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Complex Interpolation of Certain Closed Subspaces
of Generalized Morrey Spaces

Denny Ivanal HAKIM

Tokyo Metropolitan University

(Communicated by Y. Komori-Furuya)

Abstract. In this paper, we give a description about the first and second complex interpolation between L
and the generalized Morrey spaces. Our result can be viewed as a supplement of the complex interpolation of
generalized Morrey spaces, discussed in [9]. We also give an explicit description of some closed subspaces of
generalized Morrey spaces and their complex interpolation spaces.

1. Introduction

Based on the study of the solution of certain elliptic partial differential equations by C.B.
Morrey in [15], many researchers studied the Morrey spaces. For 0 < g < p < oo, the
Morrey space M} = My (R") is defined to be the set of all functions f € L{ (R") such that

1.1
I lpgp = sup IBGe, )7 9l fllLape.r) < o0 (1.1)

xeR" r>0

Here, B(x, r) denotes the ball centered at x € R” with radius ». Remark that, for p = ¢, we
have the Morrey space /\/l,’]J is equal to the Lebesgue space L”. The function r € (0, 00)
r/P in (1.1) can be generalized to a suitable function ¢ : (0, 00) — (0, 00) to define the
generalized Morrey space M{ = /\/lg(R") whose norm is given by

. @(r)
Ifllamgg := sup

iy Ownfﬂmw(x,r)) <x. (1.2)
xeR" r> P

The space Mg was introduced by Nakai in [16]. Here, we may assume that ¢ € G, thatis, ¢

is increasing and r rM(r) is decreasing (see [16]). Remark that, when ¢(r) = 77 and
Y (r) = 1, we have M¢ = M,’; and MY = L (see [17, Proposition 3.3]), respectively.

It is known that Morrey spaces do not have an interpolation property in general, as indi-
cated in [3, 19]. However, there has been some progress in the interpolation theory of Morrey
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spaces. Let [Xo, X1]p and [Xo, X 1]9 be the first and second Calderén complex interpolation
spaces, respectively (see [1, 5]). It was shown by Cobos et al. in [7] that

M5, Miile € M{

whenever 1 < go < pg < 00,1 <q; < p; <oo,and 1 < g < p < oo satisfy

1 1-06 0 1 1—-06 0
— = +— and - = +—. (1.3)
p Po P1 q q0 q1
Moreover, by adding the assumption % = %, Lu et al. [14, Theorem 1.2] showed the
following description:
Po P1 Po le(l;
[Mqo k] Mql ]9 = Mqo n Mq] . (14)

For the second complex interpolation space, Lemarié-Rieusset [13] proved that
(Mg Mgl 1 = My (1.5)

when one assumes (1.3) and % = % Furthermore, the results in [13] and [14, Theorem 1.2]
were extended to generalized Morrey spaces in [9]. Meanwhile, Burenkov and Nursultanov
[4] obtained a real interpolation method for local Morrey spaces, and their results were ex-
tended to B, setting by Nakai and Sobukawa [18]. The interpolation of Morrey-Campanato
spaces and smoothness spaces by the complex method, the Peetre-Gagliardo method, and the
4+ method can be found in [26].

Recall the complex interpolation of Lebesgue spaces:

[LPO, LP']g = [LP, L")’ = LP (1.6)

where 1| < pp < 00,1 < p; <o00,and 1 < p < oo satisfy % = 1[);094—%. Remark that, when
po and pj are finite, (1.6) is a special case of (1.4) and (1.5). Our aim is to give a supplement
of (1.4), (1.5), and [9] which recovers (1.6) for the case py = co. More precisely, one of our
main results is stated as follows:

THEOREM 1.1. Let6 € (0,1),1 < g < oo, and ¢ € G,. Then we have

9 .
(L%, M1y = {f € Mg : lim I xusi<onr=mll v, = 0} a7
and
L, M¢) = MY (1.8)
Mg lm = Mg - :

When 1 < g < p < 0o, we know that f(x) := |x|_"/l’ S /\/l(’;, and for any R > 0, we
have

I1f = xso.R) Fllaz = 1 xso.p)llaz = 1 Ia - (1.9)
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This shows the difficulty of approximating functions in the Morrey space ./\/lf; by compactly

supported functions. Recently, the description of the closure in /\/lflJ of LY was given in [9,
Lemma 7]. For the next discussion, we use the following notation:

DEFINITION 1.2. Letl <g < 00, ¢ € Gy, and Lg be the set of compactly supported

functions. The spaces M, ,/{k/lz, and Mg denote the closure in Mg of L, Lg N Mg, and
L>® N Mﬁ, respectively. We also write L for the closure of L in L. If p(t) = e,

then we write /\/l(’; , /\*/l(’; ,and M{; for the corresponding closed subspaces of Morrey spaces.

Our results on the explicit description of Mf and /{6/12 are given as follows:

THEOREM 1.3. Letl < g < ooand ¢ € G,. Then we have

—~

Mg =1{f e M7 lim llxq >R 5000 f g =0} (1.10)
and
MG ={f e M lim lixempo.r) flag =0} (1.11)

Note that, the identity (1.10) for the case inf ¢ = 0 can be seen in [9, Lemma 15]. We also
remark that another characterization of /\*/15 was given by Yuan et al. in [26, Lemma 2.33].

Meanwhile, the description of the space ./\/lf,7 and ./\/lg was given in [6, Lemma 3.1] and
[10, Lemma 2.6], respectively. We mention that we do not discuss the closed subspaces of
Morrey spaces having smoothness property. Morrey spaces, which date back to [15], have
significant progress from the point of smoothness. From the point of the function spaces
having smoothness, it turned out that Morrey spaces can be realized with function spaces
related to the Carleson measure; see [24] for an exhaustive account. We refer to [22, 23] for
more recent surveys. We refer to [8, 11, 12, 25] for some recent approaches in this direction.

Related to the complex interpolation of closed subspaces of Morrey spaces, we state one
of our main theorems:

THEOREM 1.4. Suppose that 6 € (0, 1), go, q1,q € [1,0), ¢o € Gyy, 91 € Gy, and
¢ € Gy satisfy
1-6 0

1 _ _1-6 0 d
qo #q1, — = +—, ¢=¢, ¢, and ¢
q q0 q1

=gl (1.12)

Then we have the following characterizations:

[0, MO = ML, M8 = (f € ME 2 xia<ipi<n)f € M forall 0 < a < b < oo},
(1.13)

MG ME = MO MG = {f € ME: Xta<ifi<o) f € M forall0 < a < b < o0},
(1.14)
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and

MG, MET = MG, MG = M. (1.15)

q0°

Theorem 1.4 can be seen as a refinement of our previous results, namely Theorems 3 and
4 in [9] and the following theorem:
THEOREM 1.5 ([10, Corollary 1.10]). Suppose that 6 € (0,1),1 < g9 < oo, 1 <

g1 < 00, and ¢i° = ¢!'. Define ¢ := goé_Q(p(f and% = 111;00 + qil' Then

(M MG = LR, 1 = () U € MY sz f € MG) (116)
0<a<b<oo
and
(Mo, MG = M. (1.17)
We also consider the complex interpolation between L*> and each of the spaces /’\;17‘) ,
,/{k/lz, and M—g. One of our results is the following theorem:

THEOREM 1.6. Let6 € (0,1),1 <q < oo, and ¢ € G;. Then we have

(L%, Mylp = [L%, {5l = MY, (1.18)

Now, we outline the rest of this paper. We shall recall some notation and definition
related to the complex interpolation spaces in Section 2. We also recall some known results
about the interpolation of generalized Morrey spaces. The proof of Theorem 1.1 is given in
Section 3. In Section 4, we give the proof of Theorem 1.3. The proof of Theorem 1.4 is given
in Section 5. In the last section, we prove Theorem 1.6 and we also present other complex

interpolation spaces between L and each of the spaces M, /(6/15, and /\/lg.

2. Preliminaries

In this section, we recall the definition of the first and second complex interpolation
methods and we also state some previous results which will be used in the proof of our main
theorem. We begin with the first complex interpolation method.

DEFINITION 2.1 (Calderén’s first complex interpolation space). Let X = (Xo, X1)
be a compatible couple of Banach spaces. Let S := {z € C : 0 < Re(z) < 1} and S be
its interior.

1. Define F(Xo, X;) as the set of all functions F : S — Xo + X such that
(a) F is continuous on S and sup || F (2)|lx,+x, < 00,
zeS

(b) F is holomorphicin S,
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(c) the functions t € R — F(j +it) € X; are bounded and continuous on R for
j=0,1.

The space F(Xo, X1) is equipped with the norm

| F Ik ) = max{sup [ F D)l x,, sup [ F(L+i0)]x, |
R

teR te

2. Let & € (0,1). Define the complex interpolation space [Xo, X1]g with respect to
(X0, X1) to be the set of all functions f € Xo + X such that f = F(6) for some
F € F(Xo, X1). The norm on [Xy, X1]g is defined by

I flltxo. x5 := Inf{{| Fll F(x,x,) : f = F(0) for some F € F(Xo, X1)}.

The fact that [ X, X1]p is a Banach space can be seen in [5] and [1, Theorem 4.1.2]. We
invoke the following useful lemmas:

LEMMA 2.2 ([5], [1, Theorem 4.2.2]). Let 6 € (0, 1) and (Xo, X1) be a compatible
couple of Banach spaces. Then we have Xo N X1 is dense in [ Xo, X1]o.

LEMMA 2.3 ([1,Lemma4.3.2]). Let6 € (0,1) and F € F(Xo, X1). Then we have
%

1 _ =071 _
I E@)lxo.x110 = —/ I F@Et)llx, Po(®, 1) di —/ IF+inlx, P1(0,1)dt
1-6 Jr 0 Jr
2.1
where Py(0,t) and P1(0, t) are defined by

sin(7r0) sin(r0)
Py@,1) = and P;(0,1) := .
2(cosh(mrt) — cos(0)) 2(cosh(srt) + cos(0))

In order to obtain the explicit description of the first complex interpolation spaces, some-
times it is easier to calculate the Calderdn product and then use the result of Sestakov in [21].
The definition of Calderén product and Sestakov’s lemma are given as follows:

DEFINITION 2.4. Let X = (X, X|) be a compatible couple of Banach lattices on R
and 6 € (0, 1). The Calder6n product Xo'79X,? of Xo and X is defined by

X' 'x= U {f R =>Clr@l= om0

JfoeXo, f1€X1
For f € Xo'=?X?, define the norm
£ lxg-0x,0 = inf{[l foll . " ILAill%, : fo € Xo, f1 € Xu,1£1 < Lol AI°}

1-6 v6
LEMMA 2.5. Forevery6 € (0, 1), we have [Xo, X1]g = Xo 0 X1 0 1.

Now, we recall the definition of the second complex interpolation method.
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DEFINITION 2.6. Let X be a Banach space. Denote by Lip(R, X) the set of all func-
tions f : R — X such that

) f@) — f)lx
I fllLipw.x) == sup ————
—00<s <1 <00 [t — 5|
is finite.

DEFINITION 2.7 ([1, S](Calderén’s second complex interpolation space)). Let
(X0, X1) be a compatible couple of Banach spaces.

1. Denote by G(Xop, X1) the set of all functions G : S — Xo + X such that:

. . S G(2)
(a) G is continuous on S and su;g) H TH2]
€

Xo+X|
(b) G is holomorphicin §,
(c) the functions
teR— G +it) - G(j) e X;
are Lipschitz continuous on R for j =0, 1.
The space G(Xo, X1) is equipped with the norm
G llg(xo,x,) == max {[IG (G )ILipr,x0)» G+ i)llLipr,x))} - (2.2)

2. Let 8 € (0,1). The second complex interpolation space [Xg, X 1]9 with respect to
(Xo, X1) is defined to be the set of all f € Xo + X such that f = G’(0) for some
G € G(Xp, X1). The norm on [ Xy, X1]9 is defined by

I fllixg,x,p = inflllGllgex,.x,) © f = G'(6) for some G € G(Xo, X1)} .
Relation between the inclusion and the complex interpolation is given as follows:
LEMMA 2.8. IfXo C Yy and X1 C Y1 with continuous embedding, then

[Xo, X11” € [Yo, 1.

PrROOF. Let f € [X, X11?. Then there exists G € G(Xo, X1) such that f = G'©).
By using the following inequalities

Ixollyy, S Mxollxe,  lxtlly, Sllxtllx,, and  Ixllvg+y, S Ixlxo+x, »

for every xg € Xo, x1 € X1, and x € Xo + X, we can verify that G € G(Yp, Y1). Hence,
f €Yo, 1. O

The relation between the first and second complex interpolation functors is given in the
following lemma:
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LEMMA 2.9 ([10,Lemma2.4]). ForG € G(Xo, X1),z € S, and k € N, define

G(z+27%) - G(2)

h =
k(2) 2%

Then we have hi(0) € [Xo, X1]s.

PROOF. We give a simplified proof of [10, Lemma 2.4]. The continuity and holomor-
phicity of & follows from the corresponding property of G. Since t € R = G(j +it) € X
are Lipschitz-continuous for j = 0, 1, we see thatt € R — hy(j +it) € X; are bounded
and continuous on R. Moreover,

12k @ Ix0. 5170 < Nkl Fexo,x )

GG+it+27%) -G +ir)
2—kj

= max sup
J=0,1eR

X

IA

1Gllgxe.x) <00,
as desired. O

We use the following density result in addition to Lemma 2.5:

LEMMA 2.10 ([2]). Let (Xo, X1) be a compatible couple and 6 € (0, 1). Then we
have

[Xo. X1]p = Xo N X X0 X1 2.3)

We invoke the previous result about the second complex interpolation of generalized
Morrey spaces.

THEOREM 2.11 ([9, Lemmas 4 and 12 and Theorem 2]). Suppose that 0, qo,q1,9,
©o, 91, and ¢ are defined in Theorem 1.4. For [ € Mf and 7 € S, define

-z, z 1
F(z) := sgn(f)|f|q(W+ﬂ) and G(2):=(z— 9)/ FO+ (z—0))dt. 2.4)
0

Then we have:
4 4 _
L 1G@| = (1 + |z (1£1% + 1 £17) for every z € 5;
2. G e Q(Mﬁg, Mﬁf);
3. M, MGE =My

3. The proof of Theorem 1.1

To prove (1.7), we combine the Calderén product of L* and M? with Lemma 2.5. Our
description of the Calder6n product of L and Mg is given as follows:
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LEMMA 3.1. Let6 €(0,1),1 <q < o0,and ¢ € G;. Then we have
1-6 0 0
(LX) TIMY’ = My 3.1

PROOF. For f € M?  define fy := 1and f; := | f|'/?. Since

q/9’
_ 1/6
ol 1A =171, llfollLe =1, and ||f1||Mw—|If|I/ , <00,

4/9
o
we have f € (L™)'~ 9(M<p)0 and ||f||(Loo)1 My = ||f|| .0 . Therefore, /\/15/9 -

4/9
(L)'= (ME)? with embedding constant 1.
q

Conversely, for f € (L°°)1_9(M§)9 and ¢ > 0, choose fy € L™ and f] € ./\/lﬁ such
that

=10l LAI and 1A Aile < (4 LF lzoeyo vagye (3.2)

Let x € R" and r > 0. As a consequence of (3.2), we have

Z g Z
O ([ pmmtay) 0 ([ o T o ay )
|B(x,r)|a \/B&r) |B(x,r)|4 \IBG.r)

< Il foll = ||f1||M<ﬂ

<1+ S)Hf”(Loc)l—ﬁ(Mf{’)H )

and hence, f € M‘”/g with [ 1l o0 < 1 llzooyi-o(pqgye- Therefore, (LMY <

4/9

./\/lq /6" Thus, (3.1) holds. O

The proof of the first complex interpolation of L and Mg is given as follows:

PROOF OF (1.7). We combine Lemmas 2.5 and 3.1 to obtain
6

7(Loo)l—9(M<p)9 7/\/”)
[LOO,Mg]g = L® ﬂ/\/lg T ﬂ/\/lg a (3.3)
(7]
Let f € Mg/(-) be such that
A X< donsi=m e, =0 (3.4)

For each N € N, define fy := fx{% Since fy € L,

<IfI=N}

1wl < /N TIFMYO ) 0 = ernfnwe < 00,

q/0
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and

If— fN”MZ;?g = ”fx{'fk%}U{‘be}”MZ;)Q -0
— M
as N — oo, we see that f € L® N M} 90— [L°°, M lo.
Conversely, let f € [L*°, Mg]e. As a consequence of (3.3), for each ¢ > 0, there exists
g = g: € L® N M such that

If— gIIM% < %. (3.5)
For each N € N, we have
| xas1<pots=ml = X<+ 1 xus=m]
=21 = gl + 9% 51« byngi> 21|+ 19%g1<2)
+ 1 xq e mnngie ) |+ 19Xg1 3 |- (3-6)
Observe that, on the set {| f| < %} N{lgl > %}, we have
lgl < If —gl+1fl < If—gl+% <|f—gl+|—g|-
Therefore,
9% 1< 1yntigr> 2y = 21F =9l (3.7
Meanwhile, on the set {| f| > N} N {|g| < &}, we have
FI=1f =l 4ol =17 —gl+ 5 <1f g1+ 2],
and hence,
£ X1 mniigi=y| < 217 =gl (3-8)
By combining (3.6)—(3.8), for
N VA=
N > 2max 1 ||gll L, (%) ) (3.9

we have

[Fxusi<umutr=m < 61F = gl +9x92) | + 19115 1|

2 1-6 )
<6lf—gl+ <ﬁ> lgl” + |9X{|g‘>%}|
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&
<6lf —gl+ ————1gl.

L+ 19070
We combine the last inequality and (3.5) to obtain
F X p1< Lyou s o =Olf —gll, o 7|I|gl I
H {1 1< § IVl fI>N} ”/\45/9 Moy 1+ g ||
€ 0
e+ ——5—llglyw <2¢.
14 0 My
T
This shows that Nh—I>noo ”fX{|f|<§}u{|f\>N}”M(v;fe =0. O

Our proof of (1.8) combines (1.7) and Lemma 2.9. We give the proof of the second
complex interpolation of L and Mﬁ as follows:

PROOF OF (1.8). Let f € [L®, M1’ and & > 0. Then there exists G € G(L>, M)
such that

G'(0)=f and 1Gllgroe pmg) < X+ Ef Nz pmgpe -
For every z € S and k € N, define

G@+2kU—GQ)

Hi(z) := K
By Lemma 2.9, we have Hy(0) € [L*°, ./\/lf]g with
||Hk(9)||[Loo,Mf1’]9 =+ 5)||f||[Loo,Mf1’]9 . (3.10)
By combining (3.10) and (1.7), we have
||Hk(9)||M<,,9 = A+ lf Lo mepe - (3.11)
q/0

Since klim Hi(0) = G'(6) = f in L® + MY, we can find a subsequence {Hy; (9)}7‘;1 C
—00
{Hy(6)}52, such that
lim Hi; (0)(x) = f(x) ae.
Jj—00

By Fatou’s lemma and (3.11), we get
LA, o <11m1nf|IHk N o = A+ NS lzoe pmgp -
/9

Since € > 0 is arbltrary, we have ”f”M“’e < I flljLee M

q/0

Conversely, let us suppose that f € M? q /9. For every 7 € S, define

i 1
F(z):=sgn(f)|f]¢ and G(z):= (2—0)/ F@O+ (z—0))dr. (3.12)
0
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Let Fo(z) = xyr1<1)F (2), F1(2) := F(2) — Fo(2), Go(2) := x{r1<1G(2), and G1(z) :=
G(z) — Go(z). Letu € S. Since Re(u) € [0, 1], we have

Re(w) Re() 1
[Fo)l = xupi<ulf177 =1 and |[Fi@)|= xqr=nplfl77 =I1fI7.
Consequently,

1/6
IF GOl oo ppe < NF0@) 2o + 1F1@)I g < T+ 1A N pge = 14 1F1Y

. (B13)

q/0

Slz—0l =1 +1z]) (3.14)
LOO

Z
1Go@)le = H /9 Fo(u) du

and

Z
161 @a = | [ P a

i 1
< lz =0l 1Pl pgg = A+ lzD) IIfIIjW,e <00.

MY a/0
(3.15)
This implies G(z) € L™ + M and
G(2) L
I <I+IfI° 5 <oo. (3.16)
ces 1+ |zl L®4+M] q/0

Fix0 <e <« 1. Letz € S withe < Re(z) < 1 —¢and w € C with [w| < 5. Since

4w B
Gz+w) -Gk = / Fluydu = LETW —F@
Z

log(| f11/9)
we have
Go(z + w) — Go(2) B exp(wlog(| f1'/%)) — 1
" ~ RO =IO g ~ ‘
_ Rt |exp(wlog(|f1'%) — 1
— =l wlog( f17%) _1‘

< xus=nlfle

exp(wlog(If1") -1 ‘
wlog(| f11/9)

logt) — 1
< sup £ M_l‘,
0<r<1 wlog1?
Observe that, for every t € (0, 1), we have
o0 —
e exp(w llogt) -1 1‘ _ e Z (w lolgjt)k !
wlogt P !
00 k=2
(—|wl|logt)
< —t°|lw|(logt -
< —°lw|(log ); T
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IA

—1°|lw|(log 1) exp(—|w|logt)

IA

—1°|w|(logt) exp(—% log t)

e 2
= —t2(logt)|w| < —|w|.
ee

Consequently,
Go(z4+ w) — Golz 2
H 0@tw =Go@ gl <X (3.17)
w Lo ge
By a similar argument, we also have
Gi(z+w)—G1(2) 2 1 2 1/6
- @) < —Iwllllf1? | pe = = wllIlfl /q,e . (3.18)
w My e 7 ge My,
We combine (3.17) and (3.18) to obtain
Giz+w)—G(2) 2 1
H _FQ) <= (tsur0 , Jwi—0 @9
w Lot MY &€ M,

as w — 0. According to (3.13) and (3.19), we have G : S; — L + /\/lg is a holomorphic

function. Since ¢ is arbitrary, we conclude that G : § — L™ + Mﬁ is holomorphic.
Note that, for j =0, 1 and 71, © € R, we have

15
G(j+it2)—G(j+it1)=i/2F(j+it)dt. (3.20)

n
By combining (3.20), |F(it)| = 1,and |F(1 +it)| = Iflé, we have
1G@it2) — G(it)]lLe < |t2 — t]
and
1
IG( + i) = G +in)llpge < 112 —nullfl’ e
q/0

which verify Lipschitz-continuity of the functions 7 € R — G(it) — G(0) € L*® and ¢ €
R+ G(1+it)—G(1) € M. Intotal, we have G € G(L>®, MY). Since f = F(0) = G'(9),
we conclude that f € [L*°, J\/lg]@ as desired. O

4. Description of the spaces MY, A1, and M}

In this section, we give the proof of Theorem 1.3 and we also explain the relation between
My, /(6/15, and M{. Our proof utilizes the information about the level sets of the function

fe ./\f;ljg and the function g € L N ./\/lf which approximate f. The proof of (1.10) is given
as follows:
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PROOF OF THEOREM 1.3 (1.10). Let f € Mﬁ be such that
Rli)moo X1 71> Riu@NBO.R) S llAgg = O-

For each R > 0, define fr := x{ r|<rnB(O,R) f- Since | fr| < R and supp(fr) € B(0, R),
we have fr € L. Since

li — =1 n =0
am If = SRl agg Jim xt1.£1> Riv@\BO.R) .S | M

and fr € LZ°, we see that f € /\/lg.

Conversely, let f € /\’/\l/‘,; and ¢ > 0. Choose g € LZ° such that

e
||f—g||Mg < E

Choose R, > 0 such that R, > 2||g|L~ and supp(g) € B(0, R;). For every R > R,, we
have

X1 1> Ryu@n\BO.R)Y S| = |f — gl + Ix(f1>Rr} 9] + | XRM\B(O,R) I

R
=If =gl+xur=r~ 4.1

<|f-gl+ X{|f\>R}U(R"\B(O,R))i2| . 4.2)
Therefore, for every R > R, we have
| Xt £1>Ryu@n\BO, RN S| =2 f — g1,
and hence
X017 1> RivENBO.R) S llAgg < 2ILf = gllpgg <€

This shows that Rli_)moo 1x01£1> R)U@N BO.RN S | Agg = 0. O

Now, we give the proof of Theorem 1.3 (1.11):

PROOF OF THEOREM 1.3 (1.11). Assume that f€ M{, and thatRli_)moo” KR BO.R).S | e
= 0. For every R > 0, define fr := xp(,r)f. Then fr € L(C) N Mﬁ, and it follows that

A lLf = frllag =0,

so then f € M. Conversely, let f € A{. Given ¢ > 0, there exists g. € LY N MY such
that

f— ge”Mg]’ <e. 4.3)
For any R > 0, we have

[xrm\BO,R) f| < [XR\B©O,R) ge| + | XR\BO,R)(f — &) < IXRM\BO,R)Ge| + | f — gel .
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Choose R, > 0 such that supp(g:) C B(0, R,). Then, for all R > R., we have
[Xxrm\BO.R)S | < | f — gel -
Consequently, for all R > R, we have
Ixrn\80.R) flage < I = gellpgg < -
This shows that ngn()o ”XR”\B(O’R)f”MZ =0. 0

Next, we move on to the description of /\/lg given in [10, Lemma 2.6]. For the sake of
completeness, we also give the proof here.

LEMMA 4.1 ([10,Lemma2.6]). Letl <q < ooandg € G,. Then
MG = {f e My dim s ry fllag = 0} . 4.4
PROOF. Let f € MY be such that Rlim Ixuri=r1flipgg = 0. Define fr =
—00 4
Xifi<ryf. Since fr € LN ./\/lg and
If = frRlipme = Ixuri=ryfliagg — 0

as R — oo, we see that f € ./\/lz.

Conversely, let f € M§ and & > 0. Choose g € L N M be such that

£
||f—g||Mg < E
Let R, := 2||g||o. Then, for every R > R, we have

Ixar=rRy f|l < Ixurnsry(f = DI+ Ixqr1=r 9

R
<I|f-gl+ X(f1=Ry

[f1
=If—-gl+ XUfI=R) =5
so |xqf1=ry f| < 2| f — gl. Therefore, for every R > R, we have
Ixuri=ryfllagg <207 = gliagg < e

This shows that lim || x{ 7>Rr} fllpq2 = 0, as desired. O
R—o0 q

Now, we compare the space /W, /{F/lg, and M—g when ¢(t) = t"/? and p > ¢. By using
(1.10), (1.11), and (4.4), we can verify that /’\;145 - /(F/lf; - /\/l[’; and M—[’; C M{; as follows:

EXAMPLE 4.2. Let 1 <g < p <oo. Define f(x):=|x|~"/?, g(x) = f(x) xrm\B(0,1)(X),
and h(x) = f£(0)xp.H(x). Then f € MINMEURL). g € MINME, and h € AL\ME.
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Finally, we give a corollary of Theorem 1.3 and Lemma 4.1, that is, ./\/lz is the intersec-

tion of ,/{k/lf and ./\/lf:
THEOREM 4.3. Letl < g < oocand¢ € G,. Then, J\f/\l/w = /{F/lf N /\/lg.

PROOF.  Since M C /\*/lg and M € MY, we have M C /\*/lg N M. Conversely,

let f € MY N M. Define Ag == {|f| > R} U (R"\ B(0, R)). Then

Ixar fllag = Ixenso.R) S age + IXar1>R1 laqg - 4.5)

Since [ € /\*/lf and f € W, by combining Theorem 1.3, Lemma 4.1, and (4.5), we have

Jim xag fllpgg =0, (4.6)
and hence, f € /\’/\l/‘,;. This shows that /{F/lf N M—g C /’\/\175. ]

5. The proof of Theorem 1.4

In this section, we prove Theorem 1.4. Our proof uses Lemma 2.3 and also the descrip-
tion of the space A1{. We begin with the lattice property of A%

LEMMA 5.1. Let f and g belong to ./\/12 with | f| < lgl|. If g € ,/{k/lz, then f € ,/\*/lg
PROOF. Given ¢ > 0, there exists g € Lg N Mﬁ such that ||g — gg||Mz> < ¢. Define
fe =L gexig0)- Then fe € LY N M and
I = fellage < g = gell gz <&

This shows that f € A1 O

REMARK 5.2. By the same argument, we also have the lattice property of /\’/\l/‘,; .

Here and below, we use the same notation and assumptions as in Theorem 1.4. We use
the following auxiliary lemma which is a special case of [10, Lemma 3.5]. For convenience,
we supply its proof.

LEMMA 5.3 ([10, Lemma 3.5]). Let0 <a < b < oo. Then

%0 1
a0 T Mg,

3 NM? S {f e MY : xazifiznyf € MO} (5.1)

PROOF. Without loss of generality, we assume thatgo > q1. Let { f; }7‘;1 be a sequence
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in ,/{6/15 such that f; — f in ,/{6/158 + M. For every t > 0, define

0, 0<r<$ort>2b,
2t —a, %Stfa,
Q) :=
a, a<t=bh,
—5t +2a, b<t<2b.

Choose {gj}‘;il C ,/{6/1 and {h }‘J’O1 C ./\/l(p' suchthat f — f; = g;+h;, li)m llg; ”M“’O =0,
and ]li)n;o “hf“/vtfj{ = 0. Since [O(t) — O(s)| < 2+ $)|t — 5| and [O(t) — O(s)| < 2a for
every t, s > 0, we have
IXta<1£1=0yO U fiD) = Xta<1 /1=y O U FDI S Xta=i f1<by min(L, | f = fj])
=< X{a<|f|<b}(min(l, |g;]) + min(1, |h;])). (5.2)
By using the Holder inequality, we have
I Xta<| f1=py min(1, 1g; Dl pge < IXta<) 1<py min(l, Igjl)llj;(g)g I xta<if1<p) min(l, |9j|)||§\4§]1

< —-lg; oo ST/ W
al

= gl ARV (5.3)
al

Meanwhile, by using g > g1, we get
llmin(L, 1Dl < V1979 g = s 19000 (5.4)
a1
Combining (5.3) and (5.4), we get

0
I tas17101 @£ = s 1= © U Dllagg S Ngill oo LIS + W I
q1

We combine the last inequality with lim g; = 0in M} and lim #; = 0in M} to have
J—>00 Jj—00
jli)ﬂgo Xia<|f1<b)OUSiD) = Xta=<i f1<pyO (1 fD (5.5)

in M. Since ©(r) < ¢, we have
Xia<1f1<0yOUfiD) < xta<if1<py fil < 1fils (5.6)

S0 X(a<lf1=0)@( fi]) € MY, and thus, x(a<|f1=n@(f) € M. Since xia<|si<p)lfl <
ZX{aglf\gb}®(|f|), we have x(u<|f|l<n) f € /ﬂﬁ- O

By combining the previous lemma, we are ready to prove Theorem 1.4.
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PROOF OF THEOREM 1.4. Let f € M} be such that X{a<|f|<b}f € /\/lq Since
Xa<|fl<b}f € Loo and L® N M¢ < Mg, we have x(<|f|<p)f € ./\/l By combining

this with [/\/lqo, ]9 - [Mqo, a1 Y119 and (1.16), we get the following inclusion
N {f e M xazipizn f € M8} < [X, Mo]. .7
O<a<b<oo

Conversely, let f € Mqo, ]9 Since [/\/lqo, ]9 - [/\/lqo, 5} 1 = M¥, we have
f e M‘p Choose G € Q(,/\/l,m, ./\/lzl') such that f = G (8). Forz € S and k € N, define

Giz+27%)—G(2)
2-kj :

By virtue of Lemma 2.3 and [M{), M{01° = M}, we have

hk(Z) =

xR 80RO Ay = IXRNBO.RAL Ol Ag20 A100),

1 . 1-6
< <—1 my /R B0, RAK D g0 PO, 1) dt>

1 . 0
X (5 ‘/R [l (1 +lt)”./\/l§]1 Pi18,1) dt) .

Since hy(it) € Mqo’ we see that Rli_)moo ||XR”\B(0,R)hk(it)||Mf]’8 = 0. Hence, by the dominated
convergence theorem, we have Rli_)moo | x&m\ B0, RYE (D)l M = 0. Consequently, hi(0) €
,/{k/lz. Since
G (0 +27%)—G®)
27k

lim || f = he(O)ll— = lim
k—o0 k—o00

=0,
Mig+MG)

%0 91
Mg+ Mg,

Miy+ M
we have f € ,/\/lq 0+ . By virtue of Lemma 5.3, we have x{.<|fj<p1 f € ,/{k/lf. From

this fact and (5.7), we conclude that (1.13) holds.
Now, we move on to (1.14). We combine (1.13) and [./\/lqo, Mgll 1 c [,/\/lqo, ./\/lgl1 1° to
obtain

% 0 *
(M@ MO < () {f e M8 xusipizn f € MG} (5.8)
O<a<b<oo
Conversely, let f € M be such that Xiasifisbrf € M¢ for every 0 < a < b < oo. Since
X{a<\f\<b}f € L% and L*® ﬂ/\/lq - /\/lg, we have X{a<\f|<b}f € /\/l As a consequence of

(1.16) and [/\/lqo, ]0 C M 58, 9117, we have f € /\/lqo, MZ11?. By combining this
and (5.8), we arrive at (1.14).
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Finally, we prove (1.15). Observe that the inclusions [M—gg, ./\/lfll]g - ./\/lf and
(M ,M—ﬁ}]e C MY follow from Lemma 2.8 and [M{, MJ11® = MY. Meanwhile,
by combining (1.17) and [M{), MI11P < M0, MO, [Mﬁg,/\/t—ﬁ;]", we get MY C
[./\/l—zg, MO TMES, MEY. Thus, we conclude that (1.15) holds. O

6. The description of the complex interpolation of L°° and closed subspaces of
Morrey spaces

In this section, we give the proof of Theorem 1.6 and also give the description of other
complex interpolation spaces between L°° and closed subspaces of /\/lg.

6.1. The proof of Theorem 1.6. In the proof of Theorem 1.6, we use the following
lemma:

LEMMA 6.1. Letl < g < ooand ¢ € G,. Then, for every f € LN /(/lv(p, we have

1 e g0 = 160

. — 0
PROOF. Since [L®°, J\/lg]e C [L®°, M§]9 = Mz/ﬁ’ we have

WA e S U pso oo -
Mo (Lo, Mgl

Assume that || ||, 6 = 1. Forevery z € S, define
Mo

4

F(2) = sgn()If17, G() = /0 Fu) du, and G1(2) = x(i7=11G (@) -

For every u € S, we have
Reu 1 |
x> F @ = xgr=nlfl o <1f17 <N fllje 1 £,

1-6 —~ —~
0 |G1(2) < (L+ zDI fll % | f]. Since f € MY, we see that G1(z) € M. Lett;, 1, € R.
Since f € L*® N /\/lg and

1/6 152
<lo—nllfI" <lo—nllfI,% 11,

5]
IG(1+it) — G +it)| = i/ F(l+it)dt

|

we have G(1 +ity) — G(1+if) € M. Combining G1(z) € MY, G(1+in) —G(1+i1y) €
./\/lﬁ, and G € G(L®°, ./\/lﬁ) we have G € G(L®°, ./\/lz). Moreover,
‘W)

G(it) — G(is)
t—s

G +it) — G(1 +is)
t—3s

b
L[o® I<s

r<s

”G”g(Loo,/\A/ff]’) = max (sup
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‘Mf,’)

G(@it) — G(is) G +it)— G +is)

s

= max [ sup
r<s

r—s Lo t<s I —s
< max(L, 111l vge)
1/6
=max(1 /1Y%, ) = 1= 1f1 0 -
Mf{’/e M?/e
Since f = G'(9), we have
I lfzoo pmgye < ”G”g(Loo’./\/;ﬁ/;) = ”f”MZ?H ,
as desired. O

The proof of Theorem 1.6 is given as follows:

PROOF OF THEOREM 1.6. For f € [L>®, M{ ]y, choose F € F (L™, M{) such that
f = F(6). By combining Lemma 2.3 and Theorem 1.1, we have

IIXRn\B(o,R)fIIMijg < lxemBo.R)F @)1 M1,

1 1-6
< <ﬁ / |F )| Po(6. 1) dr)
- R

1 9
X <5/R||XR”\B(O,R)F(1 i)l pg P18 1) dt) . (6.1)

From F(1 +it) € /\’;175 C /\*/lg, we see that
Jim e so.0) F (LDl g = 0. (6.2)
We combine (6.1), (6.2), and the dominated convergence theorem to obtain

lim n = 0 .
am | xr \B(o,R)fIIM%

6
According to (1.11), we have f € /T/lj/e. Since

—_~ 7/\4“’9
(%, MY, < [L0 ME], =2 A MG " € M),

 of o° o° .
we see that f € Mq/e N Mq/g = Mq/g, as desired.

P

Now, let f € M;je. We shall show that f € [L°, ./\/lz]@. Since L C ./\/lz, we have
0
- . w ~
feLenMy ane. Then, there exists a sequence { f;}%2; € L% N M such that

1
f— f,-IIMq,e < i 6.3)

q/6
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Therefore, for every j, k € N with j > k, we have

S
>
/\

bl

bl

so {fj }‘]?‘;1 is a Cauchy sequence in [L°, Mg]e. By completeness of [L°°, ./\/lf]g, there exists
g € [L>®, M1’ such that

Combining M), € L™ + MY, [L®, MY’ S L + MS, (6.3), and (6.4), we get

S [Loo M¢]9 —_—
f=gel®nMj . Finally, by using (2.3), we have f € [L™, Mg, as desired.

We shall show that [L®, MY1y = MY ,. Let f € [L™®, MY1y. By virtue of (1.7), we

q/9
have [L>, M%1s C [L®, MS1y € M?/e’ so f e Mg;e. By Lemma 2.2, for each ¢ > 0,
there exists g € L N ,/{k/lz such that

If— 9||[L00,M§]9 <E€.
Since L® N /{512 cMin /(F/lz = MY, we have g € M. Therefore,

1-0 0
”X{lg\>R}U(R”\B(O,R))g“Mgﬂ < ligllpe ||X{|g\>R}U(Rn\B(0,R))9IIMg; -0
q/0

e~

“
as R — oo. Consequently, g € M;%. Since [L°, /\*/lg]g C [L®, /\/lg]e c MZ/G’ we have

If =gl S

e~ e~

.. . (p9 00 * @ (p9
This implies f € M 5. Thus, [L*, Mglo S M

Meanwhile, the inclusion MZ;Q C [Loo,ﬁ/lf]g follows from [LM,W]Q C

[L%°, 11 and [L, M{lp = M. 0
6.2.  The spaces [L”,M—g]e, [LOO,M—g]e, [L°, /\’;175]9, and [L>®, £191°. Next,
we move on to the description of the spaces [L“,M—g]e, [LOO,W]Q, [L®°, /\’;175]0, and
[L®°, ./\*/15]0. First, we prove the following lemma:
LEMMA 6.2. Letl < g < ooand ¢ € G,. Then we have

L°°+MW o i of
Mq/e qu/o < [f € Mo Xiasifizh) € Mq/f’} '

O<a<b<oo
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L®+ M
0 q 0
PROOF. Let /\*/15/9 N Mg/g and 0 < a < b < oo. Forevery t > 0, define

Va (D) = X(g.25) ()t —a/2)*(t = 2b)*.

Since

1 b
Xia<|fl<b} = ;X{af\f‘lsb}lﬂ < - Xla<IfI<b) < CapXia<if1<by¥a,p (| f1), (6.5)

6
we only need to show that x{q<|fj<py¥a,n(| f]) € /T/lj/e- Let {fj}?‘;1 be such that
Jim 1L = fillepg =0

Choose {g;}52, € L™ and {h;}32, < M such that

f—=fi=g;+hj, lim |gjllr~ =0, and lim [|A;| s =0. (6.6)
J—>00 j—o00 q
Since V4.5 € C'(R) and Va5, ¥, , € L®°(R), we have
[Xta<| f1<byVa.b (LF D = Xia<i fl<pyVa.b (1 FiDI S Xia<ifi<py min(L, | f — f;])
< Xia<|fl<py(min(1, |g;]) + min(1, |h;])) .
Since min(l, |h;|) < |hj|9, we have
in(1, |h; < |Ilh;° = Al .. 6.7
|| min(1, | ]I)IIM%_III jl IIM% I jIIMg; (6.7)
Meanwhile,

1
< ;||9j||L°O||f||M¢9 . (6.8)

Ixtasisi=py min(L, 1g; DI, 0 .
q

q/6

By combining (6.7) and (6.8), we get

1
| Xta<| fi<oy¥ap (L f) — X{aS\fle}‘/fa,bqu|)||M§je < E“gj”Lm”f”Mng + ||hj||§wg .
According to (6.6), we have lim || x(a<|f|<b}Wa,b(1f]) — X{aflf\gb}lpa,bﬂfj|)||Mw9 = 0.
J—>00 q/0

. (7
Since xia<|fi<p}¥a.b(1fi]) S 1fjl, we have xia<|fi<py¥ab(|fil) € ./(k/lj/g’ and hence,
(7

Xla<|fl<t)Wa,b(|f]) € /{6/12/9. As a consequence of (6.5), we conclude that x{,<|f|<s) €

>k (pe

/\/lq/e. ]
The description of the spaces [L°°, M—g]e, [L>, Mo, [L*, /\’;175]0’ and [L*°, /(k/lg]g is

given as follows:

THEOREM 6.3. Letl < g < ooand¢ € G,. Then we have
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(i) [L°, MP)P =

4/0’
.. 6
(ii) [LOO’ Mg]@ = M?/Q,
—_— (4 6
(i) [L°, MJYP =L, M§1P = () {f € MYy Xasifi<h) € M4}

O<a<b<oo

—_— o
PROOF. Note that [L™®, M§1? € [L®°, M§1? = Mq 19- Now, let f € MY ;. Define

F(z) := sgn(f)|f|?7 and G(z) = fgz F(w) dw. In the proof of (1.8), we know that G €
G(L®, /\/lg), so it suffices to show that

1. G1(z) == xq71>11G(2) € M—gfor every z € S;

2. G(1+it) — G(1) € MY forevery t € R.
From the inequalities

G| = F(z) — F(0) Ifl”"

and |G1(z)| < (1 + |zD|f1'/9, it follows that

|f1'7%
||X{|G1(z)\>R}G1(Z)||MV’ ~ HX{f|1/9>l+l l}W

. 1/0
~ log(R/(1 + |z])) I M,

as R — oo. Therefore, G1(z) € M?. Similarly, for every t € R, we have

1/6
171
- G(+ir—G(1 <— 9 L 0(R ,
I xy6a+in—cm>r (G +1it) Mlame < og(R/ (1 + 1) — 0 (R — o0)
50 G(1 +if) — G(1) € ME. Hence, G € G(L™°, M%) and f = G'(6) € [L™, MP’.
We now move on to the proof of (ii). Let f € [L*°, M—g]g. By virtue of Lemma 2.2 and

— 0
[L®, M{lg € M} . for each & > 0, there exists g € L> N M such that

If— gII Se. (6.9)

4/9

6
By combining (6.9) and ||g||M¢e ||g|| ||g|| ¢ < 00, we see that f € ./\/12/0. Mean-
q/0

while, by virtue of Theorem 6.3 (i) and (2.3), we have

(L, M -
M /0 CL®N M =[L>, Mo,
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as desired.
“ (7
Finally, let us prove (iii). Let f € M, be such that x(a<|fi<p) € /\*/15/9 for every
0 <a < b < oo. Since

1
xR\ BO. R Xta<|f1<b} | Mg = | xr\ B0, R) Xta<| 1<t} I’ g =0
q/6

as R — 0o, we have x(q<|f|<p} € M¢. Forevery z € S, define

. b4

F(z) :=sgn(f)|f|? and G(z) := / F(w)dw.
0
In the proof of Theorem 6.3 (i), we know that G € G(L*°, M—f). Hence, in order to prove
that G € G(L*°, ./\/lg), we only need to show that
G1(2) = x(if>1)G(2) € M¥ and G(1 +it) — G(1) € M,
foreach z € S and r € R. For every R > 0, we have
[Xus1=nG1@] = A+ 1ZDRY xp<ip1<hy -

50 xi1/1<k1G1(2) € M. Since

1
1G1) = x1f1=01G1@) | e S —=———IF1"", =0
Mg

log(R/(1 +1z) " "M,

q/0
as R — oo, we have G1(z) € ,/{k/lz Forevery t € Rand R > 1, we have
. 1/6
G +i0) = Gy <y zry = THIDRY X421y
50 (G(1+it) = G XL <y pi<p) € M¢. Meanwhile,

0 1/6
71
log R f szg

l(GQa+in— G(l))XR"\{%SIf\SR}HMf; S =0

as R — 00, 50 G(1 +it) — G(1) € Y. Since G € G(L®, M) and f = G'(9), we
conclude that f € [L>, M#]?. Combining with [L>, M§1° < [L>®, £1717, we have
0 6 10 2]
() {F €My xasinzn € My} € [L% ME] S [L% M5T. (6.10)
O<a<b<oo
« 0 . 0

Let f € [L®, M{1°. From [L®, M{1° = MZ/G’ it follows that f € MZ/O’ Choose

G € G(L™, M%) such that f = G'(6). For each z € S, define

Giz+27%) - G(2)
2-kj :

hk(Z) =
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e~

6
By Lemma 2.9 and Theorem 1.6, we have h(0) € [L°, /\i{ﬁ]g = M;% C /(F/lg/g. Since
LMY

(7
klim hi(0) = fin L® 4+ M¥ wehave f € ,/{6/1;;9 ﬂ/\/l;/g. By virtue of Lemma 6.2,
— 00

“
we conclude that xq<|f|<p} € /\*AZ/G’ forevery 0 < a < b < oo. Hence,

0 0 0
(L= 8] < () {f e MYy xwasinizs € M) (6.11)
O<a<b<oo
As a consequence of (6.10) and (6.11), we have Theorem 6.3 (iii). d

6.3. The spaces [L®, Mg, [L%, MY1°, [L®, Mg, and [L®, £1$]s. Finally,
we also consider the complex interpolation between L% and closed subspaces of Morrey

spaces. Recall that L denotes the closure of L in L*°.

THEOREM 6.4. Let1 < g < ooand ¢ € G,. Then we have

N [[X 7
() [L%, MGlo = Mg,
(i1)

9 ~ —_— 0

m {f S M;/G N X{“S\f|§b} e LOO} g [LOO,MZ]

O<a<b<oo
) L
- ﬂ {f € Mg/e D X{a<|f|<b} € Mg/e}
O<a<b<oo
(iii) Ifinfe > 0, then
—_ p , »
[L, Mf] = ﬂ {fe MZ/@ ! Xla<|f|<b) € M?/g}' ©6.12)
O<a<b<oo

—_~—

(iv) [L%, M§1p = (LR, {11o = M.

— 0

) —_~ NiMw
PROOF. Let f € /\/12/0. Since L € L>®, we have f € L® N Mg 9. Then, there
exists a sequence {fj}‘]?i1 - L®n Mﬁ such that

1
Lf = fill e = 5 (6.13)

q/6

By using a similar argument as in the proof of Lemma 6.1, we have
Ifillizo mere = WA, 00
JNL= MA e,
Therefore, for every j, k € N with j > k, we have

i = Sl agpe = I1fi — kaIM,,e < -+
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so { fj }7‘;1 is a Cauchy sequence in [17;0, Mg]e. By completeness of [17;0, ./\/lf]g, there exists
g € [L®°, Mg]e such that

Combining MY, € L% + MY, [L®, MET € L™ + MY, (6.13), and (6.14), we get

~7¢[ZXO’M$]9 —~ 1)
f=gel®nM; . As a consequence of (2.3), we have f € [L>®, Mg].

Conversely, let f € [ZBJO,Mg]g and choose F € ]-'(I?;O,Mg) such that f = F(8).
Since F(it) € IT"JO, we have

lim ||XR”\B(0,R)F(it)||L°0 =0. (6.15)
R—o00

By Lemma 2.3, we have
| 1-6
I xrmBO.R SN, o0 =< —/ | xre\B(O,R)F (it)||L= Po(0, t) dt
Mq/g 1—-6 Jr

X ||F||]—‘(L70,ij) . (6.16)
By virtue of the dominated convergence theorem, (6.15), and (6.16), we have

lim n =0,
Jim ll xw \B(o,R)fIIM%
6 wg
o - TR ¢ Do
so f € My - Since [L®, Mglp S [L™, Mglp = LN My S LN Mg ’
we have

P
feMgeN Mg =My
as desired.
0 —~
The proof of (ii) goes as follows. Let f € /\/lg /g be such that x(a<| r|<p) € L for every

0 <a <b < oco. Foreach z € S, define

4

F(z) = sgn(H)|f17? and G(z) := / F(w) dw.
0

Since G € G(L™®, M), we shall show that Go(z) = xy 7 <1}G(2) € L™ foreveryz € S
and G(it) — G(0) € L% for every t € R. Foreach N € N, we have

|GO(Z)X{|f|>%}| <+ |Z|)X{%<‘f|<1} )

80 Go(2) X 1= 1 € L%, Meanwhile,

~!
sgn( )| f1¥% — sgn( )| ]
log | f|

X{1/N=IfI=1}

|Go(2) = Go@xqp1=1/81 | oo = H9
LOC
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— 0

<
~ log N
as N — oo. Therefore, Gy(z) € L%,
Next, for all N € Nand ¢t € R, we have
IG(it) — GO xp/n<f1<ny < (L + D X(1/N<If1=N} >

50 (G(it) — G(0) x(1/n<|fl<n) € L. Since | F(ir)| = 1 forevery t € R, we have
F(it) — F(0)

X <1/N}U N
log | f| {If1<1/NI{|fI>N}

|(Gt) = GO xrm 18 < f1<my ]| 1o = H9

.-
26

<

~ logN

— 0,

as N — oo. Therefore, G(it) — G(0) € L®. Intotal, G € Q(Z\OJO, /\/15). Since f = G'(9),
we see that f € [I?;O,Mg]e.

Now, let f € [fgo,./\/lz]g. Since [L°°,./\/l§]9 = ./\/lgje, we have f € M;jg. Let
G e G(L™, M) be such that such that f = G’(9). For each z € S, define

G(z+27%) - G(2)
2—kj

hk(Z) =

e~

As a consequence of Lemma 2.9 and Theorem 6.4(i), we have hi(0) € /\/lgjg. Since

Lo+Mj 0
klim hi(9) = fin L® + M, we have f € ,/{6/1;;9 ﬂ/\/l;/g. By virtue of Lemma 6.2,
— 00

“
we conclude that i, <|f|<p} € /\*AZ/G’ as desired.
(7
Finally, let us prove (iii) and (iv). Recall that, when infg > 0, we have M; RS L®°;

(7 —~
see [17, Proposition 3.3]. Therefore, /\*/lg /0 C L°°. Combining this fact with Theorem 6.4

—~—

(ii), we get (6.12). From Theorem 6.4 (i), it follows that [L®, /,\;175]9 - MZ;Q. By the same
argument as in the proof of Theorem 6.4 (i), we have

M)y e L% MY —
My S L= N MY cL®nM; = [L>®, M{],
. . — — o
By combining [L“,ﬁAg]g C [L®, Mily = MZ/O and MZ/O = [L® Mjly <

—_~

—~ —_—~ 7]
[L=, K§1o, we have [L®, Mfly = MY .
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