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Abstract 
 

  

Estimation in single-index models for risk assessment is developed. 

Statistical properties are given and an application to estimate the cost of 

traffic accidents in an innovative insurance data set that has information on 

driving style is presented. A new kernel approach for the estimator 

covariance matrix is provided. Both, the simulation study and the real case 

show that the method provides the best results when data are highly skewed 

and when the conditional distribution is of interest. Supplementary materials 

containing appendices are available online. 
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1 Introduction

Single-index models are a semiparametric way to generalise linear regression. They specify the

dependence between a random variable Y and a d-dimensional vector X as follows (see Härdle

et al., 1993):

Y = m (θ′X) + ǫ, (1)

where θ is a vector of unknown parameters, m is an unknown smooth function, and ǫ is a

random variable with zero-mean conditional on X. The aim is to estimate θ and m. Single-

index regression models can be extended to single-index conditional distribution models by just

recalling that P (Y ≤ y|X = x) = E( (Y ≤ y)|X = x), where (·) equals 1 if the expression is

true and 0 otherwise. This is important for instance, in risk management where the conditional

distribution function can be useful to evaluate certain scenarios.

The traditional approaches for estimating the linear predictor coefficients θ and the link

function m are based on the conditional expectation rather than the whole conditional distri-

bution and, as a consequence, they are vulnerable to the presence of extremes, heavy tails or

strong asymmetry, as in many applications and, in particular, in risk analysis. Our contribu-

tion is to extend maximum likelihood estimation of (1), and this opens the door to single-index

conditional distribution modeling which has an enormous potential for applications.

In order to estimate vector θ, Härdle et al. (1993) proposed to directly minimise the residual

sum of squares, so their estimator is

θ̂ = argminθ

n∑

i=1

[Yi − m̂i (θ
′Xi)]

2
,

where (Xi, Yi) i = 1, . . . , n are iid observations of the covariates and the dependent vari-

able and m̂i indicates the leave-one-out kernel estimator of m. Alternatively, Hristache et al.

(2001) analysed the average derivatives estimator of the vector of parameters in the index-

model, introduced by Stoker (1986) as well as Powell et al. (1989). Hristache et al. (2001)

presented the method for estimating the vector of coefficients θ by minimising an M−function,
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with a score function ψ, that again compares Yi with a nonparametric estimator m̂(·), i.e.

argminθ

∑n
i=1 ψ [Yi, m̂ (θ′Xi)]. All these methods ignore the shape of the conditional distribu-

tion because they are based on fitting the conditional expectation.

Delecroix et al. (2003) investigated the pseudo-maximum likelihood estimation of θ in (1).

They proposed starting from a preliminary
√
n-consistent estimator and, subsequently, correct-

ing it with the gradient and the Hessian of the log-likelihood function. They showed that the

corrected estimator is efficient. Previously, Klein and Spady (1993) had analysed maximum

likelihood estimation of θ but only for a binary response dependent variable. More recently,

in the context of survival data with censored observations, Strzalkowska-Kominiak and Cao

(2013) investigated maximum likelihood alternatives based on a nonparametric estimation of

the conditional distribution and they showed that the existing methods for censored data could

be improved.

Non-parametric regression is more general than the single-index model specified in (1). It

emanates from a more general specification Y = m (X) + ǫ, where the aim is to estimate the

regression curve m (x) = E (Y |X = x) (see Härdle, 1990). However in practice, nonparametric

regression presents two important difficulties. First, estimation becomes considerably difficult

as the number of covariates increases (curse of dimensionality). The second difficulty is that

the interpretation of the effects of explanatory variables cannot be carried out directly because

it is necessary to plot the different relations to explore these effects. Another alternative to the

single-index model is the generalised additive model (see Hastie and Tibshiran, 1990); however,

it shares the same difficulties already described for nonparametric regression.

Here, a new maximum likelihood estimator of θ in (1) is proposed inspired on Strzalkowska-

Kominiak and Cao (2013) who worked with censored data. We propose to use two different

smoothing parameters; one associated with the distribution of Y and another one associated

with the distribution of index θ′0X. These two parameters are needed to estimate the conditional

distribution. Consistency properties for the estimators are obtained.
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A simulation study is carried out where the finite sample properties of our proposal are

compared with several alternative methods for different distributions with heterogeneity in the

location and in the scale parameters. We also carry out basic inference about the estimators.

In addition, we evaluate how the results are affected when covariates are correlated and binary

variables are included.

Note that Hall and Yao (2005) or Newey and Stoker (1993) consider continuous covariates.

Not many papers deal with discrete covariates in single-index models. Horowitz and Härdle

(1996) focused on analysing a direct estimator for the effect of the discrete covariates. Methods

such as those proposed by Härdle et al. (1993), Hristache et al. (2001) and Delecroix et al.

(2003) do not consider including categorical variables, but they allow incorporating dummy

(binary) variables.

We present a real data application where we analyse the cost of claims in a motor insurance

data set. This dependent variable is right-skewed. We show the interpretability of the model

results.

The rest of the paper is organized as follows. Section 2 describes the proposed estimator.

The simulation study is presented in Section 3. Section 4 includes the application to the motor

insurance data. Finally, Section 5 summarises the conclusions. The proofs of the main results

are collected in Appendix A.

2 The estimator

Let Y be the response random variable that depends on a vector of covariates X = (X1, ..., Xd)
′

and f(•|x) be the density function of Y given X = x, where x = (x1, ..., xd) is a fixed vector.

Moreover, let

θ0 = (θ0,1, ..., θ0,d)
′, where d ≥ 2,

be the parameter vector to be estimated with the property:

f(y|x) = fθ0(y|θ′0x),
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where fθ0(•|θ′0x) is the conditional density of Y given θ′0X = θ′0x. Furthermore, let F (y|x) and

Fθ0(y|θ′0x) be the conditional distribution functions, given X = x and θ′0X = θ′0x, respectively.

As a consequence

Fθ0(y|θ′0x) = F (y|x). (2)

For any θ0 ∈ R fulfilling (2) and any nonzero real number λ, then vector λθ0 also fulfills (2).

Consequently, infinitely multiple choices exist for the single-index parameters. The usual way to

solve this identification problem is to introduce some scale constraint, for example ||θ0|| = 1 or

θ0,1 = 1. In practice, this implies that the sign of the effects of the covariates on the dependent

variable are not identified.

For a given θ = θ0, using the conditional distribution function we can obtain the p-th

conditional quantile: Qθ(p|θ′x) = F−1
θ (p|θ′x), i.e. Fθ(yp|θ′x) = p where p ∈ (0, 1). As it

happens for any generalized linear model, comparing marginal effects is equivalent to comparing

parameters, i.e. for two covariates Xk and Xk′ , with k 6= k′, we obtain:

∂Qθ(p|θ
′
x)

∂xk

∂Qθ(p|θ′x)
∂xk′

=
θk
θk′
,

where:

∂Qθ(p|θ′x)
∂xk

= −
∂Fθ(Qθ(p|θ

′
x)|t)

∂t

∣∣∣
t=θ′x

· θk
fθ(Qθ(p|θ′x)|θ′x)

.

For estimating the marginal effects we will use kernel estimators of fθ(y|θ′x), Fθ(y|θ′x) and

their derivatives, as shown below.

Let (Yi, Xi) i = 1, ..., n be a random sample of the dependent variable and the covariates,

where Xi = (Xi1, ..., Xid). Let K be a nonnegative kernel and h1, h2 two positive bandwidths.

The kernel conditional density estimator is (see Bashtannyk and Hyndman, 2001)

f̂θ(y|t) = f̂θ,h1,h2(y|t) =
r̂(t, y)

ŝ(t)
, (3)

where

r̂(t, y) = r̂h1,h2(t, y) =
1

nh1h2

n∑

i=1

K

(
t− θ′Xi

h1

)
K

(
y − Yi
h2

)
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and

ŝ(t) = ŝh1(t) =
1

nh1

n∑

i=1

K

(
t− θ′Xi

h1

)
.

It is well known that the choice of the kernel function, K, is not so relevant, but the selection

of the smoothing parameters, h1 and h2, has a big impact in the quality of estimator (3). To

find a practical solution for the choice of h1 and h2 we introduce these two parameters in the

maximization procedure of the nonparametric estimated likelihood.

The kernel estimator of the conditional distribution function is (see Hall et al., 1999):

F̂θ(y|t) =
R̂(t, y)

ŝ(t)
,

where

R̂(t, y) = R̂h1,h2(t, y) =
1

nh1

n∑

i=1

K

(
t− θ′Xi

h1

)
K

(
y − Yi
h2

)

and K its the kernel distribution function.

The kernel estimator of marginal effects of the index on the conditional distribution function

is:

∂F̂θ(y|t = θ′x)

∂t
=

[
R̂′

h1,h2
(θ′x, y)

ŝh1(θ
′x)

− F̂θ(y|θ′x)
ŝ′h1

(θ′x)

ŝh1(θ
′x)

]
,

where

R̂′
h1,h2

(t, y) =
1

nh21h2

n∑

i=1

K ′

(
t− θ′Xi

h1

)
K

(
y − Yi
h2

)

and

ŝ′h1
(t) =

1

nh21

n∑

i=1

K ′

(
t− θ′Xi

h1

)
,

where K ′ is the first derivative of the kernel.
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2.1 Semiparametric conditional likelihood

If we know Fθ except for the value of the index vector θ (a very unrealistic assumption), we

could define the following theoretical conditional likelihood function:

L̃n(θ) =
n∏

i=1

fθ(Yi|θ′Xi)).

Maximizing this function is equivalent to maximizing its logarithm:

l̃n(θ) =
1

n
log

(
L̃n(θ)

)
=

1

n

n∑

i=1

log fθ(Yi|θ′Xi). (4)

An ideal “estimator” would be the one that maximizes the theoretical log-likelihood

θ̃n = argmax
θ
l̃n(θ).

2.2 Maximum conditional likelihood estimation

In practice, fθ (or Fθ) is not known. So we need to estimated it and plug it into (4). In addition

we need to modify the estimated likelihood with a leaving-one-out procedure, in order not to

pick artificially small bandwidths.

Let f̂−i
θ (Yi|θ′Xi) be the estimator defined in (3), where the sum runs over j 6= i. Set

f̂−i
θ (Yi|θ′Xi) =

r̂−i(θ′Xi, Yi)

ŝ−i(θ′Xi)
(5)

where

r̂−i(θ′Xi, Yi) =
1

h1h2

n∑

j=1,j 6=i

K

(
θ′Xi − θ′Xj

h1

)
K

(
Yi − Yj
h2

)
(6)

and

ŝ−i(θ′Xi) =
1

h1

n∑

j=1,j 6=i

K

(
θ′Xi − θ′Xj

h1

)

and define the leaving-one-out estimated conditional likelihood:

l̂n(θ) =
1

n

n∑

i=1

log f̂−i
θ (Yi|θ′Xi). (7)
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The final maximum conditional likelihood estimator is defined as

θ̂n = argmax
θ
l̂n(θ). (8)

In practice, we will maximize the likelihood function defined in (8) with respect to θ and to

the two smoothing parameters h1 and h2.

2.3 Main results

In this section we will study the properties of θ̂n. Let us define the score function as the

expected log-likelihood:

l(θ) = E(l̃n(θ)). (9)

We start by proving that the true parameter vector, θ0, can be characterized as the maximizer

of the score function. Existence of that function is the only condition needed:

A1: E(log fθ(Yi|θ′Xi)) <∞ for any θ

Theorem 1. The true single-index parameter, θ0 , is the maximizer of the score function, i.e.,

θ0 = argmax
θ
l(θ) (10)

To establish the main results for the estimator, we need to assume some further conditions:

A2: E(X|θ′0X, Y ) = E(X|θ′0X)

A3: E(XX t) <∞ componentwise.

The two bandwidths h1, h2 should fulfill the following conditions

A4:
√
n4h41 → 0,

√
nh22 → 0, nh61 → ∞ and h1, h2 → 0 and n→ ∞.

Finally, let l[1](θ0) = ∇θl(θ)|θ=θ0 denote the gradient of l(θ) over θ evaluated in θ0. Further,

let l[2](θ) denote the Hessian matrix of l(θ). The following regularity conditions are also assumed
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A5: The derivatives ∂k

∂ku
∂l

∂lv
fθ0(u, v),

dk

dku
fθ′0X(u) and

dk

dku
E(X|θ′0X = u) exists for k = 1, 2, 3 and

l = 1, 2.

A6: The function h(x, y) = ∂
∂θk
fθ(θ

′
1x, y)θ=θ0 is continuous and ∂2

∂2θk
fθ(θ

′
0x, y)θ=θ0 exists.

A7: The Hessian matrix l[2](θ∗) is positive definite for θ∗ belonging to a neighborhood of θ0

Now we can state the first result for the proposed estimator.

Lemma 1. Under A1, A4 and A6 we have

θ̂n − θ0 = −
[
l̂[2]n (θ̂∗n)

]−1

(l̂[1]n (θ0)− l[1](θ0)),

where θ̂∗n is between θ̂n and θ0.

Theorem 2. Under A1-A7, we have

θ̂n → θ0 in probability.

Theorem 3. Let us assume conditions A1-A7. Then, we have

√
n(θ̂n − θ0) → N (0,Σ),

where

Σ = Σ2Σ1Σ
t
2,

Σ2 =
[
l[2](θ0)

]−1

and

Σ1 = E

[
∇θ log(fθ(Y |θ′X))θ=θ0)(∇θ log(fθ(Y |θ′X))θ=θ0)

t

]

=

∫
(∇θ log(fθ(y|θ′x))θ=θ0)(∇θ log(fθ(y|θ′x))θ=θ0)

tf(x, y)dxdz.

All the proofs can be found in the Appendix.
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3 Simulation Study

Here, we summarise the results of our simulation study. The aim is to evaluate the finite sample

properties of our estimator assuming, on the one hand, different shapes of the distribution of

the dependent variable and, on the other, different vectors of explanatory variables. We show

two types of results: those related to the properties of parameter estimator, θ̂, and those related

to basic inference about the value of these parameters.

3.1 Properties of the estimated parameters in the linear index

We compare the variance, the bias and the Mean Square Error (MSE) of θ̂, using our flexible

maximum conditional likelihood estimator (hereinafter FMCL) with two alternatives. The first

is based on fitting the single index model to individual conditional expected values as proposed

by Härdle et al. (1993) (hereinafter HHI). The second alternative is based on Delecroix et al.

(2003) (hereinafter DHH), where we use as initial parameters those obtained with the HHI

method which is
√
n-consistent. It will be shown that the proposed FMCL estimator is the

best when the conditional distribution is right-skewed and also when the tail of the conditional

distribution is heavy.

We generate 500 samples of size n = 100, 500 and 2, 000 and calculate the bias, the standard

deviation (STD) and the mean squared error (MSE) of the estimators.

The conditional distributions are shown in Table 1. We analyse six different conditional dis-

tributions for the dependent variable Y , two based on symmetric distributions (zero skewness)

and four based on right-skewed distributions.

For our two choices of symmetric distributions the logistic distribution has more kurtosis

and heavier tails than the normal distribution. If we compare our selection of right skewed

distributions we find that the Champernowne has a heavier tail (tail type Fréchet) than the
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Table 1: Conditional distributions for dependent variable as a function of the linear index x′θ

for the simulation study.
Skewness Distribution Parameters Density

normal (µ = θ′x, σ = |θ′x|) 1√
2π|θ′x|2

exp
(
− (y−θ′x)2

2|θ′x|2

)

Zero

logistic (µ = θ′x, σ = |θ′x|) 1
|θ′x|

exp
(

(y−θ′x)

|θ′x|

)

1+exp
(

(y−θ′x)

|θ′x|

)

lognormal (µ = θ′x, σ = |θ′x|) 1

y
√

2π|θ′x|2
exp

(
− (ln(y)−θ′x)2

2|θ′x|2

)

Weibull (α = 1, σ = |θ′x|) 1
|θ′x|

exp
(
− y

|θ′x|

)

Positive

(α = 1,M = |θ′x|) |θ′x|

(y+|θ′x|)2

Champernowne

(α = 2,M = |θ′x|) 2|θ′x|2y

(y2+|θ′x|2)2

lognormal and the Weibull (tail type Gumbel) (see Buch-Larsen et al., 2005, for a full description

of the Champernowne distribution).

In our simulation study, we use different vectors of covariates X that we identify as vectors

V1, V2, V3 and V4; for the first three θ′ = (1, 1.3, 0.5) and for the fourth θ′ = (1, 1.3, 0.5, 0.8).

The values in vector V1 are generated from three uncorrelated standard normal distributions.

V2 and V3 are trivariate normal distributions with correlated marginals. For V2 the components

are three standard normal distributions whose covariances are cov(Xk, Xk′) = 0.3 for k 6= k′ and

k, k′ = 1, 2, 3. The same holds for V3 but with covariances cov(X1, X2) = cov(X2, X3) = 0.7

and cov(X1, X3) = 0.5. The vector V4 consist of considering V1 and them a binary variable

whose values are generated from a Bernoulli distribution with probability 0.4, independent of

the three components of V1, i.e. (X1, X2, X3).

We analyse the finite sample properties of θ̂ obtained with: FMCL, HHI and DHH. We first

consider symmetric conditional distributions. In Tables 2, 3 and 4 the results of the standard

deviation, the bias and the square root of the MSE values are shown, respectively, for symmetric
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conditional distribution. Here we also observe the effect on the finite sample properties of the

collinearity between the explanatory variables (vectors V2 and V3). Furthermore, we use the

vector V4 to explore the methods when including a binary variable in the model.

For the analysed symmetric conditional distributions and all covariate vectors we observe

that when the sample size is n = 100, the variance of FMCL is similar or a bit greater than

the variance obtained for HHI. However, when the sample size increases, the variance of FMCL

decreases more quickly, turning to be much lower than that obtained for HHI. The bias of FMCL

also decreases when the sample size increases slightly faster than HHI. The DHH estimator is

bad when the sample size is small, when there is collinearity between covariates and for the

logistic distribution.

Focusing on the results for MSE in Table 4, the values obtained when using the FMCL are

much lower than those obtained for the alternative methods, except for some normal distribution

cases when n = 100, where HHI seems to reach slightly smaller values for the MSE.

Concerning the effect of collinearity, when the covariances increase the MSE increases and

it is observed that this increment is not as evident in the bias compared to the variance. The

MSE associated with the binary variable is the lowest in all cases for FMCL.

Next we will analyse the finite sample properties of the methods when the distribution of

Y conditional on X = x is right-skewed. Here we only show the results using as explanatory

variables the vectors V1 and V4 (the effect of collinearity is the same as that for symmetric

cases). Furthermore, for the analysed asymmetric conditional distributions in Table 1, no

estimator provides good results for n = 100.

In Table 5 the STD and the bias obtained when the conditional distribution has a Gumbel-

type tail are shown. For the lognormal conditional distribution DHH provides worse results

than FMCL and HHI. Comparing, FMCL and HHI we observe that the former has lower STD

12



Table 2: Standard deviations (STD) of the estimators θ̂ using alternative methods (θ = 1 is
fixed) for symmetric conditional distributions.

Normal Logistic
FMCL HHI DHH FMCL HHI DHH

V1 θ2 0.3242 0.2910 7.2305 0.4634 0.4508 6.2274
θ3 0.2627 0.2952 5.7021 0.3614 0.3538 4.8824

V2 θ2 0.4379 0.3039 74.6637 0.5662 0.5543 12.7825
θ3 0.2774 0.2719 64.2189 0.4363 0.4903 15.1101

n = 100 V3 θ2 1.1217 0.3200 13.4229 0.6496 0.8206 25.6798
θ3 0.4170 0.3835 8.3841 0.5336 0.6844 21.1687

V4 θ2 0.3076 0.3662 697.9336 0.4337 0.4643 27.6909
θ3 0.2066 0.2363 28.9431 0.3456 0.3669 24.1494
θ4 0.3544 0.4020 567.1738 0.6716 0.7047 43.0292

V1 θ2 0.0695 0.2055 0.5848 0.0986 0.2375 32.7258
θ3 0.0478 0.2432 0.7261 0.0719 0.2431 25.0928

V2 θ2 0.0979 0.2424 7.8073 0.1465 0.2849 76.6513
θ3 0.0694 0.2333 14.5248 0.0988 0.3071 87.8451

n = 500 V3 θ2 0.1860 0.1865 19.6869 0.2801 0.4045 62.4181
θ3 0.0974 0.2989 56.3495 0.1437 0.4042 62.5956

V4 θ2 0.0744 0.1858 17.5909 0.1115 0.3411 170.1250
θ3 0.0515 0.2194 10.3142 0.0745 0.3320 290.1911
θ4 0.0896 0.2225 22.6857 0.1310 0.3447 454.0797

V1 θ2 0.0251 0.1977 0.4820 0.0403 0.1774 5.4796
θ3 0.0176 0.2414 0.6688 0.0266 0.2498 2.3952

V2 θ2 0.0367 0.2936 2.5533 0.0579 0.3148 5.9826
θ3 0.0257 0.3174 14.0713 0.0395 0.2868 4.2200

n = 2, 000 V3 θ2 0.0696 0.1582 13.4307 0.1092 0.2837 6.1363
θ3 0.0368 0.2442 34.3213 0.0565 0.2639 2.7008

V4 θ2 0.0292 0.2381 7.1382 0.0418 0.2226 14.7782
θ3 0.0191 0.3054 10.1807 0.0265 0.2983 10.6173
θ4 0.0358 0.0872 12.5739 0.0502 0.1601 27.9345
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Table 3: Bias of the estimators θ̂ using alternative methods (θ = 1 is fixed) for symmetric
conditional distributions.

Normal Logistic
FMCL HHI DHH FMCL HHI DHH

V1 θ2 -0.1268 -0.0239 -0.1105 -0.1002 0.0011 -0.6112
θ3 -0.0220 0.0083 -0.3851 0.0331 -0.0022 -0.0793

V2 θ2 0.0721 -0.0226 -3.6897 -0.1391 0.0089 0.1931
θ3 0.0295 -0.0037 -3.2652 0.0176 0.0052 0.3888

n = 100 V3 θ2 0.2301 -0.0293 0.1905 -0.0332 0.0139 -0.6809
θ3 0.0489 -0.0024 -0.7695 0.2839 -0.0217 -1.3305

V4 θ2 0.0427 0.0233 -28.1036 -0.1012 0.0391 -1.3741
θ3 0.0010 -0.0163 1.2993 0.0389 -0.0048 -1.7165
θ4 0.0449 -0.0007 22.5352 0.1041 0.0082 -0.0628

V1 θ2 0.0040 0.0025 -0.1127 0.0012 -0.0101 -1.3913
θ3 0.0019 0.0112 -0.0493 -0.0001 0.0113 0.1403

V2 θ2 0.0058 -0.0086 -0.0503 -0.0003 0.0017 -2.1255
θ3 0.0028 0.0049 0.0434 -0.0034 0.0089 -5.1738

n = 500 V3 θ2 0.0158 -0.0020 -1.3405 0.0077 -0.0118 -15.7523
θ3 0.0084 0.0049 1.0568 -0.0073 0.0134 -0.3868

V4 θ2 -0.0013 -0.0084 0.7100 0.0060 -0.0193 -5.6416
θ3 -0.0003 0.0066 -0.5551 -0.0011 -0.0176 -6.9701
θ4 0.0051 0.0018 1.9332 0.0062 0.0120 -18.0176

V1 θ2 -0.0002 0.0075 -0.0157 0.0005 0.0026 -0.4411
θ3 0.0011 0.0084 0.0292 -0.0014 0.0017 0.0675

V2 θ2 0.0004 -0.0003 0.3067 0.0026 0.0089 -0.5307
θ3 0.0010 0.0084 -1.3214 -0.0004 -0.0208 -0.4258

n = 2, 000 V3 θ2 0.0030 -0.0083 -0.3096 0.0088 0.0038 -0.8406
θ3 0.0009 -0.0023 -0.0412 0.0007 -0.0016 -0.2357

V4 θ2 0.0034 -0.0167 -0.3118 0.0001 -0.0041 -0.8734
θ3 -0.0001 0.0066 -0.8367 -0.0003 -0.0150 0.2058
θ4 0.0028 0.0054 0.7564 -0.0004 -0.0124 -0.8951
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Table 4: Square root of MSE the estimators θ̂ using alternative methods (θ = 1 is fixed) for
symmetric conditional distributions.

Normal Logistic
FMCL HHI DHH FMCL HHI DHH

V1 θ2 0.3482 0.2920 7.2313 0.4741 0.4508 6.2573
θ3 0.2636 0.2954 5.7151 0.3629 0.3538 4.8830

V2 θ2 0.4438 0.3047 74.7548 0.5830 0.5544 12.7840
θ3 0.2789 0.2719 64.3018 0.4366 0.4903 15.1151

n = 100 V3 θ2 1.1450 0.3214 13.4243 0.6505 0.8208 25.6888
θ3 0.4199 0.3835 8.4193 0.6044 0.6847 21.2105

V4 θ2 0.3106 0.3669 698.4992 0.4454 0.4659 27.7250
θ3 0.2066 0.2369 28.9722 0.3478 0.3670 24.2103
θ4 0.3572 0.4020 567.6214 0.6796 0.7047 43.0292

V1 θ2 0.0696 0.2055 0.5956 0.0986 0.2378 32.7554
θ3 0.0478 0.2434 0.7277 0.0719 0.2433 25.0932

V2 θ2 0.0981 0.2426 7.8075 0.1465 0.2849 76.6807
θ3 0.0695 0.2333 14.5249 0.0988 0.3072 87.9973

n = 500 V3 θ2 0.1867 0.1865 19.7325 0.2802 0.4046 64.3752
θ3 0.0977 0.2990 56.3594 0.1439 0.4044 62.5968

V4 θ2 0.0744 0.1860 17.6052 0.1117 0.3416 170.2186
θ3 0.0515 0.2195 10.3292 0.0745 0.3324 290.2748
θ4 0.0897 0.2225 22.7679 0.1312 0.3449 454.4370

V1 θ2 0.0251 0.1978 0.4822 0.0403 0.1774 5.4973
θ3 0.0176 0.2416 0.6694 0.0266 0.2498 2.3962

V2 θ2 0.0367 0.2936 2.5717 0.0579 0.3149 6.0061
θ3 0.0257 0.3175 14.1332 0.0395 0.2875 4.2415

n = 2, 000 V3 θ2 0.0697 0.1584 13.4343 0.1095 0.2838 6.1936
θ3 0.0368 0.2442 34.3213 0.0565 0.2639 2.7111

V4 θ2 0.0294 0.2387 7.1450 0.0418 0.2227 14.8039
θ3 0.0191 0.3055 10.2151 0.0265 0.2987 10.6193
θ4 0.0359 0.0874 12.5966 0.0502 0.1606 27.9488
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Table 5: Standard deviation (STD) and bias of the estimators θ̂ using alternative methods
(θ1 = 1 is fixed) for lognormal and Weibull conditional distributions.

STD Lognormal Weibull
FMCL HHI DHH FMCL HHI DHH

V1 θ2 0.1956 0.2591 7.6728 0.8099 0.2942 12.7693
n = 500 θ3 0.1222 0.2155 3.3440 0.9705 0.2643 6.4902

V4 θ2 0.1709 0.1858 5.1329 0.9746 0.1418 20.8384
θ3 0.0747 0.2111 9.0944 0.9984 0.1062 21.9198
θ4 0.1337 0.2225 2.8747 1.7650 0.2049 13.9250

V1 θ2 0.0687 0.0716 1.1335 0.2465 0.1817 14.1635
n = 2, 000 θ3 0.0467 0.0962 0.8517 0.1190 0.2428 12.4832

V4 θ2 0.0419 0.0865 2.5601 0.0697 0.3372 2.9441
θ3 0.0264 0.1651 1.1747 0.0437 0.3361 1.7186
θ4 0.0498 0.0872 3.1880 0.9616 0.3030 5.8038

Bias Lognormal Weibull
FMCL HHI DHH FMCL HHI DHH

V1 θ2 0.0156 0.0090 -0.2123 -0.2700 -1.2969 -1.7129
n = 500 θ3 0.0055 0.0188 0.0820 -0.1726 -0.4861 -0.8504

V4 θ2 0.0000 -0.0084 0.1127 -0.2437 -1.1123 -0.2708
θ3 -0.0027 0.0107 0.6435 0.2491 -0.4198 -1.4711
θ4 0.0033 0.0018 -0.0465 0.2731 -0.6416 0.0178

V1 θ2 0.0004 -0.0012 -0.1024 -0.0101 -1.3055 -1.7478
n = 2, 000 θ3 0.0034 0.0024 -0.0550 0.0033 -0.5048 0.1270

V4 θ2 0.0001 -0.0023 0.0009 -0.0008 -1.1559 -1.0500
θ3 -0.0003 0.0061 0.0204 0.0018 -0.3913 -0.2640
θ4 -0.0003 0.0054 -0.1637 -0.1142 -0.6191 -0.0450

than the latter. For the bias, when the sample size n = 500 the results are a bit better for HHI

but when the sample size increases FMCL improves HHI, especially when we add the binary

variable.

For the conditional Weibull distribution the worse results are obtained in the DHH col-

umn. With HHI we obtain lower values for STD, especially for smaller sample size n = 500;

interestingly the bias of FMCL is considerably lower that for the other two methods.

The simulation results for conditional distribution with Fréchet-type tail are shown in Table

6. We know that for the two Champernowne distribution the lower the shape parameter α, the

heavier the tail. The results for STD and bias clearly indicate that FMCL improves alternative
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Table 6: Standard deviation (STD) and bias of the estimators θ̂ using alternative methods
(θ1 = 1 is fixed) for Champernowne (α = 1, 2) conditional distributions.

STD Champernowne (α = 1) Champernowne (α = 2)
FMCL HHI DHH FMCL HHI DHH

V1 θ2 1.8842 96.6511 294.8457 0.3499 0.4030 7.2713
n = 500 θ3 1.9889 39.9251 238.7030 0.1826 0.3254 4.3142

V4 θ2 5.3458 162.4999 167.2001 0.1877 0.6692 5.9984
θ3 4.0516 234.2215 241.5600 0.1176 0.5351 6.0283
θ4 8.5843 470.0219 474.0571 0.4181 0.6995 11.5125

V1 θ2 0.4903 74.2523 94.2425 0.0687 0.3990 3.1820
n = 2, 000 θ3 0.4143 31.0740 60.8118 0.0799 0.2741 6.3841

V4 θ2 0.8589 67.3781 82.8323 0.0346 0.1006 287.6499
θ3 0.5064 65.3621 71.4904 0.0170 0.1523 1266.5615
θ4 1.6937 125.9128 173.9493 0.0263 0.0741 2760.4214

Bias Champernowne (α = 1) Champernowne (α = 2)
FMCL HHI DHH FMCL HHI DHH

V1 θ2 -0.4987 1.4114 12.0505 -0.0237 -1.3107 -1.2663
n = 500 θ3 -0.2000 1.1112 -2.8499 -0.0045 -0.5067 -0.5541

V4 θ2 -0.9150 7.9580 8.4165 0.0116 -0.9695 -1.0882
θ3 -0.4476 9.8620 7.7151 0.0049 -0.4003 -0.1822
θ4 -0.4704 15.5404 15.1612 -0.0009 -0.5288 -1.2420

V1 θ2 -0.0490 -5.7725 -8.4375 -0.0046 -1.2908 -1.1824
n = 2, 000 θ3 -0.0176 -2.1612 0.9751 0.0094 -0.4993 -0.2626

V4 θ2 -0.1376 -0.6295 1.4127 0.0012 -1.1702 -14.1593
θ3 0.0022 -1.9380 -3.1952 0.0003 -0.4556 -57.0692
θ4 -0.1026 5.1837 0.3131 0.0007 -0.7016 -123.9391

methods, especially when the tail of the conditional distribution is the heaviest.

The results for the square root of the MSE that are shown in Table 7 corroborate that our

proposed FMCL method improves HHI and DHH when the conditional distribution is right-

skewed and this improvement is greater as the tail of the conditional distribution is heavier.

3.2 Basic inference power

Power analysis is fundamental to study whether the effect of each covariate is significantly

different from zero. The null hypothesis for each parameter is H0 : θk = 0, k = 1, ..., d and

as alternative hypothesis we assume that the sign of the parameter is known, i.e. H1 : θk >
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Table 7: Square root of MSE of the estimators θ̂ using alternative methods (θ1 = 1 is fixed) for
lognormal, Weibull and Champernowne (α = 1, 2) conditional distributions.

Lognormal Weibull
FMCL HHI DHH FMCL HHI DHH

V1 θ2 0.1962 0.2593 7.6758 0.8537 1.3298 12.8836
n=500 θ3 0.1224 0.2163 3.3450 0.9857 0.5533 6.5457

V4 θ2 0.1709 0.1860 5.1341 1.0046 1.1213 20.8402
θ3 0.0747 0.2114 9.1172 1.0290 0.4330 21.9691
θ4 0.1337 0.2225 2.8751 1.7860 0.6735 13.9250

V1 θ2 0.0687 0.0716 1.1381 0.2467 1.3181 14.2709
n=2,000 θ3 0.0468 0.0963 0.8535 0.1190 0.5602 12.4839

V4 θ2 0.0419 0.0865 2.5601 0.0697 1.2041 3.1257
θ3 0.0264 0.1652 1.1749 0.0438 0.5159 1.7388
θ4 0.0498 0.0874 3.1922 0.9684 0.6893 5.8040

Champernowne (α = 1) Champernowne (α = 2)
FMCL HHI DHH FMCL HHI DHH

V1 θ2 1.9491 96.6614 295.0919 0.3508 1.3713 7.3807
n=500 θ3 1.9990 39.9406 238.7200 0.1827 0.6022 4.3497

V4 θ2 5.4235 162.6946 167.4118 0.1881 1.1781 6.0963
θ3 4.0763 234.4290 241.6832 0.1177 0.6682 6.0310
θ4 8.5971 470.2787 474.2994 0.4181 0.8769 11.5793

V1 θ2 0.4927 74.4764 94.6194 0.0689 1.3511 3.3946
n=2,000 θ3 0.4147 31.1490 60.8196 0.0805 0.5695 6.3895

V4 θ2 0.8699 67.3810 82.8443 0.0346 1.1745 287.9982
θ3 0.5064 65.3908 71.5618 0.0170 0.4804 1267.8466
θ4 1.6968 126.0195 173.9495 0.0263 0.7055 2763.2023
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Table 8: Power of the statistic for symmetric distributions.

H0 Normal Logistic
n=100 n=500 n=2,000 n=100 n=500 n=2,000

V1 θ2 = 0 0.998 1.000 1.000 0.852 1.000 1.000
θ3 = 0 0.992 1.000 1.000 0.740 1.000 1.000

V2 θ2 = 0 0.996 1.000 1.000 0.760 1.000 1.000
θ3 = 0 0.980 1.000 1.000 0.644 1.000 1.000

V3 θ2 = 0 0.994 1.000 1.000 0.638 1.000 1.000
θ3 = 0 0.914 1.000 1.000 0.610 1.000 1.000

V4 θ2 = 0 0.978 1.000 1.000 0.836 1.000 1.000
θ3 = 0 0.978 1.000 1.000 0.704 1.000 1.000
θ4 = 0 0.970 1.000 1.000 0.672 1.000 1.000

V1 θ2 = θ3 0.994 1.000 1.000 0.726 1.000 1.000
V2 θ2 = θ3 0.984 1.000 1.000 0.628 1.000 1.000
V3 θ2 = θ3 0.890 1.000 1.000 0.502 0.996 1.000
V4 θ2 = θ3 0.754 1.000 1.000 0.658 1.000 1.000

0, k = 1, ..., d. The statistic for the test is Z =
θ̂j

se(θ̂j)
, where se indicates the estimated standard

error. The test statistic Z asymptotically follows a N(0, 1) distribution. To obtain the power

of the test we calculate the proportion of times that we reject the null hypothesis among the

500 samples obtained from each analysed conditional distribution and sample size.

Alternatively, we also analyse the power of the test where the null hypothesis is H0 : θ2 = θ3

and the alternative hypothesis H1 : θ2 > θ3. Again, we know that the alternative hypothesis

is true. The statistic for this test is Z = θ̂2−θ̂3
se(θ̂2−θ̂3)

.

In Tables 8 and 9 the powers of the two proposed tests are shown for symmetric and skewed

distributions, respectively. Both tests are at 95% confidence level. Focusing on symmetric

distributions, we observe that with n = 100 the power is the poorest especially for a conditional

logistic distribution; however, for n = 500 the power reaches 1 in almost all cases.

The results for skew distributions in Table 9 indicate that when n = 500 the power decreases

considerably for Weibull and Champernowne distributions with α = 1.
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Table 9: Power of the statistic for skew distributions.

Champernowne
H0 Lognormal Weibull α = 1 α = 2

V1 θ2 = 0 1.000 0.864 0.722 0.984
θ3 = 0 1.000 0.876 0.702 0.992

V4 θ2 = 0 1.000 0.856 0.636 1.000
n = 500 θ3 = 0 1.000 0.828 0.622 1.000

θ4 = 0 1.000 0.770 0.584 0.996
V1 θ2 = θ3 1.000 0.882 0.730 0.988
V4 θ2 = θ3 1.000 0.662 0.598 0.998

V1 θ2 = 0 1.000 0.996 0.970 0.998
θ3 = 0 1.000 0.998 0.972 1.000

V4 θ2 = 0 1.000 1.000 0.908 1.000
n = 2, 000 θ3 = 0 1.000 1.000 0.902 1.000

θ4 = 0 1.000 0.984 0.862 1.000
V1 θ2 = θ3 1.000 0.996 0.976 1.000
V4 θ2 = θ3 1.000 1.000 0.880 1.000

4 Application to the analysis of automobile accident costs

This illustration is inspired by a current problem in the analysis of data from insurance compa-

nies. The cost of an automobile accident is difficult to predict because it is linked to incidental

circumstances that occur in conjunction with the collision. There are many examples of such

conditions that are generally out of the control of insurers. Indeed, many circumstances cannot

be predicted in advance, but may increase losses dramatically. For example, the presence of a

truck, speed excess, heavy traffic, bad quality of the road at the point of the accident or adverse

weather conditions. If an accident occurs when there are several passengers in the car, then

there may be more victims than if the car has only the driver and no additional passengers.

Consequently, the compensation cost for bodily injury is larger when more people sit on the

car than when no passengers are involved.

Traditionally, insurers have identified some covariates that indirectly capture the risk of a

large claim cost, such as the driving zone or the car type, but the predictive power of such

covariates is rather low. In the context of actuarial statistics, it is well known that it is simpler

to predict the number of accidents per year than the cost of those accidents.
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In order to estimate the expected costs for one specific insurance policy, insurers usually

predict the expected number of claims and multiply it by the average claim cost. This straight-

forward calculation is called the pure premium, which is smaller than the final price the customer

pays because all kinds of expenses have to added to this price, namely general expenses, margins

and solvency requirements, advertising, commissions and so on.

In an attempt to model the cost per accident in a simple way, insurers end up using the

average claim cost for their predictions, and they do not model the cost distribution conditional

on the information of the covariates. When modelling claim costs, generalised linear models are

not as good in as they are for the frequency of claims, so the analysis of costs is generally done

in a univariate framework and no covariate information is considered. Moreover, besides being

necessary to calculate the premium that should be charged to each policyholders per year,

cost distribution is also needed to estimate the heterogeneity of reserves that the insurance

company must hold in order to have enough resources to pay for the compensations of the

reported claims.

In this section, we analyse the cost per accident distribution conditional on the covariates

and use single-index models to explain the influence of risk factors on the statistical distribution

of the accident cost in a real case study. We show that single-index models provide a new tool

to identify the influence of some covariates that are known to the insurance company at the

beginning of the contract or during the coverage period. The proposed flexible maximum con-

ditional likelihood method is used for estimating the parameters associated with the covariates

and the smoothing parameters.

We analyse a data set from a Spanish insurance company that contains a sample of 974

policyholders with car insurance that have submitted at least one claim in the analysed period

of one year. The data were collected in 2011. These claims correspond to accidents with third

party liability.

Our aim is to analyse the conditional distribution of the annual cost per claim based on the
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Table 10: Descriptive statistics of the variables in the claim costs dataset.

Mean Std. Min. Q25 Median Q75 Max.

cost 1.657 4.579 0.018 0.418 0.817 1.874 130.870
Log(cost) -0.149 1.102 -4.031 -0.873 -0.202 0.628 4.874
age 26.875 3.160 20.060 24.465 26.667 29.495 34.067
agelic 6.340 2.843 1.859 4.305 5.743 7.977 14.754
agecar 8.752 4.133 1.944 5.615 7.775 11.358 20.468
parking 0.760 0.427 0.000 1.000 1.000 1.000 1.000
tkm 8.116 4.461 0.560 5.063 7.320 10.570 42.022
nightkm 7.538 6.305 0.000 2.979 5.884 10.380 42.830
urbankm 28.214 14.463 2.686 17.263 26.070 36.582 94.998
speedkm 6.886 6.774 0.000 2.109 4.698 9.041 48.002

Q25 and Q75 are the first and third quartiles.

characteristics of the insured. For each policyholder we have information about the following

covariates (labels between parenthesis): cost per claim in thousands of euros (cost), age in years

(age), age of driving licence in years (agelic), age of the car in years (agecar), A binary indicator

which equals 1 if car is parked in the garage at night or 0 otherwise (parking), annual kilometers

driven (tkm) in thousands, percentage of kilometers driven at night (nightkm), percentage

of kilometers on urban roads (urbankm) and percentage of kilometers above the speed limit

(speedkm). These data correspond to a sample of insured customers for whom the company

collected information on the driving behaviour with a telematics device installed in their vehicle.

Therefore, the information on total distance driven during one year, the percentage of distance

in urban versus non urban, the percentage of distance driven in nighttime hours compared to

daytime, and the percentage of distance driven above the speed limit, correspond to the so-

called “telematics covariates” that capture the driving style and patterns of the policy holder.

We do not include the gender variable in the model because the European regulation prohibits

discrimination between men and women in insurance premiums (see, Guillen et al., 2018, for

more information on the data).

In Table 10 we present descriptive statistics of the variable cost per claim in the original

scale, transformed into logarithm (Log(cost)), and information on the covariates.
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The index-models that we estimate in this section are fitted using the “Log(cost)” as depen-

dent variable. In Figure 1 we show the dispersion plots of the dependent variable “Log(cost)”

versus each covariate. We observe that is difficult to find a clear association pattern between

the claim cost and the covariates. The mean of the dependent variable “Log(cost)” seems to

remain constant for the different values of the covariates.
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Figure 1: Dispersion plots of the log-transformed cost per claim versus the covariates.

In Table 11 we show the results of the estimated parameters (θ̂) of the single-index models

obtained using different covariate vectors: all explanatory variables, only telematics variables

and only traditional rating factors, i.e. non-telematics covariates. We set “speedkm” as the

variable with the constrained coefficient θ1 = 1 and, for the model with non-telematics variables

we use “age”. This is convenient because the nature of the covariates makes interpretation

straightforward in this context. The reason to fix the effect of the speed variable is that

we believe that high speed levels result in higher risk of severe accidents, which in turn is

more costly than a minor accident. For each estimated parameter θ̂j, j = 2, ..., 8 we test its
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Table 11: Estimated parameters and their significance for the single index-model in the accident
cost data set.

Model
All variables Only telematics Only non-telematics

speedkm 1.000 1.000 –
age -0.021 – 1.000
agelic 0.005 – 0.115**
agecar -0.011 – -0.031**
parking -0.019 – -0.276**
tkm -0.017* -0.013** –
nightkm 0.130** 0.130** –
urbankm 0.051** 0.052** –

Significant at 5% level * and at 1% level **

individual significance. As it is defined at the bottom of Table 11, we use asterisks to indicate

if the estimated coefficient is significantly different from zero.

When looking at the results on Table 11 we observe that the effect of telematics variables

does not change if we compare the models with all variables and only telematics variables.

This indicates that in a single-index model for the cost per claim, what matters most is the

driving pattern, however, all the no-telematics variables have a significant effect when telematics

variables are excluded from the model.

As we show in Section 2, given that we assume θ1 = 1, even if the signs of the coefficients of

the explanatory variables are not identified, we can analyse the relation between these effects;

for example, on the one hand, in Table 11 we observe that “tkm” has an opposite effect to

“speedkm”, i.e. we interpret that excess speed can be compensated for by driving experience,

which means total distance driven. On the other hand, the coefficients of “nightkm” and

“urbankm” have the same sign as the coefficient of “speedkm”. So, if higher percentage of

excess speed implies higher value of the index, then the same happens when the night time

driving and/or the urban driving increase.

To analyse the results with more detail, we use different plots that are shown in the original

scale of the cost per accident rather than the logarithm. In Figures 2, 3 and 4 we plot the
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index versus the fitted mean with each model, the median and p-th quantiles with p = 0.90,

p = 0.95 and p = 0.99. The curve for the mean is estimated using the Nadaraya-Watson

estimator of the regression function between the dependent variable and the estimated linear

index. The median and the quantiles are estimated from the inverse of the estimated conditional

distribution function. The smoothing parameters are calculated specifically for each estimated

curve. The main result is that cost distribution conditional on the value of the index is not

constant. This is an evidence that there are some combinations of the covariates that lead to a

conditional distribution of the cost with longer tails than others. This feature is not captured

by the mean curve, which is flat, thus showing that the use of a single-index model prediction

can be helpful to insurance companies to set up wider margins corresponding to the values of

the predicted in the intervals where the conditional distribution has a remarkable heavy tail.

When comparing the plots of the models with all the variables (Figure 2) and with only

the traditional rating variables (Figure 4), we observe the benefits of including “telematics”’

regressors that measure the driving patterns. By doing so, the intervals of the index that

correspond to a conditional distribution that has longer tails are easily identified and, as a

consequence, in those cases the insurance company should expect a slight increase of the median

cost and a large increase of the upper quantiles. In the model with telematics information.

Special attention should be given to those policyholders for whom the index is slightly above 5

or between 15 and 20 (Figure 3).

In this dataset, there is one extreme observation for the response variable, which corresponds

to an accident claim that exceeded 130 thousand euros. The results without this extreme cost

are shown in the Appendix. In that case, for the model with all variables, “age” and “agecar”

are significantly different from zero in the model with all variables, but the rest of conclusions

are stable, which means that the method is quite robust under the presence of an outlier

observation in the dependent variable.

An additional interest of the results in this case study is that the single-index value provides
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a one-dimensional summary of the characteristics that discriminate the policyholders in terms

of the conditional cost distribution.
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Figure 2: Fitted values of the conditional mean and quantiles with all variables.
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Figure 3: Fitted values of the conditional mean and quantiles with telematics variables.
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Figure 4: Fitted values of the conditional mean and quantiles with non-telematics variables.

5 Conclusions

The continuous evolution of big-data confronts data analysts with the challenge of studying

phenomena much more complex to represent than in the past; for example, the existence

of extremes or the possibility of having heterogeneity not only in the mean of a statistical

distribution of interest, but also in its whole domain.

A limitation associated with the traditional approach in generalised linear modeling is the

fact that the linear predictor is linked to the mean, which in general is related to the location

parameter of a given distribution that is assumed to be true. As opposed to this principle, our

method provides a full specification of the conditional distribution, while preserving the nature

of the single-index abd flexibility.

In many contexts, heterogeneity might be associated with the shape of the distribution and

not so much with the location. This is precisely the example application shown in the case

study section. An index-model allows to analyse all the parts of the motor insurance claim cost
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distribution: namely, the mathematical expectation, the median, the quantiles, and so on.

We have developed an estimator for the single-index model based on maximising the es-

timated conditional likelihood. We have used this approach to estimate the conditional dis-

tribution and, in particular, its quantiles. This is fundamental in data analysis, given that in

some applications the focus on the mean has lost interest in front of other characteristics of the

distribution.

From the expression of the marginal effect of a covariate on a given quantile, we analyse

a way to interpret the estimated parameters of the index. Since this is not the aim of our

analysis, we have not done a full analysis of the marginal effect estimator, but we highlight its

importance.

Our main theoretical results prove the asymptotic properties of the estimator for vector

of parameters in the single-index model and provide an expression for its covariance matrix.

With a simulation study we prove the power of the inference using the kernel estimator of

the covariance matrix. These results are fundamental in situations where the analyst does not

have any prior knowledge that can identify the variables that actually cause changes in the

distribution of the dependent variable.

A simulation study shows how our method improves with respecto to the finite sample

properties of some known alternative methods, especially when the conditional distribution is

skewed and has a long right tail. This type of distribution is frequent in economic variables that

measure revenues and expenses. The proposed estimator improves considerably the analysed

alternatives, showing greater robustness in the presence of extreme values. However, for this

shape of the distribution, in small sample the results are still not good and, therefore, alternative

procedures for improving finite sample properties should be studied.

In the application, the observed characteristics of the insured drivers can be used to un-

derstand the distribution of the cost of claims. Second, if these models are implemented in

practice, they will allow insurers to combine the cost per claim distribution with the predicted
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expectation on the number of claims, which is currently the baseline for premium calculation

because it depends on covariates such as age, year of driving license, power of the vehicle, age

of the vehicle, and so on. Moreover, when driving behaviour information is included in the

model, such as distance driven or driving habits, our approach offers an opportunity to identify

the vales of the single-index that correspond to a long-tailed cost distribution, and therefore to

find situations where the probability of observing a large claim increases.
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Appendix A Proofs of Theorems 1 - 3. (PDF file)

Proof of Theorem 1.

Let us consider θ0 implicitely defined by (2) and fix some other θ. Then, using Jensen’s

inequality, (4) and (9),

l(θ)− l(θ0) = E(l̃n(θ0))− E(l̃n(θ)) = E

(
log

(
fθ(Y |θ′X)

fθ0(Y |θ′0X)

))

≤ log

(
E

(
fθ(Y |θ′X)

fθ0(Y |θ′0X)

))
= log

(∫ ∫
fθ(y|θ′x)
fθ0(y|θ′0x)

fθ0(y|θ′0x)fX(x)dxdy
)

= log

(∫ (∫
fθ(y|θ′x)dy

)
fX(x)dx

)
= log 1 = 0.

So l(θ) ≤ l(θ0) ∀θ , which completes the proof. ⊠

Proof of Lemma 1. Using (10) and (8) we have

l[1](θ0) = 0 and l̂[1]n (θ̂n) = 0.

Now a Taylor expansion gives

l[1](θ0) = 0 = l̂[1]n (θ̂n) = l̂[1]n (θ0) + l̂[2]n (θ̂∗n)(θ̂n − θ0),

where θ̂∗n is between θ̂n and θ0. This completes the proof. ⊠

The proof of Theorem 2 is postponed. Let us first state and prove an auxiliary lemma.

Lemma 2. Under the conditions in Theorem 3 we have

l̃[1]n (θ0)− l[1](θ0)
P→ 0

and √
n(l̃[1]n (θ0)− l[1](θ0)) → N (0,Σ1)

Proof. According to (4) and since l[1](θ0) = E(l̃
[1]
n (θ0)) = 0, we have

√
n(l̃[1]n (θ0)− l[1](θ0)) =

1√
n

n∑

i=1

[
f
[1]
θ (Yi|θ′Xi)θ=θ0

fθ0(Yi|θ′0Xi)

]
.

Then, l̃
[1]
n (θ)− l[1](θ) is a sum of i.i.d. random vectors and the Law of Large Numbers gives the

convergence to zero in probability. Now the Central Limit Theorem leads to

√
n(l̃[1]n (θ0)− l[1](θ0)) → N (0,Σ1)
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The matrix Σ1 is easily computed:

Σ1 = E

[(
f
[1]
θ (Y1|θ′X1)θ=θ0

fθ0(Y1|θ′0X1)

)(
f
[1]
θ (Y1|θ′X1)θ=θ0

fθ0(Y1|θ′X1)

)t]

=

∫
(∇θ log(fθ(z|θ′x))θ=θ0)(∇θ log(fθ(z|θ′x))θ=θ0)

tf(x, z)dxdz.

Observe that the last equation is a consequence of Lemma 4 below. ⊠

Proof of Theorem 3. In view of Lemma 1, the term

l̂[1]n (θ0)− l[1](θ0) = αn(θ0) + βn(θ0),

has to be studied, where

αn(θ0) = l̂[1]n (θ0)− l̃[1]n (θ0) (11)

βn(θ0) = l̃[1]n (θ0)− l[1](θ0).

To deal with βn(θ0), we use Lemma 2, to prove

√
nβn(θ0) → N (0,Σ1)

and

βn(θ0) → 0 in probability.

Concerning αn(θ), using (4), (7) and (5), we have

l̂n(θ0)− l̃n(θ0)

=
1

n

n∑

i=1

[
(log(r̂−i(θ′0Xi, Yi))− log(fθ0(θ

′
0Xi, Yi))) + (log(fθ′0X(θ

′
0Xi))− log(ŝ−i(θ′0Xi)))

]
,

which, in view of (11), implies

l̂[1]n (θ0)− l̃[1]n (θ0)

=
1

n

n∑

i=1

[(
r̂−i,[1](θ′0Xi, Yi)

r̂−i(θ′0Xi, Yi)
− f

[1]
θ0
(θ′0Xi, Yi)

fθ0(θ
′
0Xi, Yi)

)
+

(f [1]

θ′0X
(θ′0Xi)

fθ′0X(θ
′
0Xi)

− ŝ−i,[1](θ′0Xi)

ŝ−i(θ′0Xi)

)]
.

Now using
1

r̂−i
=

1

fθ0
+
fθ0 − r̂−i

fθ0 r̂
−i

,
1

ŝ−i
=

1

fθ′0X
+
fθ′0X − ŝ−i

fθ′0X ŝ
−i
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we obtain

l̂[1]n (θ0)− l̃[1]n (θ0) =
8∑

k=1

Akn + oP (n
−1/2), (12)

where

A1n =
1

n

n∑

i=1

r̂−i,[1](θ′0Xi, Yi)− f
[1]
θ0
(θ′0Xi, Yi)

fθ0(θ
′
0Xi, Yi)

A2n =
1

n

n∑

i=1

f
[1]
θ0
(θ′0Xi, Yi)

f 2
θ0
(θ′0Xi, Yi)

(fθ0(θ
′
0Xi, Yi)− r̂−i(θ′0Xi, Yi))

A3n =
1

n

n∑

i=1

f
[1]

θ′0X
(θ′0Xi)− ŝ−i,[1](θ′0Xi)

fθ′0X(θ
′
0Xi)

A4n =
1

n

n∑

i=1

f
[1]

θ′0X
(θ′0Xi)

f 2
θ′0X

(θ′0Xi)
(ŝ−i(θ′0Xi)− fθ′0X(θ

′
0Xi))

A5n =
1

n

n∑

i=1

(r̂−i,[1](θ′0Xi, Yi)− f
[1]
θ0
(θ′0Xi, Yi))(fθ0(θ

′
0Xi, Yi)− r̂−i(θ′0Xi, Yi))

f 2
θ0
(θ′0Xi, Yi)

A6n =
1

n

n∑

i=1

∇θ log(r̂
−i(θ′Xi, Yi))|θ=θ0

(fθ0(θ
′
0Xi, Yi)− r̂−i(θ′0Xi, Yi))

2

f 2
θ0
(θ′0Xi, Yi)

A7n =
1

n

n∑

i=1

(f
[1]

θ′0X
(θ′0Xi)− ŝ−i,[1](θ′0Xi))(ŝ

−i(θ′0Xi)− fθ′0X(θ
′
0Xi))

f 2
θ′0X

(θ′0Xi)

A8n =
1

n

n∑

i=1

∇θ log(ŝ
−i(θ′Xi))|θ=θ0

(fθ′0X(θ
′
0Xi)− ŝ−i(θ′0Xi))

2

f 2
θ′0X

(θ′0Xi)

To deal with each of these terms separately, let us define the following functions:

r̃(θ′x, y) =
1

h1h2

∫
K

(
θ′(x− u)

h1

)
K

(
y − v

h2

)
f(u, v)dudv, (13)

s̃(θ′x) =
1

h1

∫
K

(
θ′(x− u)

h1

)
f(u, v)dudv

For instance, to deal with A1n we telescope using r̃[1](θ′0Xi, Yi) to obtain A1n = B1n + C1n,

where

B1n =
1

n

n∑

i=1

r̂−i,[1](θ′0Xi, Yi)− r̃[1](θ′0Xi, Yi)

fθ0(θ
′
0Xi, Yi)

(14)

C1n =
1

n

n∑

i=1

r̃[1](θ′0Xi, Yi)− f
[1]
θ (θ′0Xi, Yi)

fθ0(θ
′
0Xi, Yi)

(15)
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and A2n = B2n + C2n, where

B2n =
1

n

n∑

i=1

f
[1]
θ0
(θ′0Xi, Yi)

f 2
θ0
(θ′0Xi, Yi)

(r̃−i(θ′0Xi, Yi)− r̂(θ′0Xi, Yi)) (16)

C2n =
1

n

n∑

i=1

f
[1]
θ0
(θ′0Xi, Yi)

f 2
θ0
(θ′0Xi, Yi)

(fθ0(θ
′
0Xi, Yi)− r̃(θ′0Xi, Yi)).

In a parallel way Ain = Bin + Cin for i = 3, 4. Just defining Bn = B1n + B2n + B3n + B4n,

Cn = C1n +C2n +C3n +C4n and Dn = A5n +A6n +A7n +A8n and using equation (12) we have

αn(θ0) = Bn + Cn +Dn + oP (n
−1/2).

Now using Lemmas 5, 8 and 9 imply that

√
nCn = oP (1),

√
nBn = oP (1),

√
nDn = oP (1).

Finally, Lemma 10 can be used to prove l̂
[2]
n (θ) → l[2](θ). This completes the proof. ⊠

Next we consider the gradients of fθ. We have following results:

Lemma 3. Under A6, we have

a)

∂

∂θk
fθ(θ

′x, y)θ=θ0 =
∂

∂t

(
fθ0(t, y)

[
xk − E(Xk|θ′0X = t, Y = y)

])

t=θ′0x

.

b)

∂

∂θk
fθ′X(θ

′x)θ=θ0 =
∂

∂t

(
fθ′0X(t)

[
xk − E(Xk|θ′0X = t)

])

t=θ′0x

Proof. We will prove only part a). The proof of b) is very similar. Let us consider

θ0 = (θ01, ..., θ0d)
′ and θ

(k)
0,δ = θ0 + (0, ..., δ, ..., 0)′, where the δ is in position k. Then, for every

x = (x1, ..., xd)
′ and y ∈ R, we have

∂

∂θk
fθ(θ

′x, y)θ=θ0 = β1 + β2 + β3, (17)

where

β1 = lim
δ→0

f
θ
(k)
0,δ
(θ′0x, y)− fθ0(θ

′
0x, y)

δ

β2 = lim
δ→0

fθ0(θ
(k)′

0,δ x, y)− fθ0(θ
′
0x, y)

δ
(18)

β3 = lim
δ→0

[f
θ
(k)′

0,δ

(θ
(k)′

0,δ x, y)− fθ0(θ
(k)′

0,δ x, y)

δ
−
f
θ
(k)
0,δ
(θ′0x, y)− fθ0(θ

′
0x, y)

δ

]
. (19)
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Using two Taylor expansions, the term in (19) becomes

β3 = lim
δ→0

[
∂

∂θk
fθ(θ

(k)′

0,δ x, y)−
∂

∂θk
fθ(θ

′
0x, y)

]

+ lim
δ→0

δ

2

[
∂2

∂θ2k
fθ(θ

(k)′

0,δ x, y)θ=θ̃ −
∂2

∂θ2k
fθ(θ

′

0x, y)θ=˜̃
θ

]
= 0

where θ̃ = θ0 + (0, ..., δ̃, ..., 0)′, ˜̃θ = θ0 + (0, ..., ˜̃δ, ..., 0)′ and δ̃ and ˜̃δ are intermediate points

between 0 and δ and the last step comes from the continuity of the first and second partial

derivatives (see Condition A6).

A direct inspection of (18) leads to

β2 =
∂

∂θk
fθ0(θ

′x, y)θ=θ0 = xk
∂

∂t
fθ0(t, y)t=θ′0x

.

On the other hand

β1 =
∂

∂θk
fθ(θ

′
0x, y)θ=θ0 =

∂

∂u

(
∂

∂v

(
∂

∂θk
P (θ′X ≤ u, Y ≤ v)θ=θ0

)

v=y

)

u=θ′0x

. (20)

Let fXk,θ
′
0X,Y (xk, u, ỹ) denote the density of (Xk, θ

′
0X, Y ). Now using standard algebra for

the inner partial derivative in (20), we obtain

∂

∂θk
P (θ′X ≤ u, Y ≤ v)|θ=θ0

= lim
δ→0

P (θ′0X + δXk ≤ u, Y ≤ v)− P (θ′0X ≤ u, Y ≤ v)

δ

=

∫ v

−∞

∫ ∞

−∞

lim
δ→0

1

δ

[∫ u−δz1

−∞

fXk,θ
′
0X,Y (z1, z2, z3)dz2 −

∫ u

−∞

fXk,θ
′
0X,Y (z1, z2, z3)dz2

]
dz1dz3

= −
∫ v

−∞

∫ ∞

−∞

z1f
Xk,θ

′
0X,Y (z1, u, z3)dz1dz3. (21)

Now using (21) in (20) gives

β1 = − ∂

∂u
(fθ0(u, y)E(Xk|θ′0X = u, Y = y))t=θ′0x

(22)

Using (19), (18) and (22) in (17) the proof of a) is concluded. ⊠

Lemma 4. Under A2, we have

a)

∇θfθ(y|θ′x)θ=θ0 =

[
x− E(X|θ′0X = θ′0x)

]
∂

∂t
fθ0(y|t)t=θ′0x

.
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b)

E(∇θ[log fθ(Yi|θ′Xi)]θ=θ0 |Yi, θ′0Xi) = 0

Proof. Part a) is an immediate consequence of Lemma 3. For part b), A2 implies

E

(
[Xi − E(X|θ′0X = θ′0Xi)]|Yi, θ′0Xi

)
= E(X|θ′0X = θ′0Xi)− E(X|θ′0X = θ′0Xi) = 0.

This completes the proof. ⊠

Lemma 5. Under A2, A4 and A5,
√
nCn = OP (

√
nh41 +

√
nh22) = oP (1).

Proof. First, using several changes of variables, we have

r̃(θ′0Xi, Yi)1{Yi≤an} =
1

h1h2

∫ ∫
K

(
θ′0Xi − u

h1

)
K

(
Yi − v

h2

)
fθ0(u, v)dudv

=

∫ ∫
K (z1)K (z2) fθ0(θ

′
0Xi − h1z1, Yi − h2z2)dz1dz2

and

r̃[1](θ′0Xi, Yi)1{Yi≤an}

=
1

h21h2

∫ ∫
(Xi − E(X|θ′0X = u))K ′

(
θ′0Xi − u

h1

)
K

(
Yi − v

h2

)
fθ0(u, v)dudv

=
1

h1

∫
(Xi − E(X|θ′0X = θ′0Xi − h1z1))K

′ (z1)K (z2) fθ0(θ
′
0Xi − h1z1, Yi − h2z2)dz1dz2.

Using A5, the function fθ(u, v) is three times differentiable. Now applying a Taylor expan-

sion and using
∫
zaK(z)dz = 0 for a odd,

∫
K(z)dz = 1 and dK =

∫
z2K(z)dz < ∞, together

with
∫
zbK ′(z)dz = 0 for b even,

∫
zK ′(z)dz = −1 and

∫
z3K ′(z)dz = −3

∫
z2K(z)dz we obtain

r̃(θ′0Xi, Yi) = fθ0(θ
′
0Xi, Yi) +

dKh
2
1

2

∂2

∂2u
fθ0(u, Yi)u=θ′0Xi

+
dKh

2
2

2

∂2

∂2v

(
fθ0(θ

′
0Xi, v)1{Yi≤an}

)
v=Yi

+OP (h
4
1 + h21h

2
2 + h42). (23)

Similarly, Lemma 3 implies that

r̃[1](θ′0Xi, Yi) = f
[1]
θ0
(θ′0Xi, Yi) +

dKh
2
1

2

∂3

∂3u
[(Xi − E(X|θ′0X = u))fθ0(u, Yi)]u=θ′0Xi

+
dKh

2
2

2

∂

∂u

∂2

∂2v
[(Xi − E(X|θ′0X = u))fθ0(u, v)]u=θ′0Xi,v=Yi

+ OP (h
4
1 + h21h

2
2 + h42). (24)
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Now starting from (15), using (23) and (24) and repeating similar steps for s̃(θ′0Xi), we

obtain

Cn = C̃1n + C̃2n +OP (h
4
1 + h22), (25)

where

C̃1n =
1

n

n∑

i=1

dKh
2
1

2
C̃1i,

C̃2n =
1

n

n∑

i=1

dKh
2
1

2
C̃2i,

C̃1i =
1

fθ0(θ
′
0Xi, Yi)

d3

du3

(
[Xi − E(X|θ′0X = u)]fθ0(u, Yi)

)

u=θ′0Xi

− 1

fθ′0X(θ
′
0Xi)

d3

du3

(
[Xi − E(X|θ′0X = u)]fθ′0X(u)

)

u=θ′0Xi

and

C̃2i = −∇θfθ(θ
′Xi, Yi)θ=θ0

f 2
θ0
(Yi, θ′0Xi)

d2

du2
fθ0(u, Yi)|u=θ′0Xi

+
∇θfθ′X(θ

′Xi)θ=θ0

f 2
θ′0X

(θ′0Xi)
f ′′
θ′0X

(θ′0Xi).

We will show that E(C̃kn) = 0 and V ar(C̃kn) = o(n−1) for k = 1, 2. Since fθ0(z|θ′0x) =

f(z|x), we have that f(x, z) = fθ0(θ
′
0x, z)fX(x)/fθ′0X(θ

′
0x). This equation and condition A2

can be used to obtain:

E
(
C̃1i

)
=

∫
1

fθ0(θ
′
0x, z)

d3

du3

(
[x− E(X|θ′0X = u)]fθ0(u, y)

)

u=θ′0x

f(y|x)fX(x)dxdy

−
∫

1

fθ′0X(θ
′
0x)

d3

du3

(
[x− E(X|θ′0X = u)]fθ′0X(u)

)

u=θ′0x

fX(x)dx = 0.

Moreover, the C̃1i are iid and, since h21 → 0, V ar(
√
nC̃1n) → 0. Hence

√
nC̃1n → 0 in

probability. Similar arguments can be used to conclude
√
nC̃2n → 0. Now using (25), we have

√
nCn = OP (h

2
1 +

√
n(h41 + h22)) = oP (1),which completes the proof. ⊠

Lemma 6. Under the conditions in Theorem 3 we have B1n = oP (n
−1/2).
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Proof. Starting from (14) and using (13) and (6) we obtain

B1n =
1

n

n∑

i=1

1

fθ0(θ
′
0Xi, Yi)

[
1

h21h2(n− 1)

∑

j 6=i

(Xi −Xj)K
′

(
θ′0Xi − θ′0Xj

h1

)
K

(
Yi − Yj
h2

)

− 1

h21h2

∫ ∫
(Xi − u)K ′

(
θ′0Xi − θ′0u

h1

)
K

(
Yi − v

h2

)
f(u, v)

]
dudv

=
1

n(n− 1)

n∑

i=1

n∑

j=1,j 6=i

Hij,

where K ′(t) denotes the derivative of K with respect to t and

Hij =
1

h21h2

1

fθ0(θ
′
0Xi, Yi)

[
(Xi −Xj)K

′

(
θ′0Xi − θ′0Xj

h1

)
K

(
Yi − Yj
h2

)

−
∫ ∫

(Xi − u)K ′

(
θ′0Xi − θ′0u

h1

)
K

(
Yi − v

h2

)
f(u, v)dudv

]

Let us define

H̄j = E(Hij|Xj , Yj, δj).

Then B1n = B1n1 + B1n2, where

B1n1 =
1

n(n− 1)

n∑

i=1

n∑

j=1,j 6=i

(Hij − H̄j) (26)

B1n2 =
1

n

n∑

j=1

H̄j. (27)

For the term in (26) it is evident that

E(Hij − H̄j) = E(Hij − H̄j|Xi, Yi) = E(Hij − H̄j|Xj, Yj) = 0,

so E(B1n1) = 0. On the other hand, long but straightforward calculations can be performed to

compute the variance of B
(m)
1n1 , the m-th component of the random vector B1n1, which results:

V ar(B
(m)
1n1 ) = E(B

(m)
1n1

2
) =

1

n2(n− 1)2

n∑

i=1

n∑

j=1,j 6=i

n∑

k=1

n∑

l=1,l 6=k

E((H
(m)
ij − H̄

(m)
j )(H

(m)
kl − H̄

(m)
l ))

=
1

n(n− 1)
[E[(H

(m)
12 − H̄

(m)
2 )2)] + E[(H

(m)
12 − H̄

(m)
2 )(H

(m)
21 − H̄

(m)
1 )]].

Using standard algebra, the last two expectations can be proven to be of order O(h−3
1 h−1

2 ). As

a consequence V ar(B
(m)
1n1 ) = O(n−2h−3

1 h−1
2 ). Now Condition A4 implies B

(m)
1n1 = oP (n

−1/2). The

term in (27) can be handled in a similar way to prove E(B1n2) = 0 and V ar(B
(m)
1n2 ) = O(n−1h1).

Thus A4 implies B
(m)
1n2 = oP (n

−1/2). This concludes the proof. ⊠

Now we state a similar lemma.
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Lemma 7. Under the conditions in Theorem 3 we have B2n = oP (n
−1/2), B3n = oP (n

−1/2) and

B4n = oP (n
−1/2).

Proof. Given the similarities between the term B1n in (14) and the term B2n in (16),

and also the terms B3n and B4n, the proof goes parallel to the proof of Lemma 6, obtaining

B2n = B2n1+B2n2, B3n = B3n1+B3n2, B4n = B4n1+B4n2, where E[Bjnk] = 0, for j = 2, 3, 4 and

k = 1, 2 and V ar(B2n1) = O(n−2h−1
1 h−1

2 ), V ar(B2n2) = O(n−1h21), V ar(B3n1) = O(n−2h−3
1 ),

V ar(B2n2) = O(n−1h1), V ar(B4n1) = O(n−2h−1
1 ), V ar(B4n2) = O(n−1h21). Now assumption A4

implies that the orders in the six variance terms are all o(n−1), which concludes the proof. ⊠

Lemma 8. Under the conditions in Theorem 3, Bn = oP (n
−1/2).

Proof. The proof goes through using the definition of Bn = B1n + B2n + B3n + B4n and

Lemmas 6 and 7. ⊠

Lemma 9. Under the conditions in Theorem 3, Dn = oP (n
−1/2).

Proof. Each of the terms A5n, A6n, A7n, A8n can be bounded using Cauchy-Schwartz

inequality. Let us consider A5n:

|A5n| ≤ A
1/2
5n1A

1/2
5n2, (28)

where

A5n1 =
1

n

n∑

i=1

(r̂−i,[1](θ′0Xi, Yi)− f
[1]
θ0
(θ′0Xi, Yi))

2

f 2
θ0
(θ′0Xi, Yi)

A5n2 =
1

n

n∑

i=1

((fθ0(θ
′
0Xi, Yi)− r̂−i(θ′0Xi, Yi))

2

f 2
θ0
(θ′0Xi, Yi)

These two terms can be expanded as

A5n1 = A5n11 + A5n12 + A5n13, (29)

A5n2 = A5n21 + A5n22 + A5n23, (30)
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where

A5n11 =
1

n

n∑

i=1

(r̂−i,[1](θ′0Xi, Yi)− r̃[1](θ′0Xi, Yi))
2

f 2
θ0
(θ′0Xi, Yi)

A5n12 =
1

n

n∑

i=1

(r̃[1](θ′0Xi, Yi)− f
[1]
θ0
(θ′0Xi, Yi))

2

f 2
θ0
(θ′0Xi, Yi)

A5n13 =
2

n

n∑

i=1

(r̂−i,[1](θ′0Xi, Yi)− r̃[1](θ′0Xi, Yi))(r̃
[1](θ′0Xi, Yi)− f

[1]
θ0
(θ′0Xi, Yi))

f 2
θ0
(θ′0Xi, Yi)

A5n21 =
1

n

n∑

i=1

(fθ0(θ
′
0Xi, Yi)− r̃(θ′0Xi, Yi))

2

f 2
θ0
(θ′0Xi, Yi)

A5n22 =
1

n

n∑

i=1

(r̃(θ′0Xi, Yi)− r̂−i(θ′0Xi, Yi))
2

f 2
θ0
(θ′0Xi, Yi)

A5n23 =
2

n

n∑

i=1

(fθ0(θ
′
0Xi, Yi)− r̃(θ′0Xi, Yi))(r̃(θ

′
0Xi, Yi)− r̂−i(θ′0Xi, Yi))

f 2
θ0
(θ′0Xi, Yi)

.

The terms A5n11, A5n12, A5n21 and A5n22 can be treated similarly to B1n, C1n, B2n, C2n, respec-

tively. On the other hand, A5n13 (respectively A5n23) can be bounded, using Cauchy-Schwartz

inequality, in terms of A5n11 and A5n12 (respectively A5n21 and A5n22). All in all results in

A5njk = oP (n
−1/2) for j = 1, 2 and k = 1, 2. In view of (29) (30) we have A5n1 = oP (n

−1/2) and

A5n2 = oP (n
−1/2), which, using (28), gives A5n = oP (n

−1/2.

Following parallel arguments, straightforward but tedious algebra can be used to prove that

A6n = oP (n
−1/2), A7n = oP (n

−1/2)and A8n = oP (n
−1/2). Since Dn = A5n + A6n + A7n + A8n,

this concludes the proof. ⊠

Lemma 10. Under the conditions in Theorem 3, l̂
[2]
n (θ) → l[2](θ).

Proof. We have

l̂[2]n (θ) =
1

n

n∑

i=1

(
r̂−i,[2](θ′Xi, Yi)

r̂−i(θ′Xi, Yi)
− r̂−i,[1](θ′Xi, Yi)(r̂

−i,[1](θ′Xi, Yi))
t

r̂−i(θ′Xi, Yi)2
− ŝ−i,[2](θ′Xi)

ŝ−i(θ′Xi)

+
ŝ−i,[1](θ′Xi)(ŝ

−i,[1](θ′Xi))
t

ŝ−i(θ′Xi)2

)
.

Since

r̂−i,[2](y, θ′x) =
1

nh31h2

n∑

j=1

(x−Xj)(x−Xj)
tK ′′

(
θ′x− θ′Xj

h1

)
K

(
y − Yj
h2

)
.

it is easy to show, that

r̂−i,[2](θ′x, y) → ∂2

∂u2
{
fθ(u, y)E((x−X)(x−X)t|θ′X = u)

}
u=θ′x

in probability.
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Moreover, using Lemma 3, it can be proven that

∂2

∂u2
{
fθ(u, u)E((x−X)(x−X)t|θ′X = u)

}
u=θ′x

= f
[2]
θ (θ′x, y).

Similarly, it can be shown that ŝ[2](θ′x) → f
[2]
θ′X(θ

′x) in probability. This completes the

proof. ⊠

Proof of Theorem 2. In view of Lemmas 1, 2 and 10, it remains to show that
∑8

k=1Akn
P→

0. But this can be proven following the lines of Lemmas 5, 8 and 9 but even simpler, since only

convergence in probability to zero (and no rate) is required. ⊠
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Appendix B Results without an extreme cost value. (PDF file)

Table 12: Estimated parameters and their significance for the single index-model in the accident
cost data set (without one outlier extreme cost).

Model
All variables Only telematics Only non-telematics

speedkm 1.000 – –
age -0.093* – 1.000
agelic -0.014 – 0.122**
agecar 0.069** – -0.039**
parking 0.078 – -0.171**
tkm -0.049** -0.013** –
nightkm 0.100** 0.130** –
urbankm 0.030** 0.052** –

Significant at 5% level * and at 1% level **
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Figure 5: Fitted values of the conditional mean and quantiles with all variables in the accident
cost data set without outlier extreme cost.
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Figure 6: Fitted values of the conditional mean and quantiles with telematics variables in the
accident cost data set without outlier extreme cost.
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Figure 7: Fitted values of the conditional mean and quantiles with non-telematics variables in
the accident cost data set without outlier extreme cost.
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