Ir al contenido

Documat


Interaction of sinking behaviour of Saharan dust and lithogenic and biogenic fluxes in the Canary Basin

  • Báez-Hernández, Maite [1] ; García, Noemí [1] ; Menéndez, Inmaculada [2] ; Jaramillo, Alfredo [1] ; Sánchez-Pérez, Isora [1] ; Santana, Ángelo [1] Árbol académico ; Alonso, Ignacio [1] ; Mangas, José [3] ; Hernández-León, Santiago [3] Árbol académico
    1. [1] Universidad de Las Palmas de Gran Canaria

      Universidad de Las Palmas de Gran Canaria

      Gran Canaria, España

    2. [2] Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC
    3. [3] Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria - Instituto Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria
  • Localización: Scientia Marina, ISSN 0214-8358, Vol. 83, Nº. 2, 2019, págs. 121-132
  • Idioma: inglés
  • DOI: 10.3989/scimar.04877.19A
  • Títulos paralelos:
    • Interacción sedimentaria del polvo sahariano, y los flujos biogénicos y litogénicos en la cuenca oceánica de Canarias
  • Enlaces
  • Resumen
    • español

      En la actualidad los eventos de polvo Sahariano son la fuente principal de partículas litogénicas en la cuenca oceánica de Canarias. Con el objetivo de cuantificar su entrada y la interacción con los flujos biogénicos, se instaló una trampa de sedimento a la deriva, a 150 m de profundidad, 50 km al norte de la costa de Gran Canaria (Islas Canarias). Las partículas litogénicas detectadas fueron de illita, calcita, hematites, cuarzo, barita y caolinita. El material biogénico estaba compuesto por quitina, partículas de exopolímeros transparentes (TEP) y carbonatos procedentes de foraminíferos y conchas de gasterópodos. La media del flujo de polvo sahariano sobre la superficie oceánica fue aproximadamente 5±4 mg m-2 dia-1. Las medias de flujos litogénico, carbonato y quitina respectivamente fueron 0.8±0.6 mg m-2 dia–1, 6.0±7.4 mg m–2 dia-1 y 154±386 mg m-2 dia-1. Durante el muestreo se registró un intenso evento de polvo sahariano seguido, a los tres días, de picos en los flujos litogénicos y biogénicos en la trampa de sedimento a 150 m de profundidad. La velocidad teórica de sedimentación de las partículas litogénicas asociadas a los eventos de polvo sahariano a 150 m de profundidad calculada fue de vStokes=275 m dia-1, siendo la velocidad de sedimentación experimental obtenida tras el análisis de los flujos fue de 50 m dia-1. El comportamiento de los procesos de sedimentación asociados al POC, el flujo biogénico y el flujo litogénico observados en este estudio podría contribuir a modelos más realistas de la bomba biológica de carbono en los océanos.

    • English

      Saharan dust events are currently the predominant source of lithogenic particles in the Canary Basin. In order to quantify this input and its relationship with the biogenic fluxes, a sediment trap was deployed in a free-drifting system at 150 m depth, 50 km off the north coast of Gran Canaria (Canary Islands). The mineralogy of the lithogenic particles included illite, calcite, hematite quartz, barite and kaolinite. The biogenic matter was composed of chitin, transparent exopolymer particles, and carbonates from foraminifera and gastropod shells. The average Saharan dust flux over the ocean surface was approximately 5±4 mg m–2 day-1. The lithogenic, carbonate and chitin fluxes were 0.8±0.6, 6.0±7.4 and 154±386 mg m–2 day-1, respectively. A fairly strong Saharan dust event during sampling was observed in the trap, with a delay of three days in the peaks of lithogenic and biogenic fluxes. The theoretical settling velocity of the lithogenic particles associated with Saharan dust events at 150 m depth was vStokes=275 m day-1, and the experimental settling was about 50 m day-1. The associated sinking behaviour of particulate organic carbon and biogenic and lithogenic fluxes observed in this study may contribute to a more realistic prediction of these fluxes in carbon biological pump models.

  • Referencias bibliográficas
    • Abrantes F., Meggers H., Nave S., et al. 2002. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29°N):...
    • Alldredge A.L., Silver M.W. 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41-82.
    • Alldredge A.L., Passow U., Logan B.E. 1993. The abundance and significance of large, transparent organic particles in the ocean. Deep-Sea...
    • Allen J.R.L. 1992. Principles of physical sedimentology. The Blackburn Press; Chapman & Hall, New Jersey, 272 pp.
    • Alonso-González I.J., Arístegui J., Lee C., et al. 2010a. Regional and temporal variability of sinking organic matter in the subtropical northeast...
    • Alonso-González I.J., Arístegui J., Lee C, et al. 2010b. Role of slowly settling particles in the ocean carbon cycle. Geophys. Res. Lett....
    • Álvarez-Salgado X.A., Arístegui J. 2015. Organic matter dynamics in the Canary Current. In: Valdés L., Déniz-González I. (eds), Oceanographic...
    • Anabalón V., Arístegui J., Morales C.E., et al. 2014. The structure of planktonic communities under variable coastal upwelling conditions...
    • Anderson R.F., Cheng H., Edwards R.L., et al. 2016. How well do we quantify dust deposition to the ocean? Philos. Trans. R. Soc. A. 374: 20150285.
    • Ansmann A., Tesche M., Althausen D., et al. 2008. Influence of Saharan dust on cloud glaciation in southern Morocco during SAMUM. J. Geophys....
    • Armstrong R.A., Lee C., Hedges J.I., et al. 2002. A new, mechanistic model for organic carbon fluxes in the ocean: based on the quantitative...
    • Ariza A.V., Garijo J.C., Landeira J.M., et al. 2015. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the north...
    • Astitha M., Kallos G., Spyrou C., et al. 2010. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean potential...
    • Barton E.D., Arístegui J., Tett P., et al. 1998. The transition zone of the Canary Current upwelling region. Prog. Oceanogr. 41: 455-504.
    • Basart S., Pérez C., Nickovic S., et al. 2012. Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the...
    • Bauerfeind E., von Bodungen B. 2006. Underestimation of biogenic silicon flux due to dissolution in sediment trap samples. Mar. Geol. 226:...
    • Berelson W.M. 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II 49: 237-251.
    • Blott S.J., Pye K. 2008. Particle shape: a review and new methods of characterization and classification. Sedimentology 55: 31-63.
    • Bory A.J.-M., Newton P.P. 2000. Transport of airborne lithogenic material down through the water column in two contrasting regions of the...
    • Bressac M., Guieu C., Doxaran D., et al. 2012. A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric...
    • Bressac M., Guieu C., Doxaran D., et al. 2014. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in...
    • Brust J., Waniek J.J. 2010. Atmospheric dust contribution to deep-sea particle fluxes in the subtropical Northeast Atlantic. Deep- Sea Res....
    • Buesseler K.O., Antia A.N., Chen M., et al. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J....
    • De Leeuw G., Guieu C., Arneth A., et al. 2014. Ocean-Atmosphere Interactions of Particles. In: Liss P.S., Johnson M.T. (eds), Ocean-Atmosphere...
    • Dong H.-P., Wang D.-Z., Dai M., et al. 2010. Characterization of particulate organic matter in the water column of the South China Sea using...
    • Engelbrecht J.P., Menendez I., Derbyshire E. 2014. Sources of PM2.5 impacting on Gran Canaria, Spain. Catena 117: 119-132.
    • Elder L.E., Hsiang A.Y., Nelson K., et al. 2018. Data Descriptor: Sixty-one thousand recent planktonic foraminifera from the Atlantic Ocean....
    • Fischer G., Karakas G. 2009. Sinking rates and ballast composition of particles in the Atlantic Ocean: Implications for the organic carbon...
    • Fischer G., Neuer S., Wefe G., et al. 1996. Short-term sedimentation pulses recorded with a fluorescence sensor and sediment traps at 900...
    • Freudenthal T., Neuer S., Meggers H., et al. 2001. Influence of lateral particle advection and organic matter degradation on sediment accumulation...
    • Haustein K., Pérez C., Baldasano J.M., et al. 2012. Atmospheric dust modelling from meso to global scales with the online NMMB/BSC-Dust model–Part...
    • Helmke P., Neuer S., Lomas M.W., et al. 2010. Cross-basin differences in particulate organic carbon export and flux attenuation in the subtropical...
    • Hernández-León S., Almeida C., Bécognée P., et al. 2004. Zooplankton biomass and indices of grazing and metabolism during a late winter bloom...
    • Hernández-León S., Gómez M., Arístegui J. 2007. Mesozooplankton in the Canary Current System: The coastal-ocean transition zone. Prog. Oceanogr....
    • Herrera I., López-Cancio J., Yebra L., et al. 2017. The effect of a strong warm winter on subtropical zooplankton biomass and metabolism....
    • Honjo S., Spencer D.W., Farrington J.W. 1982. Deep Advective Transport of Lithogenic particles in Panama Basin. Science 216: 516-518.
    • Huskin I., Viesca L., Anadón R. 2004. Particle flux in the Subtropical Atlantic near the Azores: influence of mesozooplankton. J. Plankton...
    • Jackson G.A., Checkley D.M., Dagg M. 2015. Settling of particles in the upper 100 m of the ocean detected with autonomous profiling floats...
    • Jaramillo A., Menéndez I., Alonso I., et al. 2011. Textural and mineralogical characterization of terrigenous material from atmospheric inputs...
    • Jaramillo A., Menéndez I., Alonso I., et al. 2016. Grainsize, morphometry and mineralogy of airborne input in the Canary basin: evidence of...
    • Jickells T.D., An Z.S., Andersen K.K., et al. 2005. Global iron connections between desert dust, ocean biochemistry, and climate. Science...
    • Journet E., Desboeufs K.V., Caquineau S., et al. 2008. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35: L07805.
    • Korte L.F., Brummer G.-J., van der Does M., et al. 2016. Compositional changes of present-day transatlantic Saharan dust deposition, Atmos....
    • Maeda N., Noriki S., Narita H. 2007. Grainsize, La/Yb and Th/ Sc of settling particles in the Western North Pacific: Evidence for Lateral...
    • Mari X., Passow U., Migon C., et al. 2017. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151:...
    • Martinez-Ruiz F., Paytan A., Gonzalez-Muñoz M.T., et al. 2019. Barite formation in the ocean: Origin of amorphous and crystalline precipitates....
    • Menéndez I., Derbyshire E., Engelbrecht J., et al. 2009. Saharan dust and aerosols on the Canary Islands: past and present. In: Chang M.,...
    • Menéndez I., Derbyshire E., Carrillo T., et al. 2017. Saharan dust and the impact on adult and elderly allergic patients: the effect of threshold...
    • Michaels A.F., Silver M.W. 1988. Primary production, sinking flux and the microbial food web. Deep-Sea Res. 35: 473-490.
    • Milliman J.D., Syvitsku J.P.M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers....
    • Montgomery M.T., Welschmeyer N.A., Kirchman D.L. 1990. A simple assay for chitin: application to sediment trap samples from the subarctic...
    • Müller P., Schneider R. 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res....
    • Neuer S., Ratmeyer V., Davenport R., et al. 1997. Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term...
    • Neuer S., Freudenthal T., Davenport B., et al. 2002. Seasonality of surface water properties and particle flux along a productivity gradient...
    • Neuer S., Torres-Padrón M.E., Gelado-Caballero M.D., et al. 2004. Dust deposition pulses to the eastern subtropical North Atlantic gyre: Does...
    • Okada K., Heintzenberg J., Kai K., et al. 2001. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res....
    • Otosaka S., Togawa O., Baba M., et al. 2004. Lithogenic flux in the Japan Sea measured with sediment traps. Mar. Chem. 91: 143-163.
    • Pakulski J.D., Benner R. 1994. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39: 930-940.
    • Passow U. 2000. Formation of Transparent Exopolymer Particles, TEP, from dissolved precursor material. Mar. Ecol. Prog. Ser. 192: 1-11.
    • Passow U. 2002. Transparent Exopolymer Particles (TEP) in aquatic environments. Prog. Oceanogr. 55: 287-333.
    • Pérez C., Haustein K., Janjic Z., et al. 2011. An online mineral dust aerosol model for meso to global scales: Model description, annual simulations...
    • Ratmeyer V., Fischer G., Wefer G. 1999. Lithogenic particle fluxes and grainsize distributions in the deep ocean off northwest Africa: Implications...
    • Reid E.A., Reid J.S., Meier M.M., et al. 2003. Characterization of African dust transported to Puerto Rico by individual particle and size...
    • Røstad A., Kaartvedt S. 2013. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder. Limnol. Oceanogr....
    • Sangrà P., Pascual A., Rodríguez-Santana A., et al. 2009. The Canary Eddy Corridor: a major pathway for long-lived eddies in the North Atlantic....
    • Sarnthein M., Thiede J., Pflaumann U., et al. 1982. Atmospheric and Oceanic Circulation Patterns off Northwest Africa During the Past 25 Million...
    • Souza C.P., Almeida B.C., Colwell R.R., et al. 2011. The importance of chitin in the marine environment. Mar. Biotechnol. 13: 823-830.
    • Sprengel C., Baumann K.-H., Neuer S. 2000. Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment...
    • Sprengel C., Baumann K.-H., Henderiks J., et al. 2002. Modern coccolithophore and carbonate sedimentation along a productivity gradient in...
    • Turner J.T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130: 205-248.
    • van der Jagt H., Friese C., Stuut J.-B., et al. 2018. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export:...
    • Wadell H. 1934. Some new sedimentation formulas. J. Appl. Phys. 5: 281-291.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno