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Abstract. In this article, we introduce the notion of star-Ricci tensors in the real hypersurfaces of complex
quadric Qm. It is proved that there exist no Hopf hypersurfaces in Qm, m ≥ 3, with commuting star-Ricci tensor or
parallel star-Ricci tensor. As a generalization of star-Einstein metric, star-Ricci solitons on M are considered. In this

case we show that M is an open part of a tube around a totally geodesic CP
m
2 ⊂ Qm,m ≥ 4.

1. Introduction

The complex quadric Qm is a Hermitian symmetric space SOm+2/SOmSO2 with rank
two in the class of compact type. It can be regarded as a complex hypersurface of complex

projective space CPm+1. Also, the complex quadric Qm can be regarded as a kind of real
Grassmannian manifolds of compact type with rank two. In the complex quadric Qm there are
two important geometric structures, a complex conjugation structure A and Kähler structure J ,
with each other being anti-commuting, that is, AJ = −JA. Another distinguished geometric

structure in Qm is a parallel rank two vector bundle U which contains an S1-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Qm. Here the parallel
vector bundle U means that (˜∇XA)Y = q(X)AY for all X,Y ∈ TzQ

m, z ∈ Qm, where ˜∇ and
q denote a connection and a certain 1-form on TzQ

m, respectively.
Recall that a nonzero tangent vector W ∈ TzQ

m, z ∈ Qm, is called singular if it is
tangent to more than one maximal flat in Qm. There are two types of singular tangent vectors
for the complex quadric Qm:

1. If there exists a conjugation A ∈ U such that W ∈ V (A), then W is singular. Such a
singular tangent vector is called U-principal.

2. If there exist a conjugation A ∈ U and orthonormal vectors X,Y ∈ V (A) such that

W/‖W‖ = (X + JY )/
√

2, then W is singular. Such a singular tangent vector is called
U-isotropic.
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Let M be a real hypersurface of Qm. The Kähler structure J on Qm induces a structure
vector field ξ called Reeb vector field on M by ξ := −JN , where N is a local unit normal
vector field of M in Qm. It is well-known that there is an almost contact structure (φ, η, ξ, g)

on M induced from complex quadric. Moreover, if the Reeb vector field ξ is invariant under
the shape operator S, i.e. Sξ = αξ , where α = g(Sξ, ξ) is a smooth function, then M is
said to be a Hopf hypersurface. For the real Hopf hypersurfaces of complex quadric many
characterizations were obtained by Suh (see [9, 10, 11, 12, 13] etc.). In particular, we note
that Suh in [9] introduced parallel Ricci tensor, i.e. ∇Ric = 0, for the real hypersurfaces in
Qm and gave a complete classification for this case. In addition, if the real hypersurface M

admits commuting Ricci tensor, i.e. Ric ◦ φ = φ ◦ Ric, Suh also proved the followings:

THEOREM 1 ([13]). Let M be a real hypersurface of the complex quadric Qm,m ≥ 3,
with commuting Ricci tensor. Then the unit normal vector field N of M is either U-principal
or U-isotropic.

THEOREM 2 ([13]). There exist no Hopf real hypersurfaces in the complex quadric
Qm,m ≥ 4, with commuting and parallel Ricci tensor.

Since the Ricci tensor of an Einstein hypersurface in the complex quadric Qm is a con-
stant multiple of g , it satisfies naturally commuting and parallelism. Thus we have the follow-
ing.

COROLLARY 1 ([13]). There exist no Hopf Einstein real hypersurfaces in the complex
quadric Qm,m ≥ 4.

As a generalization of Einstein metrics, recently Suh in [14] has shown a complete clas-
sification of Hopf hypersurfaces with a Ricci soliton, which is given by

1

2
(LW g)(X, Y ) + Ric(X, Y ) = λg(X, Y ) .

Here λ is a constant and W is a vector field on M , which are said to be Ricci soliton constant
and potential vector field, respectively, and LW denotes the Lie derivative along the direction
of the vector field W .

Notice that, as the corresponding of Ricci tensor, Tachibana [15] introduced the idea of
star-Ricci tensor. These ideas apply to almost contact metric manifolds, and in particular, to
real hypersurfaces in complex space forms by Hamada in [3]. The star-Ricci tensor Ric∗ is
defined by

Ric∗(X, Y ) = 1

2
trace{φ ◦ R(X, φY )} , for all X, Y ∈ T M . (1)

If the star-Ricci tensor is a constant multiple of g(X, Y ) for all X,Y orthogonal to ξ , then M

is said to be a star-Einstein manifold. Hamada gave a classification of star-Einstein hypersur-
faces of CPn and CHn, and further Ivey and Ryan updated and refined the work of Hamada
in 2011 ([4]).
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Motivated by the present work, in this paper we introduce the notion of star-Ricci tensor
in the real hypersurfaces of complex quadric Qm and study the characterizations of a real
Hopf hypersurface whose star-Ricci tensor satifies certain conditions.

First we consider the real hypersurface with commuting star-Ricci tensor, i.e. φ ◦Ric∗ =
Ric∗ ◦ φ. We assert the following:

THEOREM 3. There exist no Hopf hypersurfaces of Qm,m ≥ 3, with commuting star-
Ricci tensor.

For the Hopf hypersurfaces of Qm,m ≥ 3, with parallel star-Ricci tensor, we also prove
the following non-existence.

THEOREM 4. There exist no Hopf hypersurfaces of Qm,m ≥ 3, with parallel star-
Ricci tensor.

As the generalization of star-Einstein metric Kaimakamis and Panagiotidou [5] intro-
duced a so-called star-Ricci soliton, that is, a Riemannian metric g on M satisfying

1

2
LW g + Ric∗ = λg . (2)

In this case we obtain the following characterization:

THEOREM 5. Let M be a real hypersurface in Qm,m ≥ 4, admitting a star-Ricci
soliton with potential vector field ξ , then M is an open part of a tube around a totally geodesic

CP
m
2 ⊂ Qm.

This paper is organized as follows. In Sections 2 and 3, some basic concepts and formulas
for real hypersurfaces in complex quadric are presented. In Section 4 we consider Hopf
hypersurfaces with commuting star-Ricci tensor and give the proof of Theorem 3. In Section
5 we will prove Theorem 4. At last we assume that a Hopf hypersurface admits star-Ricci
soliton and give the proof of Theorem 5 as Section 6.

2. The complex quadric

In this section we will summarize some basic notations and formulas about the complex
quadric Qm. For more detail see [1, 2, 7, 6]. The complex quadric Qm is the hypersur-

face of complex projective space CPm+1, which is defined by z2
1 + · · · + z2

m+2 = 0, where

z1, . . . , zm+2 are homogeneous coordinates on CPm+1. In the complex quadric it is equipped

with a Riemannian metric g̃ induced from the Fubini-Study metric on CPm+1 with constant

holomorphic sectional curvature 4. Also the Kähler structure on CPm+1 induces canonically
a Kähler structure (J, g̃) on the complex quadric Qm.

The complex projective space CPm+1 is a Hermitian symmetric space of the special

unitary group SUm+2, i.e. CPm+1 = SUm+2/S(U1Um+1). The special orthogonal group
SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity one. The orbit containing o is a



590 XIAOMIN CHEN

totally geodesic real projective space RPm+1 ⊂ CPm+1, where o = [0, . . . , 1] ∈ CPm+1

is the fixed point of the action of the stabilizer S(Um+1U1). We can identify Qm with a
homogeneous space SO(m + 2)/SO2SOm, which is the second singular orbit of this action.
Such a homogeneous space model leads to the geometric interpretation of the complex quadric

Qm as the Grassmann manifold G+
2 (Rm+2) of oriented 2-planes in Rm+2. From now on we

always assume m ≥ 3 because it is well known that Q1 is isometric to a sphere S2 with

constant curvature and Q2 is isometric to the Riemannian product of two 2-spheres with
constant curvature.

For a unit normal vector ρ of Qm at a point z ∈ Qm we denote by A = Aρ the shape

operator of Qm in CPm+1 with respect to ρ, which is an involution on the tangent space
TzQ

m, and the tangent space can be decomposed as

TzQ
m = V (Aρ) ⊕ JV (Aρ) ,

where V (Aρ) is the (+1)-eigenspace and JV (Aρ) is the (−1)-eigenspace of Aρ . This means
that the shape operator A defines a real structure on TzQ

m, equivalently, A is a complex

conjugation. Since the real codimension of Qm in CPm+1 is 2, this induces an S1-subbundle
U of the endomorphism bundle End(T Qm) consisting of complex conjugations. Notice that
J and each complex conjugation A ∈ U anti-commute, i.e. AJ = −JA.

3. Real hypersurface of complex quadric and its star-Ricci tensor

Let M be an immersed real hypersurface of Qm with induced metric g . There exists a
local defined unit normal vector field N on M and we write ξ := −JN by the structure vector
field of M . An induced one-form η is defined by η(·) = g̃(J ·, N), which is dual to ξ . For any
vector field X on M the tangent part of JX is denoted by φX = JX − η(X)N . Moreover,
the following identities hold:

φ2 = −Id + η ⊗ ξ , η ◦ φ = 0 , φ ◦ ξ = 0 , η(ξ) = 1 , (3)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) , g(X, ξ) = η(X) , (4)

where X,Y ∈ X(M). By these formulas, we know that (φ, η, ξ, g) is an almost contact met-
ric structure on M . The tangent bundle T M can be decomposed as T M = C ⊗ Rξ , where
C = ker η is the maximal complex subbundle of T M . Denote by ∇, S the induced Riemann-
ian connection and the shape operator on M , respectively. Then the Gauss and Weingarten
formulas are given respectively by

˜∇XY = ∇XY + g(SX, Y )N , ˜∇XN = −SX , (5)

where ˜∇ is the connection on Qm with respect to g̃ . Also, we have

(∇Xφ)Y = η(Y )SX − g(SX, Y )ξ , ∇Xξ = φSX . (6)
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The curvature tensor R and Codazzi equation of M are given respectively as follows (see
[9]):

R(X, Y )Z = g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY

+ g(SY,Z)SX − g(SX,Z)SY , (7)

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z) − g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z) (8)

for any vector fields X,Y,Z on M .
At each point z ∈ M we denote

Qz = {X ∈ TzM| AX ∈ TzM for all A ∈ Uz}
by a maximal U-invariant subspace of TzM . For the subspace the following lemma was
proved.

LEMMA 1 (see [10]). For each z ∈ M we have

• If Nz is U-principal, then Qz = Cz.
• If Nz is not U-principal, there exist a conjugation A ∈ U and orthonormal vectors

X,Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π
4 ]. Then we have

Qz = Cz � C(JX + Y ).

For each point z ∈ M we choose A ∈ Uz, then there exist two orthonormal vectors
Z1, Z2 ∈ V (A) such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N = cos(t)Z1 + sin(t)JZ2 ,

AN = cos(t)Z1 − sin(t)JZ2 ,

ξ = sin(t)Z2 − cos(t)JZ1 ,

Aξ = sin(t)Z2 + cos(t)JZ1

(9)

for 0 ≤ t ≤ π
4 (see [8, Proposition 3]). From this we get g(AN, ξ) = 0.

In the real hypersurface M we introduce the star-Ricci tensor Ric∗ defined by

Ric∗(X, Y ) = 1

2
trace{φ ◦ R(X, φY )} , for all X, Y ∈ T M .

Taking a local frame {ei} of M such that e1 = ξ and using (4), we derive from (7)

2m−1
∑

i=1

g(φ ◦ R(X, φY )ei, ei )

= g(φY, φX) − g(X, φ2Y ) + g(φ2Y, φ2X) − g(φX, φ3Y ) + 2(2m − 2)g(φX, φY )
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+ g(AφY, φAX) − g(AX, φAφY) + g(JAφY, φJAX) − g(JAX, φJAφY)

+ g(SφY, φSX) − g(SX, φSφY )

= 4mg(φX, φY ) − 2g(AX, φAφY) + 2g(JAφY, φJAX) − 2g(SX, φSφY ) .

In view of (1), the star-Ricci tensor is given by

Ric∗(X, Y ) = 2mg(φX, φY ) − g(AX, φAφY)

+ g(JAφY, φJAX) − g(SX, φSφY ) . (10)

Since AJ = −JA and ξ = −JN , we have

JAφY = −AJφY = AY − η(Y )Aξ ,

φJAX = J (JAX) − η(JAX)N = −AX + g(N,AX)N .

Then

g(JAφY, φJAX) = −g(AX,AY) + η(Y )η(X) + g(N,AX)g(AY,N)

= g(φ2X,Y ) + g(N,AX)g(AY,N) . (11)

Because

JAφY = φAφY + η(AφY )N

= φAφY + g(ξ,AJY − η(Y )AN)N

= φAφY + g(J ξ,AY )N

= φAφY + g(N,AY)N ,

we have

g(AX, φAφY) = g(AX, JAφY − g(N,AY)N)

= g(AX, JAφY) − g(N,AY)g(AX,N)

= −g(φ2X,Y ) − g(N,AY)g(AX,N) . (12)

Thus substituting (11) and (12) into (10) implies

Ric∗(X, Y ) = − 2(m − 1)g(φ2X,Y ) − 2g(N,AX)g(AY,N) − g((φS)2X,Y ) (13)

for all X,Y ∈ T M .
In the following we always assume that M is a Hopf hypersurface in Qm, i.e. Sξ = αξ

for a smooth function α = g(Sξ, ξ). As in [9], since g(AN, ξ) = 0, by taking Z = ξ in the
Codazzi equation (8), we have

g((∇XS)Y − (∇Y S)X, ξ)

= − 2g(φX, Y ) + 2g(X,AN)g(AY, ξ) − 2g(Y,AN)g(AX, ξ) .
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On the other hand,

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Yα)η(X) + αg((φS + Sφ)X, Y ) − 2g(SφSX, Y ) .

Comparing the previous two equations and putting X = ξ gives

Yα = (ξα)η(Y ) + 2g(Y,AN)g(ξ,Aξ) . (14)

Moreover, we have the following.

LEMMA 2 ([10, Lemma 4.2]). Let M be a Hopf hypersurface in Qm with (local) unit
normal vector field N . For each point in z ∈ M we choose A ∈ Uz such that Nz = cos(t)Z1 +
sin(t)JZ2 holds for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π

4 . Then

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X, Y ) − 2g(φX, Y )

+ 2g(X,AN)g(Y,Aξ) − 2g(Y,AN)g(X,Aξ)

+ 2g(ξ,Aξ){g(Y,AN)η(X) − g(X,AN)η(Y )}
(15)

holds for all vector fields X,Y on M .

From this lemma we can prove the following.

LEMMA 3. Let M be a Hopf hypersurface in complex quadric Qm, then

(φS)2 = (Sφ)2 . (16)

PROOF. From the equation (15) we assert the followings:

g((Sφ)2X,Y ) = 1

2
αg((φS + Sφ)φX, Y ) + g(φ2X,Y ) − g(φX,AN)g(Y,Aξ)

+ g(φX,Aξ)g(Y,AN) + g(ξ,Aξ)g(φX,AN)η(Y ) ,

g((φS)2X,Y ) = 1

2
αg(φ(φS + Sφ)X, Y ) + g(φ2X,Y ) − g(X,AN)g(φAξ, Y )

+ g(X,Aξ)g(φAN, Y ) − g(ξ,Aξ)η(X)g(φAN, Y ) . (17)

Thus we obtain

g((Sφ)2X − (φS)2X,Y ) = −g(φX,AN)g(Y,Aξ) + g(φX,Aξ)g(Y,AN)

+ g(ξ,Aξ)g(φX,AN)η(Y ) + g(X,AN)g(φAξ, Y )

− g(X,Aξ)g(φAN, Y ) + g(ξ,Aξ)η(X)g(φAN, Y )

= η(X)g(AN,N)g(Y,Aξ) − g(ξ,Aξ)g(X,Aξ)η(Y )

− g(X,Aξ)η(Y )g(AN,N) + g(ξ,Aξ)η(X)g(Y,Aξ)
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=
(

η(X)g(Aξ, Y ) − g(X,Aξ)η(Y )
)(

g(AN,N) + g(ξ,Aξ)
)

.

Here we have used the following relations:

g(Aξ, φX) = g(Aξ, JX − η(X)N) = g(AN,X) , (18)

g(AφX,N) = g(AJX − η(X)AN,N) = −g(X,Aξ) − η(X)g(AN,N) . (19)

From (9), we get g(AN,N) + g(ξ,Aξ) = 0, which yields (16). �

4. Proof of Theorem 3

In this section we suppose that M is a real Hopf hypersurface with commuting star-Ricci
tensor, that is, φ ◦ Ric∗ = Ric∗ ◦ φ. Making use of (13), a straightforward computation gives

0 = g((φ ◦ Ric∗ − Ric∗ ◦ φ)X, Y )

= −Ric∗(X, φY ) − Ric∗(φX, Y )

= 2g(N,AX)g(AφY,N) + 2g(N,AφX)g(AY,N)

+ g(φ[(Sφ)2 − (φS)2]X,Y ) .

Thus Lemma 3 implies

g(N,AX)g(AφY,N) + g(N,AφX)g(AY,N) = 0 .

Replacing X and Y by φX and φY respectively gives

g(N,AφX)g(Y,AN) + g(X,AN)g(AφY,N) = 0 .

Now, if X = Y , we find g(AN, φX)g(AN,X) = 0 for all vector field X on M , which means
AN = N . Therefore we prove the following.

LEMMA 4. Let M be a Hopf hypersurface of complex quadric Qm,m ≥ 3, with com-
muting star-Ricci tensor. Then the unit normal vector field N is U-principal.

In terms of (17), the star-Ricci tensor (13) becomes

Ric∗(X, Y ) =(−2m + 1)g(φ2X,Y ) − 1

2
αg(φ(φS + Sφ)X, Y ) .

Moreover, from (15) we obtain

Ric∗(X) =(−2m + 1)φ2X − 1

2
αφ(φS + Sφ)X

=(−2m + 1)φ2X − 1

2
αφ2SX − 1

4
α2(φS + Sφ)X − 1

2
αφX .

By virtue of [9, Lemma 4.3] and Lemma 4, it implies that α is constant. If α �= 0, making use
of the previous formula, we conclude that

0 = φRic∗(X) − Ric∗(φX) = 1

2
α(φSX − SφX)
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for all X ∈ T M . That means that the Reeb flow is isometric. In view of [2, Proposition
6.1], the normal vector field N is isotropic everywhere, which is contradictory with Lemma
4. Hence α = 0 and the star-Ricci tensor becomes

Ric∗(X, Y ) =(−2m + 1)g(φ2X,Y ) . (20)

Now replacing X and Y by φX and φY respectively in (13) and using (20), we get

(2m − 1)(φX, φY ) =2(m − 1)g(X, φY ) − 2g(N,AφX)g(AφY,N) − g((Sφ)2X,Y ) .

Interchanging X and Y and applying the resulting equation to subtract the previous equation,
we obtain

g((Sφ)2X − (φS)2X,Y ) =4(m − 1)g(X, φY ) .

So from Lemma 3, we conclude that

4(m − 1)g(X, φY ) = 0 ,

which is impossible since m ≥ 3. We finish the proof of Theorem 3. �

REMARK 1. Formula (20) with X,Y ∈ C, we have Ric∗(X, Y ) = (2m − 1)g(X, Y ),
namely M is star-Einstein, thus we have proved that there exist no star-Einstein Hopf hyper-
surfaces in complex quadric Qm,m ≥ 3, which is analogous to the conclusion of Corollary 1
in the introduction.

5. Proofs of Theorem 4

In this section we assume M is a Hopf hypersurface of Qm,m ≥ 3, with parallel star-
Ricci tensor. In order to prove Theorem 4, we first prove the following lemma.

LEMMA 5. Let M be a Hopf hypersurface of Qm,m ≥ 3, with parallel star-Ricci
tensor. Then the unit normal vector N is either U-principal or U-isotropic.

PROOF. Since ∇Ric∗ = 0, differentiating equation (13) covariantly along vector field
Z gives

0 = 2(m − 1)g((∇Zφ)φX + φ(∇Zφ)X, Y )

+ 2g(˜∇ZN,AX)g(AY,N) + 2g(N, (˜∇ZA)X)g(AY,N)

+ 2g(˜∇ZN,AY)g(AX,N) + 2g(N, (˜∇ZA)Y )g(AX,N)

+ g((∇Zφ)SφSX, Y ) + g(φ(∇ZS)φSX, Y )

+ g(φS(∇Zφ)SX, Y ) + g(φSφ(∇ZS)X, Y ) .

Here we have used (˜∇ZA)X = q(Z)AX for a certain 1-form q as in the introduction. More-
over, by (5) we have

0 = − 2(m − 1)g(SZ, φX)η(Y ) + 2(m − 1)η(X)g(φSZ, Y )
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− 2g(SZ,AX)g(AY,N) + 4q(Z)g(N,AX)g(AY,N)

− 2g(SZ,AY)g(AX,N) − g(SZ, SφSX)η(Y ) + g(φ(∇ZS)φSX, Y )

+ η(SX)g(φS2Z, Y ) + g(φSφ(∇ZS)X, Y ) . (21)

Since Sξ = αξ , letting X = ξ we get

0 =2(m − 1)g(φSZ, Y ) − 2g(SZ,Aξ)g(AY,N)

+ αg(φS2Z, Y ) + g((∇ZS)ξ, φSφY )

=2(m − 1)g(φSZ, Y ) − 2g(SZ,Aξ)g(AY,N)

+ αg(φS2Z, Y ) + g(αφSZ − SφSZ, φSφY ) .

Moreover, if Z = ξ then we get αg(Aξ, ξ)g(AY,N) = 0. If α �= 0 then cos(2t)g(AY,N) =
0 by (9). That means that t = π

4 or AY ∈ T M , that is, the unit normal vector N is U-principal
or U-isotropic. If α = 0 then g(Y,AN)g(ξ,Aξ) = 0 for any Y ∈ T M by (14), thus we have
same conclusion. The proof is complete. �

We first assume that the unit normal vector field N is U-isotropic. In this case these
expressions in (9) become

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

N = 1√
2
(Z1 + JZ2) ,

AN = 1√
2
(Z1 − JZ2) ,

ξ = 1√
2
(Z2 − JZ1) ,

Aξ = 1√
2
(Z2 + JZ1) .

Thus

g(Aξ, ξ) = g(AN,N) = 0 . (22)

So (15) becomes

SφSX = 1

2
α(φS + Sφ)X + φX

− g(X,AN)Aξ + g(X,Aξ)AN . (23)

The formula (21) with Z = ξ implies

0 =−2g(Sξ,AX)g(AY,N) + 4q(ξ)g(N,AX)g(AY,N)

−2g(Sξ,AY )g(AX,N) − g((∇ξ S)φSX, φY )

+ g((∇ξ S)X, φSφY ) . (24)

By Codazzi equation (8), we get

(∇ξ S)Y = αφSY − SφSY + φY − g(Y,AN)Aξ
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+ g(Y,Aξ)AN

= 1

2
α(φS − Sφ)Y .

Thus substituting this into (24) gives

0 = − 2αg(ξ,AX)g(AY,N) + 4q(ξ)g(N,AX)g(AY,N)

− 2αg(ξ,AY )g(AX,N) − 1

2
αg(SφSX + φSφSφX, Y ) . (25)

Moreover, by (23) we have SφSX + φSφSφX = 0, thus taking X = Aξ in (25) yields

αg(AY,N) = 0 .

Here we have used g(Aξ,Aξ) = 1 and g(AN,Aξ) = 0. From this we derive α = 0 since N

is U-isotropic.
On the other hand, we put Y = ξ in (21) and get

0 = 2(m − 1)g(SZ, φX) + 2g(SZ,Aξ)g(AX,N) + g(SZ, SφSX) .

Applying (23) in the above formula, we have

0 = (2m − 1)g(SZ, φX) + g(SZ,Aξ)g(AX,N) + g(SZ,AN)g(X,Aξ) .

That is,

0 = (2m − 1)SφX + g(AX,N)SAξ + g(X,Aξ)SAN . (26)

When X = AN , it comes to

0 = (2m − 1)SφAN + SAξ .

Then Aξ = φAN implies SAξ = 0. Similarly, SAN = 0. Therefore from (26) we obtain
SφX = 0 for all X ∈ T M. As Sξ = 0 we know SX = 0 for all X ∈ T M , thus ∇ξ S = 0, that
means that the hypersurface M admits parallel shape operator. But Suh [10] has showed the
non-existence of this type hypersurfaces.

In the following if N is U-principal, that is, AN = N , then (13) becomes

Ric∗(X, Y ) = − 2(m − 1)g(φ2X,Y ) − g((φS)2X,Y ) .

In this case we see that the star-Ricci tensor is commuting by Lemma 3. Thus we see α = 0
from the proof of Theorem 3. In this case, the formulas (21) with Y = ξ and (15) respectively
become 2(m−1)g(SZ, φX)+g(SZ, SφSX) = 0 and SφSX = φX, respectively. From these
two equations we obtain g(SZ, φX) = 0, that is, φSZ = 0. This implies SZ = αη(Z)ξ = 0.

As before, this is impossible.
Summing up the above discussion, we complete the proof of Theorem 4.
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6. Proof of Theorem 5

In order to prove our theorem, we first give the following property.

PROPOSITION 1. Let M be a real hypersurface in Qm,m ≥ 3, admitting a star-Ricci
soliton with potential vector field ξ , then M must be Hopf.

PROOF. Since LW g and g are symmetry, the *-Ricci soliton equation (2) implies the
star-Ricci tensor is also symmetry, i.e. Ric∗(X, Y ) = Ric∗(Y,X) for any vector fields X,Y

on M . It yields from (13) that

(φS)2X = (Sφ)2X (27)

for all X ∈ T M.

On the other hand, from the star-Ricci soliton equation (2) it follows

Ric∗(X, Y ) = λg(X, Y ) + 1

2
g((Sφ − φS)X, Y ) . (28)

By (13), we have

− 2(m − 1)g(φ2X,Y ) − 2g(N,AX)g(AY,N) − g((φS)2X,Y )

= λg(X, Y ) + 1

2
g((Sφ − φS)X, Y ) . (29)

Putting X = Y = ξ gives λ = 0 since g(AN, ξ) = 0. Therefore the previous formula with
X = ξ yields

(φS)2ξ = 1

2
φSξ .

Using (27) we get φSξ = 0, which shows Sξ = αξ with α = g(Sξ, ξ). �

Moreover, by (28) we have

Ric∗(X) = 1

2
(Sφ − φS)X . (30)

Thus by a straightforward computation we find φ ◦ Ric∗ + Ric∗ ◦ φ = 0 since the relation
φ2S = Sφ2 holds by Proposition 1. Namely the following result holds.

PROPOSITION 2. Let M be a real hypersurface in Qm,m ≥ 3, admitting a star-Ricci
soliton with potential vector field ξ , then the star-Ricci tensor is anti-commuting.

Next we will compute the convariant derivative of φ ◦ Ric∗ + Ric∗ ◦ φ = 0. First of all,
by (30) and (6), we compute

(∇XRic∗)(Y ) = 1

2

{

(∇XS)φY + S(∇Xφ)Y − (∇Xφ)SY − φ(∇XS)Y
}

= 1

2

{

(∇XS)φY + η(Y )S2X − αg(SX, Y )ξ
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− αη(Y )SX + g(SX, SY )ξ − φ(∇XS)Y
}

. (31)

Now differentiating φ ◦ Ric∗ + Ric∗ ◦ φ = 0 convariantly gives

0 = (∇Xφ)Ric∗(Y ) + φ(∇XRic∗)Y + (∇XRic∗)φY + Ric∗(∇Xφ)Y

= −g(SX, Ric∗(Y ))ξ + φ(∇XRic∗)Y + (∇XRic∗)φY + η(Y )Ric∗(SX)

= −1

2
g(SX, SφY − φSY )ξ + φ(∇XRic∗)Y + (∇XRic∗)φY

+ 1

2
η(Y )(SφSX − φS2X) .

Applying (31) in the above formula, we get

0 = g(SX, φSY )ξ +
{

− αη(Y )φSX + g((∇XS)Y, ξ)ξ
}

+
{

η(Y )(∇XS)ξ − αg(SX, φY )ξ
}

+ η(Y )SφSX

= g(SX, φSY )ξ − αη(Y )φSX +
{

g((Y,X(α)ξ + αφSX − SφSX)
}

ξ

+ η(Y )
{

X(α)ξ + αφSX − SφSX
}

− αg(SX, φY )ξ + η(Y )SφSX

= 2g(SX, φSY )ξ + 2η(Y )X(α)ξ − 2αg(SX, φY )ξ ,

i.e.

g(SX, φSY ) + η(Y )X(α) − αg(SX, φY ) = 0 . (32)

From this we know X(α) = 0 by taking Y = ξ, i.e. α is constant. Hence formula (32)
becomes

g(SX, φSY ) = αg(SX, φY ) .

Now interchanging X and Y and comparing the resulting equation with the previous equation,
we have α(φS−φS)X = 0, which shows that either α = 0 or φS = Sφ. Namely the following
lemma has been proved.

LEMMA 6. Let M be a real hypersurface in Qm,m ≥ 3, admitting a star-Ricci soliton
with potential vector field ξ , then either the Reeb flow is isometric, or α = 0.

If the Reeb flow of M is isometric, Berndt and Suh proved the following conclusion:

THEOREM 6 ([2]). Let M be a real hypersurface of the complex quadric Qm,m ≥ 3.

The Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is an open part

of a tube around a totally geodesic CPk ⊂ Q2k .

In the following we set α = 0, it follows from (32) that

SφSX = 0 , for all X ∈ T M . (33)
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And it is easy to show that the normal vector N is either U-principal or U-isotropic from (14).
In the following let us consider these two cases.

Case I: N is U-principal, that is, AN = N. We follow from (15) that

SφSX = φX .

By comparing with (33) we find φX = 0, which is impossible.
Case II: N is U-isotropic. Using (33), we derive from (15)

g(φX, Y ) = g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ) . (34)

Using (33) again, we learn (29) becomes

−2(m − 1)g(φ2X,Y ) − 2g(N,AX)g(AY,N)

= 1

2
g((Sφ − φS)X, Y ) .

Moreover, replacing Y by φY gives

−2(m − 1)g(φX, Y ) + 2g(N,AX)g(Y,Aξ)

= 1

2
g((Sφ − φS)X, φY ) . (35)

Here we have used g(AφY,N) = −g(Y,Aξ), which follows from (19) and (22).
By interchanging Y and X in the formula (35) and applying the resulting equation to

subtract this equation, we get

2g(N,AX)g(Y,Aξ) − 2g(N,AY)g(X,Aξ)

= 1

2
g((Sφ − φS)X, φY ) + 2(m − 1)g(φX, Y )

− 1

2
g((Sφ − φS)Y, φX) − 2(m − 1)g(φY,X)

= 4(m − 1)g(φX, Y ) .

Combining this with (34) we get (m − 3)φX = 0, which is a contradiction if m ≥ 4. Hence
we complete the proof of Theorem 5.
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