0. On the other hand, since the concentration parameter κ is

a shape parameter, it cannot be standardized out. Consequently the distribution of such

a test always depends on the value of this parameter. One way out is to use the limit

null distribution for fixed κ along with a look–up table with a sufficiently dense grid on

κ. This approach is suggested in Lockhart and Stephens (1985), and is fairly accurate

for most of the parameter space if based on the MLE of κ, but as already mentioned in
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Section 4 we will instead use the parametric bootstrap which consistently estimates the

limit null distribution of any given test uniformly over κ.

We close this section with an interesting limit statistic resulting from Cn,p appearing

in (10). To this end notice that since ϕn(0) = ϕ(0) = 1, the first term in Cn,p vanishes

regardless of the distribution being tested, while the second term also vanishes on ac-

count of (14) since we employ the MLEs as estimators of µ and κ. Now write Cn,λ for

the criterion in (10) with p(r) being the Poisson probability function, with parameter λ.

Then we have

Cn,λ = e−λ

(
|ϕ̂n(2)−A2(κ̂)|2

λ2

2
+o(λ2)

)
, λ→ 0,

so that

lim
λ→0

2Cn,λ

λ2
= |ϕ̂n(2)−A2(κ̂)|2 :=Cn,0. (15)

Notice that the limit statistic Cn,0 only uses information on the CF of the underlying law

as this is information is reflected on the corresponding empirical trigonometric moment

of order r = 2.

On the other hand the test statistic Cn,λ (and more generally Cn,p) uses an infinite

weighted sum in which the empirical trigonometric moments of all integer orders r ≥ 0

are accounted for. Thus the probability function p(r) plays the role of a weight function

that typically downweights the higher order terms which are known to be more prone to

the periodic behavior intrinsically present in the empirical CF. A natural related question

is whether there is some optimal choice for the probability function p(·). As asserted by

Bugni et al. (2009) in a related context, the weight function cannot be selected empiri-

cally as this would require knowing how the true data-generation process differs from

the parametric model. In this connection, and using the analogy with the choice of ker-

nel in density estimation, prior experience has shown that the specific functional form of

p(·) is not all that important. Carrying this analogy further, one suspects that the value

of λ might have some sway over the results. Proper choice of λ however translates to

a highly non–trivial analytic problem for which there are only a few results available in

the literature; see Tenreiro (2009) and Meynaoui et al. (2019). This option is empirically

investigated in the next section.

6 Finite-sample comparisons and simulations

This section summarizes the results of a simulation study, designed to evaluate the pro-

posed GOF test for the vMD, and compare its performance with other existing tests. As

competitors we include the Kuiper test and the Watson test for which there exist com-

putationally convenient formulae; see for instance Section 7.2.1 of Jammalamadaka and

SenGupta (2001). Specifically let U j = F(ϑ j; µ̂, κ̂) and write U( j), j = 1, . . . ,n, for the
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corresponding order statistics. Then we have

K = max
1≤ j≤n

{
U( j)−

j−1

n

}
+ max

1≤ j≤n

{
j

n
−U( j)

}
.

W =
1

12n
+

n∑

j=1

((
U( j)−

2 j−1

2n

)
−
(

U − 1

2

))2

,

where U = n−1
∑n

j=1U j.

We also include a test statistic based on the characterization of maximum entropy

of the vMD suggested by Lund and Jammalamadaka (2000), denoted by E. These three

criteria will be included in our Monte Carlo study. For our test statistic we took as p(r)

the probability function of a Poisson law with mean λ. This test is indexed by λ, and will

be denoted by Cλ. We note that there exist alternative tests such as the conditional tests

suggested by Lockhart (2012) (Lockhart, O’Reilly and Stephens, 2007, 2009), which

we do not consider in our simulation study.

The simulated distributions are (i) the vMD, vM(0,κ), (ii) mixtures of vMDs, (1−
ǫ)vM(µ1,κ1)+ ǫ vM(µ2,κ2), ǫ ∈ (0,1), (iii) the generalized vMD, GvM(µ1,µ2,κ1,κ2),

with probability density function given by

f (θ;µ1,µ2,κ1,κ2) =
1

2πG0(µ1 −µ2,κ1,κ2)
exp{κ1 cos(θ−µ1)+κ2 cos(θ−µ2)},

where G0(δ,κ1,κ2)= (1/2π)
∫ 2π

0 exp{κ1 cos(θ)+κ2 cos(θ+δ)}dθ, (see Gatto and Jam-

malamadaka, 2007) and (iv) the wrapped normal distribution, wn(µ,ρ), with probability

density function given by

f (θ;µ,ρ) =
1

2π

(
1+2

∞∑

m=−∞

ρp2
cos{p(θ−µ)}

)
,

(Jammalamadaka and SenGupta, 2001, Ch. 2). Table 1 displays the specific alterna-

tives (ii) and (iii), while the densities of such alternatives jointly with the density of

the closer vMD (in the sense that the parameters are chosen so that they minimize the

Kullback-Leibler distance), are depicted in Figure 1. These alternatives exhibit either

bimodality and/or asymmetry and/or heavier tails than the vMD. We also considered

several instances of the family of wrapped normal distributions, which are known to

possess densities that are quite close to those of the vMD. This fact can be graphically

appreciated by looking at Figure 2, which displays the probability density function of

a wn(0,ρ) law for ρ = 0.1(0.1)0.9, together with the density of the closer vMD distri-

bution (in the sense explained before). Looking at this figure it becomes evident that it

is rather hard to discriminate between these distributions and the vMD, particularly for

small and large values of ρ.
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Table 1: Alternatives (ii) and (iii).

Alternative 1 0.9vM(π,5)+0.1vM(π/2,5)

Alternative 2 0.8vM(π,5)+0.2vM(π/2,5)

Alternative 3 0.65vM(π,5)+0.35vM(π/2,5)

Alternative 4 0.5vM(π,5)+0.5vM(π/2,5)

Alternative 5 (2/3)vM(π,3)+(1/3)vM(0.62π,3)

Alternative 6 (1/3)vM(π,8)+(2/3)vM(π,0.1)

Alternative 7 GvM(0,0.5,1,0.6)

Alternative 8 GvM(0,0.5,1,0.2)
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Figure 1: Probability density function of alternatives in Table 1 (solid) and the probability density function

of the closer vMD (dashed).

All computations were performed using programs written in the R language. Specif-

ically, we used the package CircStats for generating data from a vMD, and from mix-

tures of vMDs, and in order to calculate the MLEs of the parameters. Data from the

generalized vMD were generated by the acceptance-rejection algorithm of von Neu-

mann suggested in Gatto (2008). In all cases the p–values were approximated by using

the parametric bootstrap algorithm given in Section 4 with B = 1000. For the benefit of

potential users, we include the R codes necessary for calculating the new test statistics,

in a Supplement.

We tried a wide range of values for λ and observed that the power of the proposed test

depends on the value of λ. Tables 2 and 3 report the results for those values of λ giving

the greater, or closer to the greater power, in all tried alternatives. Table 2 displays the

observed proportion of rejections in 1,000 Monte Carlo samples of size n = 25 under

the null hypothesis and for the set of alternatives in Table 1. We also tried n = 50 and

n = 100 yielding a quite similar picture (in the sense of comparison between tests, but
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Figure 2: Probability density function of a wn(0,ρ) law for ρ = 0.1(0.1)0.9 (solid), and the probability

density function of the closer vMD (dashed).

Table 2: Observed proportion of rejection in 1,000 Monte Carlo samples of size n = 25.

Law α E K W C0.3 C0.5 C0.7 C0.9 C1

vM(0,1) 0.05 0.053 0.047 0.044 0.062 0.059 0.059 0.061 0.059

0.10 0.105 0.093 0.089 0.115 0.117 0.117 0.122 0.122

vM(0,5) 0.05 0.054 0.048 0.047 0.033 0.032 0.036 0.040 0.043

0.10 0.106 0.099 0.095 0.086 0.090 0.092 0.091 0.092

vM(0,10) 0.05 0.051 0.046 0.046 0.039 0.042 0.042 0.042 0.043

0.10 0.103 0.090 0.092 0.093 0.096 0.095 0.095 0.098

Alt. 1 0.05 0.171 0.150 0.166 0.311 0.310 0.304 0.309 0.307

0.10 0.267 0.235 0.272 0.450 0.451 0.445 0.443 0.437

Alt. 2 0.05 0.114 0.255 0.337 0.459 0.478 0.482 0.487 0.487

0.10 0.197 0.422 0.470 0.631 0.634 0.645 0.635 0.627

Alt. 3 0.05 0.048 0.411 0.477 0.550 0.570 0.589 0.596 0.600

0.10 0.097 0.547 0.620 0.720 0.737 0.747 0.749 0.742

Alt. 4 0.05 0.036 0.500 0.541 0.559 0.583 0.604 0.617 0.623

0.10 0.059 0.627 0.688 0.719 0.739 0.741 0.750 0.751

Alt. 5 0.05 0.019 0.092 0.090 0.079 0.084 0.090 0.094 0.097

0.10 0.056 0.151 0.163 0.176 0.184 0.195 0.209 0.211

Alt. 6 0.05 0.139 0.244 0.259 0.249 0.252 0.262 0.274 0.279

0.10 0.243 0.358 0.397 0.379 0.390 0.397 0.410 0.409

Alt. 7 0.05 0.059 0.253 0.318 0.646 0.631 0.608 0.594 0.581

0.10 0.102 0.381 0.465 0.774 0.757 0.737 0.721 0.713

Alt. 8 0.05 0.003 0.131 0.154 0.130 0.153 0.176 0.192 0.198

0.10 0.007 0.212 0.244 0.267 0.305 0.320 0.329 0.337
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Table 3: Observed proportion of rejection in 1,000 Monte Carlo samples of size n from a wn(0,ρ) law.

n ρ α E K W C0.3 C0.5 C0.7 C0.9 C1

50 0.3 0.05 0.060 0.052 0.059 0.081 0.081 0.078 0.072 0.072

0.10 0.116 0.116 0.113 0.131 0.131 0.131 0.129 0.132

0.4 0.05 0.053 0.053 0.053 0.072 0.072 0.073 0.070 0.069

0.10 0.096 0.103 0.103 0.140 0.139 0.136 0.133 0.131

0.5 0.05 0.041 0.072 0.072 0.099 0.096 0.096 0.097 0.095

0.10 0.084 0.139 0.130 0.182 0.179 0.174 0.174 0.172

0.6 0.05 0.035 0.069 0.072 0.089 0.091 0.087 0.090 0.088

0.10 0.062 0.142 0.149 0.184 0.182 0.182 0.184 0.183

0.7 0.05 0.019 0.079 0.092 0.098 0.098 0.098 0.103 0.103

0.10 0.046 0.139 0.157 0.182 0.187 0.192 0.195 0.191

100 0.3 0.05 0.048 0.057 0.055 0.074 0.072 0.071 0.070 0.067

0.10 0.092 0.114 0.109 0.144 0.143 0.140 0.138 0.139

0.4 0.05 0.052 0.097 0.092 0.125 0.123 0.123 0.123 0.123

0.10 0.102 0.149 0.175 0.212 0.210 0.211 0.208 0.203

0.5 0.05 0.031 0.095 0.107 0.171 0.168 0.162 0.159 0.158

0.10 0.067 0.162 0.194 0.272 0.269 0.264 0.262 0.261

0.6 0.05 0.030 0.106 0.122 0.203 0.196 0.185 0.176 0.173

0.10 0.049 0.185 0.195 0.316 0.310 0.302 0.283 0.279

0.7 0.05 0.021 0.117 0.108 0.162 0.159 0.157 0.153 0.153

0.10 0.040 0.190 0.193 0.285 0.284 0.275 0.262 0.254

with greater powers as the sample size increases), and therefore we omit those results.

By contrast, and since the power for n = 25 is quite low we opted to present results

for larger sample size for wrapped normal alternatives. Specifically Table 3 presents

the results for wrapped normal alternatives for sample size n = 50 and n = 100, and

ρ= 0.3(0.1)0.7.

Regarding level, we conclude that the observed empirical rejection rates are reason-

ably close to the nominal values. In fact, for larger sample sizes (not displayed), we

observed greater closeness. As for power, we observe that the power of the proposed

test is comparable and most often greater than that of the tests based on the empirical

CDF. On the other hand, the test based on the characterization of maximum entropy

presents the poorest performance under the considered alternatives.

A natural question is which value of λ should be used in practical applications. Al-

though the powers exhibited in the tables are quite close for the values of λ selected,

it seems that C0.5 has an intermediate behaviour in all tried cases, so we recommend

λ= 0.5 as a compromise choice.
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Another possibility is to choose λ by using some data-dependent method (see Cu-

parić, Milosević and Obradović, 2019, for a related approach). In this sense, Tenreiro

(2019) has proposed a method for choosing the tuning parameter λ so that the power

is maximized. It works as follows. Let Cn,λ(α) denote the upper α percentile of the

null distribution of Cn,λ =Cn,λ(ϑ1, . . . ,ϑn). Assume that λ ∈ Λ, with Λ having a finite

number of points. Then, reject H0 if

max
λ∈Λ

{Cn,λ−Cn,λ(u)}> 0,

where u is chosen so that the test has level α. The key point is the way to determine u.

In the context discussed in Tenreiro (2019), it is assumed that the exact null distribution

of the test statistic can be calculated (or at least it can be approximated by simulation).

Since this is not our case, we have adapted his procedure to calculate u to our setting as

follows:

1. First, we must approximate the critical points Cn,λ(u), u ∈ (0,1), λ ∈ Λ. With

this aim, we generate B1 bootstrap samples and estimate Cn,λ(u) by means of

their bootstrap analogues, C∗
1,n,λ(u), for u ∈ {1/B1,2/B1, . . . ,(B1−1)/B1} :=UB1

,

λ ∈ Λ.

2. Then, we must calibrate u so that the test has level α. For this purpose, we gen-

erate B2 bootstrap samples, independently of those generated in the first step, and

determine u∗ ∈UB2
such that

P∗

(
max
λ∈Λ

{C∗
n,λ−C∗

1,n,λ(u
∗)}> 0,

)
≤ α.

3. Finally,

reject H0 if max
λ∈Λ

{Cn,λ−C∗
1,n,λ(u

∗)}> 0. (16)

In addition to the determination of u, another delicate issue is the choice of the set Λ,

which has a strong effect on the power of the resulting test. In order to study the practical

behaviour of test (16), we repeated the experiment in Table 2 for Λ = Λ1 and Λ = Λ2,

with Λ1 = {0.1,0.3,0.5,0.7,0.9,1,2,3,4,5,7,10} and Λ2 = {0.3,0.5,0.7,0.9,1,2}, and

B1 = B2 = 1000. Table 4 display the results obtained. Comparing the powers in that

table with those in Table 2 we conclude that as Λ increases, the power of the test (16)

decreases. This fact was also observed in the simulations in Tenreiro (2019). The power

for Λ = Λ2 is in most cases smaller than that obtained for λ= 0.5.

Table 4: Observed proportion of rejection in 1,000 Monte Carlo samples of size n = 25, for α= 0.05.

Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8

Λ1 0.200 0.327 0.426 0.442 0.050 0.213 0.458 0.103

Λ2 0.280 0.439 0.549 0.563 0.077 0.280 0.562 0.156
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Figure 3: Rose diagrams for the five real data sets.

7 Real-data application

This section illustrates the proposed test on five real data sets. They come from a study

by Taylor and Burns (2016) on the radial orientation of 2 species of mistletoes and 3

species of epiphytes, which the ecologists believe orient towards the direction of the

availability of light and humidity. Specifically, Data Set 1 consists of n = 67 obser-

vations on Peraxilla colensoi, Data Set 2 consists of n = 70 observations on Peraxilla

tetrapetala, Data Set 3 consists of n= 65 observations on Asplenium flaccidum, Data Set

4 consists of n = 182 observations on Hymenophyllum multifidum, and Data Set 5 con-

sists of n = 263 observations on Notogrammitis billardierei. Taylor and Burns (2016)

tested for uniformity in the five data sets and in all cases such hypothesis was rejected,

indicating that the distribution of each of the studied species have certain orientation, as

can be easily appreciated by looking at Figure 3, which displays the rose diagrams for

each data set. So, it would be interesting to check if the data follow some distribution,

such as the vMD. In fact, Taylor and Burns (2016) calculated certain confidence inter-

vals based on the vMD. Table 5 reports the values of the maximum likelihood estimates

by assuming a vMD, as well as the p-values for testing goodness-of-fit to that distri-
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Table 5: Maximum likelihood estimators of the parameters and p-values for the real data sets.

µ̂ κ̂ K W C0.5

1 2.5551 0.7700 0.5335 0.6410 0.4710

2 5.7677 0.8447 0.1505 0.2815 0.7555

3 2.8226 1.1120 0.0080 0.0050 0.0265

4 3.0454 1.2589 0.0080 0.0050 0.0220

5 2.5551 0.7699 0.8310 0.0060 0.0050

bution that resulted by applying the tests K, W and C0.5. These three test criteria lean

towards the null hypothesis for Data Set 1 and Data Set 2, and all of them suggest that

the vMD is not a good model for Data Set 3 and Data Set 4. For Data Set 5, the tests

W and C0.5 reject that the vMD provides an adequate description of the data, while test

K concludes in the opposite direction. From the power results in our simulations, we

deduce that the vMD does not provide a satisfactory fit to Data Set 5.

8 Discussion

We suggest here a general class of GOF tests for circular distributions. The proposed

test statistic may conveniently be expressed as a weighted L2–type distance between

the empirical trigonometric moments and the corresponding theoretical quantities, and

is shown to compete well with classical tests based on the CDF. Our method imposes

minimal technical conditions is widely applicable for arbitrary distributions under test.

Here however we focus specifically on GOF testing for the vMD because it is one of

the most commonly used distributions in practice, and one would like to verify if this

model fits a given data set before utilizing the various parametric tools that have been

developed for this particular model.

A Appendix

All limits are understood to be taken as n → ∞.

A.1 Technical assumptions

ASSUMPTION A. Under H0, if βββ ∈ B denotes the true parameter value, then

√
n
(
β̂ββ−βββ

)
=

1√
n

n∑

i=1

L(ϑ j;βββ)+oP(1),

with E{L(Θ;βββ)}= 0 and J(βββ) = E{L(Θ;βββ)L(Θ;βββ)⊤}< ∞.
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ASSUMPTION B. ∂

∂βββk
ℜϕ(r;βββ) and ∂

∂βββk
ℑϕ(r;βββ), exist ∀r ∈ N0 and 1 ≤ k ≤ p, and

satisfy

∑

r≥0

∂

∂βββk

ℜϕ(r;βββ)2 p(r)< ∞,

∑

r≥0

∂

∂βββk

ℑϕ(r;βββ)2 p(r)< ∞.

Let ‖ · ‖ stand for the Euclidean norm.

ASSUMPTION C. For any ε > 0 there is a bounded neighborhood Nε ⊆ R
p of βββ, such

that if γγγ ∈ Nε then ∇ℜϕ(r;γγγ) and ∇ℑϕ(r;γγγ) exist and satisfy

‖∇ℜϕ(r;γγγ)−∇ℜϕ(r;βββ)‖ ≤ ρℜ(r), ∀r ∈ N0, with
∑

r≥0

ρ2
ℜ(r)p(r)< ε,

‖∇ℑϕ(r;γγγ)−∇ℑϕ(r;βββ)‖ ≤ ρℑ(r), ∀r ∈ N0, with
∑

r≥0

ρ2
ℑ(r)p(r)< ε.

Assumptions A∗ and B∗ below are a bit stronger than Assumptions A and B, respec-

tively. They are required for the consistency of the parametric bootstrap null distribution

estimator.

ASSUMPTION A∗. (a) There is a βββ0 ∈ B so that β̂ββ → βββ0, a.s., βββ0 being the true param-

eter value if H0 is true,

(b)

√
n

(
β̂ββ
∗− β̂ββ

)
=

1√
n

n∑

i=1

L(ϑ∗
j ; β̂ββ)+oP∗(1),

with E∗{L(Θ∗; β̂ββ)}= 0, J(β̂ββ) = E∗{L(Θ∗; β̂ββ)L(Θ∗; β̂ββ)⊤}→ J(βββ0)< ∞, a.s.

(c) supβββ∈N0
Eβββ

[
‖L(Θ;βββ)‖2

ℓ2
p
I

{
‖L(Θ;βββ)‖ℓ2

p
> ǫ

√
n

}]
−→ 0, ∀ǫ> 0, where N0 ⊆ B is

an open neighborhood of βββ0, where Eβββ stands for the expectation when data have CDF

F(x;β).

ASSUMPTION B∗. Assumption B holds true ∀βββ in an open neighborhood of βββ0, where

βββ0 is as defined in Assumption A∗.

A.2 Proofs

Proof of Theorem 1

By Taylor expansion,

ℜϕ(r; β̂ββ) = ℜϕ(r;βββ)+∇ℜϕ(r;βββ)⊤(β̂ββ−βββ)+g1n(r).
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From Assumptions A and C, it follows that

‖
√

ng1n‖2
ℓ2

p
= oP(1).

From Assumptions A and B, it follows that

∇ℜϕ(r;βββ)⊤(β̂ββ−βββ) = ∇ℜϕ(r;βββ)⊤
1

n

n∑

j=1

L(ϑ j;βββ)+g2n(r)

with

‖
√

ng2n‖2
ℓ2

p
= oP(1).

Analogous expansions hold for ℑϕ(r; β̂ββ), so that if we let

Z0,n(r) =
1√
n

n∑

j=1

ϒ(r,ϑ j;βββ),

these expansions imply that

Zn(r) = Z0,n(r)+g3n(r), (17)

with

‖g3n‖2
ℓ2

p
= oP(1). (18)

From Assumptions A and B, it follows that Eβββ

{
‖ϒ(·,Θ;βββ)‖2

ℓ2
p

}
< ∞. Therefore, by

applying the Central Limit Theorem in Hilbert spaces (van der Vaart and Wellner, 1996,

p. 50), we get that

Z0,n
L−→ Z, (19)

and then the result follows from (17)–(19).

Proof of Theorem 2

Let Z∗
n(r) =

√
n{ϕ∗

n(r)−ϕ(r; β̂ββ
∗
)}, with ϕ̂∗

n(r) = n−1
∑n

j=1 e
irϑ∗j . Proceeding as in the

proof of Theorem 1, we have that

Z∗
n(r) = Z∗

0,n(r)+g∗n(r),

with Z∗
0,n(r) = n−1/2

∑n
j=1 ϒ(r,ϑ∗

j; β̂ββ),

‖g∗n‖2
ℓ2

p
= oP∗(1), a.s.
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To prove the result we derive the asymptotic distribution of Z∗
0,n(r), showing that it

coincides with the asymptotic distribution of Cn,p when the data come from F(·;βββ0).

Notice that, for each n, the elements in the set {ϒ(·,ϑ∗
1; β̂ββ), . . . ,ϒ(·,ϑ∗

n; β̂ββ)} are indepen-

dent and identically distributed random elements taking values in the separable Hilbert

space ℓ2
p, but their common distribution may vary with n. Because of this reason, in

order to derive the asymptotic distribution of Z∗
0,n(r), we apply Theorem 1.1 in Kundu,

Majumdar and Mukherjee (2000). So we will prove that conditions (i)–(iii) in that the-

orem hold. For k ≥ 0, let ek( j) = I(k = j)/
√

p(k). {ek}k≥0 is an orthonormal basis of

ℓ2
p.

Let Cn and Kn denote the covariance operator and the covariance kernel of Z∗
0,n,

respectively. Let C0 and K0 denote the covariance operator and the covariance kernel

of Z0, respectively, where Z0 stands for the random element figuring in Theorem 1 with

βββ = βββ0. Assumptions A∗ and C imply that

〈Cnek,er〉ℓ2
p
=
√

p(k)p(r)Kn(k,r)→
√

p(k)p(r)K0(k,r) = 〈C0ek,er〉ℓ2
p
, a.s.,

Setting akr = 〈C0ek,er〉ℓ2
p

in the aforementioned Theorem 1.1, this proves that condition

(i) holds.

Assumptions A∗, B∗ and C imply that

∑

k≥0

〈Cnek,ek〉ℓ2
p
=
∑

k≥0

Kn(k,k)p(k)→
∑

k≥0

K0(k,k)p(k)= E

{
‖Z0‖2

ℓ2
p

}
< ∞, a.s.,

and thus condition (ii) holds. Finally, condition (iii) readily follows from Assumption

A∗.
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