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From Colored Jones Invariants to Logarithmic Invariants

Jun MURAKAMI

Waseda University

Abstract. In this paper, we express the logarithmic invariant of knots in terms of derivatives of the colored
Jones invariants. Logarithmic invariant is defined by using the Jacobson radicals of the restricted quantum group
U& (slp) where £ is a root of unity. We also propose a version of the volume conjecture stating a relation between
the logarithmic invariants and the hyperbolic volumes of the cone manifolds along a knot, which is proved for the
figure-eight knot.

Introduction

The logarithmic invariants of knots are introduced by Nagatomo and the author [12] by
using the centers in the Jacobson radical of the restricted quantum group Hq (sl2) at root of
unity. In this paper, we give a formula for the logarithmic invariant in terms of the colored
Jones invariant. Let N be a positive integer greater than 1 and let £ be the 2/N-th root of unity

given by & = exp(w+/—1/N). The center of Hs (slp) is 3N — 1 dimensional, and its good
basis

{P1:P2s s PN_1, @1 D2s oo Py, KO, R, RN (D)

is given by [1, §5.2] which behaves well under certain action of SL(2, Z). For a knot L, let

yS(N) (L) be the logarithmic invariant corresponding to ks of the above basis, and let V,, (L)
be the colored Jones invariant corresponding to the m dimensional representation of U4, (sl2)

at generic q. We get the following two formulas to explain the logarithmic invariant )/S(N) (L)
by using derivatives of the colored Jones invariant V,,,(L).

THEOREM (in Theorem 1). The invariant y" (L) (1 <'s < N) is given by

WMy & 4
vy (L) = IN dg (g —q )(Vs(L) + V2N—s(L)) e
(2)
= (£- Z v, (L
— ¢ —-¢£ )di ( )m:S

q=
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REMARK 1. The first formula in (2) is given by the derivative of V,,, (L) with respect
to the parameter g. The second formula is given by the derivative of V,,,(L) with respect to
the parameter m, which is an integer. However, we can differentiate V,,, (L) with respect to m
by using the following universal expression of V;,, (L) given by Habiro [3, Theorem 3.1] (see
also [6]);

m+i,2i + 1},

3
i 3)

V(L) = ) _ai(L)
i=0

Here {n}; = q¢" — q¢7", {n,m}; = ]_[;”2_01 {n — j}4 and the coefficient a;(L) is a Laurent

polynomial in ¢ which does not depend on m (see [3, Theorem 2.1]). For ﬁ Vi (L) in (2),
Vin (L) is given by (3) and is considered to be an infinite sum with the indeterminate m. The
integer s is substituted to m after the differentiation, and the sum reduces to a finite sum when
q is specialized to &.

The above theorem suggests some relation between the logarithmic invariant and the
hyperbolic volume since relations between the colored Jones invariants and the hyperbolic
volume are known for various cases by [4], [9], [10], [2], [8] and [11]. Let L be a hyperbolic
knot. In [4], Kashaev found a relation between the hyperbolic volume of the knot comple-
ment and the series of invariants (L) y he constructed. Kashaev’s invariant turned out to be
a specialization of the colored Jones invariant by [9], more precisely, (L)y = Vn(L)| g=¢-
Then Kashaev’s conjecture is generalized as follows.

CONJECTURE 1 (Complexified volume conjecture [10]). Let L be a hyperbolic knot in
S3. Then

. 2w log(L)y
hm _—

N—o00

=Vol(S*\ L) + v/—1CS(S*\ L), “4)

where Vol(S? \ L) and CS(S3 \ L) are the hyperbolic volume and the Chern-Simons invariant
of §3 \ L respectively.

There are several generalizations of this conjecture. For example, if we deform & to
£% = exp(m+/—la/N) by a complex number « near 1, a conjecture for the relation between
VN (L) at g = £% and the complex volume of certain deformation of the hyperbolic structure
of §3 \ K is proposed by [2] and [8]. For the figure-eight knot, this conjecture is proved
partially by Murakami-Yokota [11].

Our invariant yS(N)(L) can be considered as a deformation of (L), since (L) y is equal
to ylg,N) (L). Changing the parameter N to s can be considered as a deformation (not contin-
uous but discrete) of the weight parameter A instead of the deformation of the parameter q.
Comparing with the deformations in [2], [8], [11], we propose the following conjecture.

CONJECTURE 2 (Volume conjecture for the logarithmic invariant). Let L be a hyper-
bolic knot and let My, be the cone manifold along the singularity set L with the cone angle o
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with 0 < a < 7. Let s be a sequence of integers such that limy .00 53, /N = 1 —a/2 7. If
My, is a hyperbolic manifold, then

2 log Vv(,‘é,V) (L)

lim = Vol(My) + v/ —1CS(M,) . 5)

N—oo N

For the figure-eight knot, we prove this conjecture for o satisfying 0 < o < 7/3, and
check numerically for all «.

This paper is organized as follows. In Sect. 2, we recall the construction of the colored
Jones invariant. In Sect. 3, we recall the restricted quantum groups, their representations and
their centers. These materials are explained in [1]. In Sect. 4, we discuss about the logarithmic
invariant of knots. For a knot L, there is a tangle 7} corresponding to L, and by passing
through the universal invariant by Lawrence [5] and Ohtsuki [13], we get a center z(77,) of
ag (sl2), which is an invariant of L. We introduce a representation of U4, (sl) for generic
g, which coincides with a projective representation of the restricted quantum group US (slr)
when q is specialized to £. Then, by applying this specialization to the colored Jones invariant
Vin (L), we get a formula to explain the logarithmic invariant in terms of V,,,(L). Moreover,
since the invariant z(77) is a linear combination of the basis in (1), these coefficients are
again invariants of L, and they are expressed in terms of V,,,(L). In Sect. 5, we investigate
the relation between the logarithmic invariant of the figure-eight knot K4, and the hyperbolic
volume of a cone manifold along Ky, .

1. Colored Jones invariant

1.1. Notations. Let g be a parameter, £ = exp(;w+/—1/N) be the primitive 2N-th
root of unity, and we use the following notations.

m—1

mg=q"—q", (nmlg=[]ln—klq, f{nlg!=innl,
k=0

{n}={nle, n}'={nle!, Inl=Inle, [nl'=Inle, {n}4=E"+&",
_ [nlg T W] Il [a] [
=T, = ,E[k]"’ [kL TR M - [kL '
1.2. Quantum group U, (sl). Letl,;(sl>) be the quantum group defined by

zgmg=<K1aF|KEK‘%me,KFK”:q”F,

K—K™!
EF—-FE=——_).

qg—q~!
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The Hopf algebra structure of U, (sl2) is given by
AK)=K®K, AE)=1QE+EQK, AF)=K'®@F+F®I1,
e(K)y=1, e(E)=¢(F)=0,
S(Ky=K~', S(Ey=—-EK~™', S(F)=-KF,

where A is the coproduct, ¢ is the count and S is the antipode. The universal R-matrix of
U, (slp) is given by

non e (" waen
R=g2"®H 3" —4q"5  (E"® F"), 6)
n=0 tnlq!

where H is an element such that ¢/ = K.

1.3. Irreducible representations of {, (s/>). Let W), be the highest weight represen-
tation of the quantum group U, (sl2) given by the following basis and actions. Let f, f1,
... fm—1 be the weight basis of W, and the actions of E, F, K are given by

Efi=lilgfii. Ffi=lm—1—-ilgfiy, Kfi=q"""%f.

Then W), is irreducible if g is generic. Let p,, : U, (sl2) — End(W,,) be the algebra homo-
morphism defined by the above actions.

1.4. Colored Jones invariants. Here we explain the colored Jones invariants briefly.
For detail, see [14]. For a knot L, let b;, be a braid whose closure is isotopic to L as a
framed knot. Let n be the number of strings of by . By assigning universal R matrix at each
clossing of a braid, a represntation of the braid group B, is defined on W2", i.e., we have a

homomorphism ,o,,(f ) B, — End(W®"). The colored Jones invariant V,, (L) of L is given by
the quantum trace of ,o,(,,") (br). More precisely, V(L) = tr (pm (K)®" p,,(f )(bL)). Later, we
use the normalized colored Jones invariant \7,,, (L) which is defined by Vm (L) = Viu(L)/[m].

1.5. Tangle invariant. The normalized colored Jones invariant Vm(L) can be inter-
preted as an invariant of a (1, 1)-tangle 71 whose closure is the knot L.

Let V be a d dimensional representation of U (sl2) with basis {ep, er, ..., eq—1} and
pv : Ueg(slz) — End(V) be the corresponding algebra homomorphism. Let b, € B, as
before, then there is a homomorphism pgl ) B, — End(V®") denifed by the universal R
matrix. Let 77 be a (1,1)-tangle obtained from by by taking the closure of the right (n — 1)
strings, then the closure of 77, is L. On the other hand, by taking the partial trace of pgl ) (br)
corresponding to the right (n — 1) components of V®", we get a operator in End(V). Here
the partial trace tr is given as follows.

d—1
Foy eu)! = Y ((d@py(K)F) ol (b))

i2,03,...,in=0

J15125ee0s0n

i1,02,.0s0n
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The operator tr(,ov)(bL)) is an isotopy invariant of the knot L, and if V. = W,,, tr(,om)(bL))
is a scalar matrix since W, is irreducible. This scalar is equal to Vm (L).

2. Restricted quantum group ﬁg (shr)
We introduce the restricted quantum group and its representations.
2.1. Restricted quantum group ﬁg (sh)

DEFINITION 1. The restricted quantum group Hs (sl) is given by
Ue(sl) = Us (sh) /(EY, FN, KV 1),
i.e. Z/{g (sl2) is defined from U (sl2) by adding new relations EN=FN =0and K?N = 1.

The R matrix of ng (slp) is given by

nen N (1
= (2 Z T

®F"). @)

Hereé% = exp (n\/—l/ZN), H is given by £ ¥ = K and satisfies
HE-EH=2E, HF—-FH=-2F. )

Moreover, for every Us (slp)-module V,if K v = &% v for v € V, then we assume H v = o v.
Here « is determined up to modulo 2N, and we choose « so that H satisfies the relation (8).
With the above assumptions, the representation of the R matrix on the tensor representation of
two projective modules explained in the next subsection is uniquely determined, and coincides
with the representation of the universal R-matrix of HS (sl2) given by Drinfeld’s quantum
double constriction in [1].

2.2. Projective modules of I/ (sl»). We first explain irreducible representations of
HS (shr). Let UsﬂE be the s-dimensional irreducible representations of Us (sl) labeled by 1 <
s < N. The module UsﬂE is spanned by elements u,ﬂf for 0 < n < s — 1, where the action of
Us (slp) is given by

Kuf==x£""""uf, O<n<s—1,
Euf=%nlls—nlur,, l1<n<s-—1, Eui =0,
Fuf =uj;,,, 0<n<s-2, Fuf =0.

Especially, U 1+ is the trivial module for which K acts by 1 and E, F act by 0. The weights
(eigenvalues of K) occurring in U™ are g5 g573 . g5t and the weights occurring in
Ul;—s are _%-N—s—l’ _EN—S—?), o _€—N+s+l.
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Let VSjE (1 < s < N) be the N dimensional representation with highest-weight £~

spanned by elements v,jf for0 < n < N — 1, where the action of Hs (sl) is given by

Kvf =+£7172 0%, 0<n<N-1,
Ev,jf:ﬂ:[n][S—n]”,j,E_lv l1<n<N-1, Ev(j)E:O,
Fv,jf=v:t+1, O<n=<N-2, Fvﬁ_lz().

Note that Vi,t = Ulﬂ\,t. Forl <s <N —1, VSjE satisfies the exact sequence

00— UY

+ +
N—s Vs Us 0 ’

and there are projective modules PsjE satisfying the following exact sequence.

0— Vi,

— PSjE — VSjE — 0.
The module P;" has a basis {x;r, y;T}onSN_s_l U {a), bl }o<n<s—1, and the actions of

ﬁg (sl) are determined by
Kxj_:sz_S_l_ijj’ Kyj'zs—S—l—2jy;!-7 0<j<N-s—1,
Kaf =¢&~172qf Kb =¢&~1=2"pF 0<n<s—1,

n

NN —s — Ty
Ext = —[jIIN =5 — j]x} IN = s = 1y

j—1 T = s
0<j<N-s—1, Ey] X 1§k§N s—1,
as—l’ ]:0’
Eaf =[nlls —nlay_y . o0 _ s —nlb} | +a |, 1<n<s—1, )
O<n<s—1, " x5, n=0,

+ .
x .., 0<j<N-s5s-2,
Fxt = Jt+l =J= Fy—f'_:y-z_l, 0<j<N-s5s-2,
7o leag. j=N-s—1, s
bT,, 0<n<s—2,
Faf =a',, 0<n<s—1, Fbf ={ "t -
+ —s—1
Yo > n=s .

+ ot oyt gt
Here we assume thatx™, = a”, = yy_, =af =0.

The module Py, has a basis {x;, y;}0§j§N_s_1 U{a, , b, }o<n<s—1, and the action
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of Us (slp) is determined by

Kx; =¢7"""2x7, Ky, =77y, 0<j<N-s—1,
Ka, =&""2a;, Kb, =g 2Nts1=np0 - 0<n<s—1,
—[JIN=s—jly,_ +x,_;.
Ex; :—[j][N—s—j]x/T_l, Ey— _ J 1<J.V<JA1,_S_/11
0<k<N-s-—-1, J B fj— ’
as—l’ ]:O’
Ea; =[nlls —nla,_,, gy |l —=nlb . T=n=s—1, (10
0<n<s-—1, " Xy 1 n=0,
Fxj =x;,,, Fy- = Yij1» 0=j=N-s5-2,
0<j<N-s5-2, J by, j=N-s—1,
a . ., 0<n<s-2, _
Fa, ={ " - Fb, =b,,,. 0<n<s—1.
X, , n=s—1.
Here we assume thatx~; = a_;, =xy_, = b =0.

2.3. Centers of Us (sl>). The center of Us (slp) is investigated in [1].

PROPOSITION 1 ([1], Proposition 4.4.4). The dimension of the center Z ofﬁg (sh) is
3N — 1. Its commutative algebra structure is described as follows. There are two special
central idempotents ey and ey, other central idempotents es (1 < s < N — 1), centers in the
radical w?ﬁ (1 <s < N — 1), and they satisfy the following commutation relation.

eset:ag’[es, OSS,[SN,
esu)fc=83,twti, 0<s<N, 1<r<N-1,
wsiwitzwfwfzo, 1<s, t<N-—1.

The center ey acts as identity on U; and as 0 on the other modules. eg acts as identity

on Uy and as 0 on the other modules. e, acts as identity on P;", Py,__ and as 0 on the other

+ + +pt — gt wTat — wt T — wt v —
modules. The center wy acts on P;” by w b, = a7, w] a,; = w] x; = wy =0,

and acts on the other modules as 0. Similarly, w; acts on Py, _ by wi y, = x,, w; x, =
w, a, = w, b, =0, and acts on the other modules as 0.
According to [1], the basis (1) is expressed by e, and w;—L as follows.

N

4 +aq

~ — _1 N-+s s
Pa =1 N(g*—q~) (e‘ [s]?

(wjf+w§)> (1<s<N-1),
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. 1 N—-—s . s _

‘ps:@ N ws_ﬁws (I=ss=N-1D.
. . 1 n .

ko=ey, ky=— (wfi+w;) (Q<s<N-1), ky=-—ey

Let z be a center of Hq (sly) given by

N—1
z=aoeo+aNeN+Z(ases+b;“w;r+bs_ws_)- (11
s=1

Then z can be also expressed by the good basis &5, p, ¢ by

z= Zaw“ +Z,3(N)AS+ZV(N)I?S, (12)

where

oV = ()G g Nas, BN =[P b - by),

s N—s
yM = [s1? <ij + b;) +@ +q Has, (1<s<N-1) (13

N N
)/0( ) =ay, 7/12,)_ —an.

3. Logarithmic invariants of knots

3.1. Logarithmic invariants. Let L be a knot with framing 0, 77, be a tangle ob-
tained from L and z(77,) be the center corresponding to the universal invariant constructed by
Lawrence and Ohtsuki, where we assign the R matrix given by (6) and K*! to the maximal

KN*1 is assigned instead of K*!, and so

and the minimal points as in Figure 1. In [12],
the invariant defined here and that in [12] is different by the sign (—1)~1/ where f is the
framing of the knot. So these invariants coincide for an unframed knot.

From (11) and (12), we define ax(L), b (L), o\ (L), BV (L), y M) (L) as follows.

N—1
2(TL) = ao(L)eo +an(L)en + Y (as(L) ey + b (L) w + by (L) wy))

s=1

N— N—-1
- Z ™M (L) ps+ Y BNV ¢, +ZV V(L) k; .
s=1 s=1 s=0

The purpose of this section is to express the above coefficients in terms of the colored Jones
invariant. We first consider bﬁc (L).
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LA X
A"

MM UG

FIGURE 1. Assignment of the R matrix and K*L

PROPOSITION 2. Let L be a knot. Then we have
VL) Vans(L) >
[s]g [2N — slq g=¢ ’

i{l} <V2N+S(L) . VZN—S(L)>
dg ""\[2N +sl, [2N —sl,

vy & d (
by (L) = 2N [s] dgq (g
3

(14)
by (L) =

4N [s] o

The proof of this proposition is given in Sect. 3.5.

3.2. Modified representations of U/, (sl2). Let W,, be the highest weight represen-
tation of the quantum group U, (sl>) given in §1.3. For an integer m (1 < m < N — 1),
we introduce a 2N dimensional representation ynt which is isomorphic to Wany_,, @& W,,.
The basis of Y, is e, e, ..., a5y, 1. B¢, BY..... B _,. and the actions of E, F,
K € U,(sl) are given by

lilg e ifi<N—mori>N4+1,

i [i]qaf_1+[2N_Nm__il_1:| e M N—m+1<i<N,

EB =1lily B,

2N —m —i— 1] e, ifiA#N—-m—1,

Foal = — e
i [N]qaj+1+[ﬁ_ﬂ Bf ifi=N-—m—1,
q
FBf =[m—i—114B8 .
Ka;i— — q2N—m—1—2i a;‘r , Kﬁl+ — qm—l—Zi ﬁl+ )

PROPOSITION 1. [Ifq is specialized to &, then Y} is isomorphic to the projective mod-
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ule P} given by (9).

PROOF. We compare the actions of U (sl2) on Y, and P, Let f be a linear map
defined by

(DN 1K ] (—DFIN =10 |

+_ +_
f(xk)_[N_m_l—k]!a"’ f(yk)_[N—m—l—k]!aN“‘
for 0O<k<N-m-—1, (15)
!
f(af{)=%ﬁ,f, f@H =kl y_, for0<k<m-—1.

Then a simple computation shows that the actions of K, E, F on Y, and P, are commute
with f. Therefore, the specialization of y,;t at ¢ = & is isomorphic to 73,1' as an Hs (sl)
module. 0

For an integer m (1 < m < N — 1), we introduce a 4N dimensional representation ),
which is isomorphic to Won4m © Woy—p. The basis of V, is ey, @, ..., N 1> By
ﬂl_, e, ﬁZ_N—m—l’ and the actions of E, F, K € U, (sl>) are given by

ilge;_, if i<mori>2N+1,
Ea: = _ —1— - . .
! lilge;_ | + I:ZN _;]\”;_il li| B, ifm+1=<i<2N,
q
EB; =1lilgBi-1,
2N +m—1—ilge;,, ifigm—1,
Fa; = 2N — 1

i [2N]q0ll»_+1+|:2N_m_l:|qﬁa ifi=m-1,
Fﬁl_ =[2N-m—-1-i], ﬂi_+1 ,

2N+m—1-2i ai— ,

Kocl._ =g Kﬁl_ — q2N—m—1—2i ﬁl_ )

As for Vi, we get the following.

PROPOSITION 2. If q is specialized to &, then Y, is isomorphic to the direct sum
Py_m ® Px_,, of the projective module P, _, given by (10).

PROOF. Let Y] be the subspace of V,; spanned by oL 0, a;,er_l, ﬂa, Br....,
ﬂ;,_m_l, and let Y be the subspace spanned by the remaining basis a;,er, a;,+m+1, e,
N 1> By_m> ﬁ;,_mH, «-os Bon_m—1- Then Yy is invariant under the action ofag (shy).

We prove that Y1 and ),/ Y are both isomorphic to P, _,, . Let g be a linear map from Py, _
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to Y defined by

(=D KN —m]!

900 = Ty oo Bee 900 = CD ke,
forO<k<N-m-—1,
(16)
R ) poy = CDVHEIN-T
g(ak)—[m_l_k]!akv g(by) = m—1— 4]l [N

forO<k<m-—1.

Then, by checking the actions of K, E, F, we see that g gives an isomorphism from Py,_, to
Y| as Hs (sl») modules.
Next, we define a linear map & from Py, _  to ¥, to show that P, are isomorphic to

Y. /Y.

_ [N —m]! _ _ _
h(xk): [N—m—l—k]!ﬁN-’_k, h(yk):[k]!“N+m+k
forO<k<N-m-1,
[k]! (—DF [N —1]! 4
h(a;) = mﬁ;/—m+k’ hb;) = m‘XZN—Hc

forO<k<m-—1.

Then & defines an isomorphism from Py,_  to V, /Yi. This isomorphism induces an inclu-
sion from Py,_  to ), since P, _,. is aprojective module. Hence ), at g = & is isomorphic
0 Py_p ® Py O

3.3. Specialization of the R matrix at ¢ = £. 'We cannot specialize the universal R
matrix (6) at ¢ = £ since it has a pole at ¢ = £. However, we can sepcialize its action on the
representation spaces we are considering.

PROPOSITION 3. LetW,, im =1,2,...)and ynﬂ; (1 <m < N — 1) be the represen-
tations of Uy (sl2) introduced in §3.2, and let Vi and V, be two of these representations. If
q is generic, the universal R matrix of U, (sly) given by (6) acts on V1 ® V2, and this action
can be specialized at ¢ = &. The resulting action is the same as the action of the R matrix of
Us (sly) given by (7).

PROOF. For a large n, E™ and F" vanish on V; and V,. Hence it is enough to show
that every term of the universal R matrix can be specialized at ¢ = £. We investigate the
degrees of zero at ¢ = & for the matrix elements of the representations W, and ynﬂ;. By
counting the factors of the form [kN] in the matrix elements of representations of E” and F”
constructed in §3.2, we see that the zero degrees of them at ¢ = & are at least £ if n > ¢N.
(Sometimes, they act by 0, whose degree is considered to be oo for any factor.) Hence, for
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IN <n < (£+ 1) N, the zero degree of the term W }  E" @ F" at g = § is a least £ since its
numerator has degree at least 2¢ and its denominator has degree £. Hence, the action of the
term {nL},,' E" ® F" at ¢ = £ is well-defined even if n > N, and the terms for n > N are all

specializedtoOon V] ® Vo atg = §. a

3.4. Specialization of the representation on yj; atg = &. Let W, be the irreducible
representation of U, (slz) introduced in §1.3, and let oy, n,ﬂ,f be the homomorphisms from
U, (slp) to Wy, and yj; respectively. Moreover, for a knot L, we define p,, (L) and nnj; (L) by

pm(L) = (pw, (b)), 0(L) = T(py+(bL)) .

where pyi (br) is the representation of b;, on yi - ® yi given in §1.5. Then p,, (L)
and n;; £(L) are elements of End(W,,) and End(Y;}) respectively. Moreover, p,, (L) is a scalar
matrix such that the corresponding scalar is the normalized colored Jones invariant Vin (L).
The matrix n;, *+ (L) may not be scalar matrix since J)i is not irreducible. However, for any g €
Uy (sh), n,jn:(L) satisfies 7;; +(9) N (L) = n,jn:(L) ni (9), and n;; +(L) is given by the following

with some scalars xki.

VZN—m(L)aZ_, O<k<N-m-—1)
ma (L)l =1 Vonem (L) e + x5y Bl » (N—m <k <N-—1)

Vonem(L) @) (N<k<2N—m—1)
nh (L) By = V(L) By, O<k<m—1)

Vonim(L) O<k<m-—1)
N (L) = { Vanm (L) o + 3, Br (m<k<N-—1)

Vonam (L) @y, (N<k<2N+m—1)
(L) By = Van—m(L) By, - O<k<2N-—m—1)

Now, we obtain xgt. We have

nh (FYnh(Lyey = Vanem(L) 0 (F e |
~ N —1
=Van-m(L) ([N]q oy, + [m B J /35”> ,
q

and

N—-1
Mo (L) 1y (F) @y =1 (L) ([N]q oyt |:m—1:| ﬁé)

~ —1
=[Nlg Van—m (L) a;—m + [N qx() ﬁ() + Vm(L) [ 1:| ﬂ(—)i_ .
q
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Hence we get

. [N—l} Van-m(L) = V(L) s

S P [N,
We also get x,, similarly as follows.
N (F) 0 (L) et} = Vonym (L) iy (F) e,
a2 0+ [0 L] 8.
q

which is equal to

S L [aN-1 ] -
M (L) 0y (F) @ty =17, (L) <[2N]q @+ |:2N—m—l:|qﬁ0)

= Vanm(L)[2N1, &y, + [2N1gx5 By + Van-— m(L)[ 211’" } Bo -

Hence we get

19)

o [ZN = 1} Vangm(L) = Van—m(L)
* L om ], [2N], ‘

By specializing g to & at (18) and (19), we get
&

,}LH}EXJ= N o {1}q(v2N m(L) = V(L)) o
o (=D"& d
qh_Ig: 0 = N {l}q(VZN—i-m(L) V2N—m(L)) gt ’

by using I’Hopital’s rule. Now we are ready to prove Proposition 2.

3.5. Proof of Proposition 2. We compare xSE with the coefficients b (L) of wT in-
troduced in [12]. Let 7}, 7, be the representations on P, and 731; . in [12], and 77,5 (L),
7, (L) be the elements of End(P;}) and End(Py,_,,) defined as n;, +(L). Then we have

T (L) b = Van—w(L)|_, bJ + b (L) ag
T (L) y5 = Vansm (D) g 5 +bp(L) Xy -

From Proposition 3, 7, (L) are essentlally the same as the specialization of 7, (L) at q=25&.
Hence the matrices of 7, +(L) and Ny +(L) should be related by the isomorphisms f, ¢ in (15),
(16) as follows.

T =f"ont)| _cof . @) =g on, )|, o9
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Therefore, by using
foH=eaf_,,. f@aH=mps. gy =a,, gx;)=D"[mlB;,

we have

to . & d % —V
o) = 55t ag Mo (V@ = Vo)
' (20)
L& d o -
bn(L) = T dg Mo (Vawem (L) = Van-m(L) - =

3.6. Habiro’s formula. Let s be an integer satisfying 1 <s < N — 1 and put
s =min(s, N —s), §=max(s,N —s).

By using Habiro’s universal formula (3), b;JE(L) is expressed in terms of @; (L) as follows. We
puta;(L)s = ai(L)|y=¢-
PROPOSITION 4. For a knot L, we have

bi(L) = by (L) =

2 [s-1 .
0P (SR sl +id 5~ 0 Zalms{””}“_ll} .

G|\ & Bl —i— 10, 2= k)
k#s
where {;7} is given by the following.
mi= ] <o ] tn-ny. (22)
0<k=<j-1 0<k<j—1
n—k=Nt n—k¢NZ

COROLLARY 1. Let L' be the framed knot with framing f which is isotopic to L
asa non-framed knot. The colored Jones invariant V,, is generalized to a framed knot by

Vin(LH) = q af Vin (L), and the invariants b+(Lf) and by (L) are generalized as follows.

praly =g T pray + EXEOT Wy gy
Ls] ' 23
s £ )
oLy =g T py + 2L Vo(L) = -

[s]?
PROOF OF PROPOSITION 4. Let a;(L) = {1}5a;(L) for a;(L) in (3) and a,(L)s =
Ezl.(L)|q=§, then
B i a,(L)g {5 +i)! "i‘i&i(L) s Kk |
{s}{s —i —1}! a. (L) &k}

q=£ i=0 i = s—i<k<s+i
l q=£ s

PR
dq [S]q
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where {k}+ = ék S_k Now we compute (14) by using the relation {2N — k}
d
%F (q) ‘ng hmq_>5 for a function F'(q) of gq.

{} (V(L) V2N—S(L))
T\ Isly 2N — 5],

q=§

S q W s+ i) [ gL
_Zo{s}{s—i—l}! a,(L)

k{k)+
= S_,-;q . 1k}
q=5§ s +

a.(L){s+i,i}g{s —1,i}4
5 q—>£

{Nlg
s—1 ~ . d ~
—Z @ (L)s 2N — s +i}! g 4(L) Z
—~ 2N —s}(2N —s —i = 1)1 | 4,(L) e i
k#2N—s
5—1 ~ .o .
+‘22_N g G N =5 +ii)g 2N —s — Li}g
i=s 5 95 {N}q
Fors <i <s — 1, we have
o Bl ls = Lilg _ |0 if s<%,
mm = —~—
q—§ {N}q {s+ii}{s—1i} if s>%,
and for s <s5-—1,
2N —s i) (2N — s — Ll Us+iils —1,i) if s <
mm = —
d3 {N}4 {s+i,i}{s—1,i} if s>

We also know that

(2N —k} = —{k} {2N — s +i}! iy

2N —s}2N —s—i — 1)1 {s}{s—i— 1}

= =

467

= —{k} and

k {k}y
& {k}

(24)

(25)

(26)
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By using (24), (25), (26), we get the following. If s < N /2, then

d Vs(L)  Van—s(L)
—(1}), -
dq [s]y [2N — 5],

q=§

S aWels+i) [ d a0
B ; sHs—i—1| &)

k{k}s
q=£ " S—iSXkS:S-H é{k} )

k+#s
Za(L)g{s—i-l}' (L) S QN — k) {k}+
{sHs—i—11 | ) | . 5. & {k}
g=¢  sizkse

+4—Za(L)s{S+l iVs — 1,1}

i =S5

_ 2N 4Ll + i (k)4
—Z{S}{S—l—l}V . l_;w ﬁ"'?; (L)E{S+l iVs —1,i).

k+#s
If s > N/2, then

_{ } <V(L) va_s(m)
I s]q [2N — S]q

q=§

a;(L)e {s + i}t [ 3g @ (L) k k)
Z{S}{S—l 1}v( a,(L) q:;‘q_i;w § {k}

k#s

+2—Za(L)s{S+l iV s — 1,i)

Ly eN-bi
q:é s—i;sﬂ' g {k} )

ks

Za(L)s{erz}v (L)
{sHs—i -1} | a;(D)

+2—Za(L)s{S+l iV s — 1,i)

i =S5

_2_NZCI(L)5{S~I—1} Z %+_

{st{s —i—1}! Z (L)E{S+l iVs — 1,1}

s—i<k<s+i { } s i=s

k#s
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Therefore, for all s with 1 <s < N — 1, we have
Vv (L) V2N—s (L)
_{ }q
[sl, [2N —sl, gt
s—1 .
AN G (L)g{s-i-i}‘ {k}+
= L — + — L)e{s + L,i}. (27
E XN, 2 W Z D5 LN =10 @D
k;é?
Similarly we get
i{l} <V2N+s(K) 3 V2N—s(L)>
dg ! [2N+s]q 2N =51y /|,
4N \a A(L)g{s +i)! {k}+
=T ,;S+,W+_Z (DRI @
k#s
by using (25), (26),
RN stiilg (N 4 - LYy 2{s/+\_i,/i}{s/—\_l,/i} if s <4, 9
q—& {N}q s+iiMs—1,i} if s> 3,
and
{2N + s +i}! {s +i}! 30)
2N +s} 2N +s—i— 1)1 {s}{s—i—1}"~

Combining (20) with (27) and (28), we get
by (L) = by (L)

P S @ Dels + i 13N
_ﬁ Zm Z {}—i-ZZa,(L)g{s—i-lz}{s—lz}) O

s— t<k<3+t
PROOF OF COROLLARY 1. Since Vy(Lf) =

s2-1
g7 V(). Vi _,
Van—s (L) _y = Vanss (L)) _. and BT (LT),

b;(Lf ) are given by (20), we have

1 (s2—1 @N-s5)2-1\ f{1}
+pfy = g5 _
by (L )—é by (L)+2N< 3 > ) B Vs(L)lg=¢

N — 1
=T L) - f([i]?” Vo (L)l gt »

1
b (L) = €T b0+ £ T Vet
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3.7. Coefficients of centers. The center of the restricted quantum group Us (sl2) is
spanned by e, ..., ey, wf, R wi_l, where e; is the central idempotent and wﬁc is the
center in the radical of Psi. For a framed knot L/, let z = z(LY) be the center of Us (sl)
determined from L/ by using a tangle T} s obtained from L. Then z is expressed as a linear
combination of the good basis (1).

N-1 N-1

2Ly =Y oa™MwHp,+ Y BV d, +ZV(N)(Lf)K

s=1 s=1 s=0

In the following, L represents the non-framed knot which is istopic to L. By using (13), we
have

(L) = NN | l<ss=N-1,
q:

BV =1sP (b7 (L) = by (WH) = =N f (1 Ve[ 1=s =N -1
-

Wy p Van(LD) £-% 4
0" W= S| =T ag e
;
Ne~t (1) d
= ——— — V(L ,
2”\/__1 dm ( )m:ZN

q=§
Wyt (St NS — ) L By g
y ML) =[] (NbS(LH by (L )) G )\

5—1

s+i {k}+
+2Za,(L)g{s £i2i4+1)

_ 2y Zal(L)g{s~|—z 241} ) w0

k=s—i

d
g 2 —{l}q(V (L) + Van—s(L))

q=§
N{l

— {1 If iVm
T /_

dm
Vn(L')
[N]

, 1<s<N-1,

el

q=

2
5= g
57 da V(@)

N) 7 fy _
Yy (L) =— =
g 2N d

q=5§

_Ne'r f{”iV(L)
274/~ 1 dm

m=N
q=§

In ﬁ Vin (L), the colored Jones invariant V,, (L) is expressed by Habiro’s universal formula
(3) and considered to be an infinite sum with the variable m. The integer s is substituted after



FROM COLORED JONES INVARIANTS TO LOGARITHMIC INVARIANTS 471

obtaining the derivative. The sum reduces to a finite sum when ¢ is specialized to £&. Hence
we get the following.

THEOREM 1. Fora framed knot LY with framing f and let L be the same knot without
framing. Then we have

(L) = NN | I<s<N-1,
BN = =N £ (1) V<Lf>\7 l<s=N-1,
-4 i
ML _§ 2 dy, _ éz{}dVL
D= "5ar | = aw g Minlerovas o ()mzz&N,
1420
y MLt trz’ d _ AN} Loy d
(L7) = N dq{l}(VS(L)+V2N—S(L)) q:g_n\/—_l T Vin (L) - ,
1<s<N-1,
2
f ]
(N) . f Z_M zéizil‘/L
YN (L") [N] it N dq{ }g VN ( )ng
—1
NE /(1) d
- = V(L
e/ n =
q=£
Especially, if the framing f = 0,
a™M (L) = (=DNT N (1} Vo(L)] e » l=s=N-1,
BM(L) =0, l<s<N-1,
gy Vv & N d
Yo (L) ] |, = 4N dq{ g Van( )ng rx T dm ::25”’
) & 4 _ N 4
=0y {1}(Vs(L) + Van—s(L)) " mvTdm V(L) .
1<s<N-1,
(N)L:_VN(L) =ii1VL _ Ny iV
N (L) INT |, 2qu{}q N()q:S rasTdm " -
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4. Relation to the hyperbolic volume
In this section, we check the volume conjecture (5) of the logarithmic invariant y; (K4,)

for the figure-eight knot Ky, .

4.1. Logarithmic invariant of figure-eight knot. The normalized colored Jones in-
variant V) (K4,) is expressed as follows.

o . .
{s4+i,2i +1}
Vilkey = Y LR
i=0 t
This means that the coefficients a;(Ky,) are all equal to 1 in Habiro’s formula (3), and
(N) o
ys  (Ka,) is given by

s—1 s+i

yM(Ka) =Y As+i2i+1) ) {f]i; +2Z{s+z 2i+ 1}, 31)

i=0 k=s—i i=s
where s = min(s, N —s), s = max(s, N — s) as before.
4.2. Limit of the logarithmic invariant. For yS(N)(K41), the following theorem
holds.

THEOREM 2. Let o be a real number with 0 < o < /3 and let 53, = |[Na/2m]
where | x| is the largest integer satisfying | x| < x. Then

(N)

27 [y (Ka)| 27 [y (Ka))|
lim N = lim = Vol (M) (32)
N—oo N N—o00 N

where My, is the cone manifold along singular set K4, with cone angle a.
REMARK 2. Numerical computation suggests that
)(K )‘ Vol(My) for 0 <a < 2n/3,

0 for 2n /3 <o <4m/3,
VolMoy—g) for 47/3 < o < 2.

lim
N—oo N

)/S(N)(K4l)‘/ N for N = 200 and N = 400 are shown by graphs in

Figure 2.

PROOF OF THEOREM 2. We first prove limy_.oc 27 ‘y(N)(IQl)

/N = Vol (My) for
0 < a < 7/3. To do this, we start by estimating the sum

sy—1 sy

Z{s,v+z 2i + 1} Z {k}+

k?—l
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)//

50 100 150 200 S

)(K4 | ‘ )|/N (dots) and the hyperbolic volume of the cone
manifold My (o < 71) My o (o > ) along Ky, (thin line)

We know |{k};/{k}| = |cotkmn/N| < 2|cotwr/N| < N sincel < k < N — 1, and so
syt

ks —i {k}+/{k}‘ < N2. We also know {s§ +iHsy — i} < 1since 0 < s} < N/6 and

0 <i < sy. Therefore, we have

s¢—1 s+
N N {k}
§ :{sN—i—l 2l+l}k §S 3 {k; <N

Next we estimate Zf\:i’v_l {s% 2+ 1}. Leta; = (—1)*V{s% i 2+ 1}. Thena; >0
=5,

and we have

N—sy
amw = E ar < Na. V)
max maX
i= €N+1

where a. L) = max o o PN l(a,) Therefore,

Imax

<N +Na(N) (33)

Imax

_N3 +a.mw <
Imax

¥se (K4))

-(N)

The index lmd;)( for the maximum a; must be equal to l( ) =N — sy — loriy ~ satisfying

(59 4+ iM% — iV} > tand {59 + iV + 18 — iV — 1) < 1s1nce1( ) and i{
N Th N N Th N~ b 1
correspond to the local maximal of a;. The index z( ) satisfies
(N) -(N)
27 +1 2ms 1 27
cos # < cos % ~3 < cos 1;2 (34)

If N is not small, such i;N) exists uniquely between N/2 + s3 and N — 5%, — 1 because of
{N/24+2s5H{—N/2} > 1, {25} +1 — N{N — 1} < 1 and the shape of the graph of the
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cosine function. The log of g; is given by

Qs
Syt

-1
loga; = Y log|{k}|+ ) _ log|{k}|
k=1

k=s{—i

and is estimated as

o
SN+I

N

0
Nﬁx*f log |2sinmt| dt + N/ log |2sinmt| dt < loga;
o 0
N

1 S%-H'-H

_N . T .

< Nﬁ%*i“ log|2sinmt| dt + N/. log|2sinmt|dt .
S N

Therefore,

2 loga. 2 loga.w) e —9
im — " = 2 A@). lim — 2 — oA (EED) A ( :
N—o00 N N—o00 N 2 2

where 6 = limy_ 2ni§N)/N and A(x) = — f(;‘ log |2 sint| dt is the Lobachevski func-

tion. Then # > m since N/2 + s§ < iéN) < N — 5% — 1, and this implies that

A((oz—@)/Z) > A((a~|—0)/2). We also know that A(2 @) > 0. Therefore, limy_, o a,m < 1,
1

limpy— oo a,m > 1, and we have zr(n]\a{))( = i;N) for sufficient large N. By using (33) and the fact
2

that limy_, o, log N/N = 0, we get

21 log

(N)
Voo (K4)) _
R ‘ =—2<A (ﬂ)_/‘<u))’ (35)
N—o00 N 2 2

lim

where 6 satisfies cos @ = cosa — 1/2 by (34). The volume of M, is given by Mednykh [7] as
follows.

2
3
Vol(M,) = / arccosh(l 4 cost — cos 2t)dt.
o

The right hand side of (35) is equal to Vol(My,) since

d 0 -0 d
<—2 (A (a;— > —A (oz 3 >>) =log ‘t N l‘ = —arccosht = d—Vol(Ma)
o

da

where t = 1 4 cosa — cos 2a, and, if & = 0, then 6 = 7/3 and —2(A(7r/6) — A(—7/6)) =
Vol(S? \ K4,) = Vol(My). O
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