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Abstract We study stochastic games of resource extraction, in which the players
have identical preferences. The transition probability is either non-atomic or a convex
combination of transition probabilities depending on the investment with coefficients
also dependent on the investment. Our approach covers the unbounded utility case,
which was not examined in this class of games beforehand. We prove the existence of
a stationary Markov perfect equilibrium in a non-randomised class of strategies.
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1 Introduction

This paper deals with a strategic version of the discrete-time one-sector optimal growth
model (see Bhattacharya and Majumdar 2007; Stachurski 2009), which plays a cru-
cial role in both economic dynamics and resource economics. In principle, it can be
described as follows. Two agents own a common natural resource and consume cer-
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tain amount of the available stock in each time period. Their objective is to maximise
their individual expected discounted utilities. The next state is usually given either by
a deterministic production function or by some stochastic transition probability. The
seminal paper of Levhari and Mirman (1980) studies such a strategic optimal growth
model assuming that the players have the same logarithmic one-period utilities. More-
over, the next state st+1 evolves according to the Cobb–Douglas production function,
i.e., st+1 = yκ

t , where κ ∈ (0, 1) and yt denotes a joint investment in period t.
Their model has been extended by Sundaram (1989), who considered general util-

ity and production functions. Assuming that the players have identical preferences
he proved the existence of a stationary Markov perfect equilibrium in the class of
non-randomised strategies. Later Majumdar and Sundaram (1988) and Dutta and Sun-
daram (1992) reported the existence of a stationary Markov perfect equilibrium in the
same class of strategies as Sundaram (1989), but for stochastic resource extraction
games with symmetric payoffs. The former work analyses atomless transition proba-
bilities, whereas the latter one embraces the conditions used in Sundaram (1989) and
Majumdar and Sundaram (1988). Both papers deal with weakly continuous transition
probabilities.

In this paper, we also prove the existence of a stationary Markov perfect equilib-
rium in the class of non-randomised strategies assuming identical preferences for the
players and weak continuity of the transition probabilities. However, there are some
essential features which not only distinguish our work from the aforementioned ones
but also extend the previous results. Namely, in contrast to Sundaram (1989), Majum-
dar and Sundaram (1988), Dutta and Sundaram (1992), we deal with unbounded utility
functions andwe allow the state space to be the [0,∞) interval. The latter case requires
additional work, since we have to show the compactness of certain function spaces.
Furthermore, we propose two alternative sets of assumptions. The first set allows to
study only games with non-atomic transition probabilities, whereas the second set
embraces deterministic transitions and a class of transition probabilities not covered
by Dutta and Sundaram (1992). Namely, we assume that the transition probability is
a convex combination of transitions depending on the investment with coefficients
also depending continuously on the investment. Particularly, our transition probabili-
ties need not satisfy a stochastic dominance condition, whose stronger version plays
a fundamental role in the proof of the equilibrium theorem in Dutta and Sundaram
(1992).

The paper is organised as follows. The next section is devoted to a description of
the game model. In Sect. 3, we provide the assumptions imposed on the transition
probability and one-period utility function. Then, we formulate the main theorem and
compare in detail our conditions with the ones used by Dutta and Sundaram (1992)
andMajumdar and Sundaram (1988). The next section presents examples of transition
probabilities that satisfy our assumptions, but not necessarily the ones in Dutta and
Sundaram (1992). Section 4 contains compactness results, which are essential in the
equilibrium proof. The proof of equilibrium result is given in Sect. 6 and is preceded
by a sequence of auxiliary lemmas. Final comments and concluding remarks are put
in Sect. 7.
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2 The model

LetN be the set of positive integers andR be the set of all real numbers. Let S = [0,∞)

and S+ = (0,∞). We consider a discounted stochastic game for which:

(i) S is the state space, i.e., the set of available resource stocks,
(ii) Ai (s) = [0, s] is the set of actions available to player i ∈ P := {1, 2} in state

s ∈ S,

(iii) ui : S → R is a non-negative stage utility function for player i ∈ P,

(iv) for any s ∈ S and any feasible pair of actions (a, b) ∈ A1(s) × A2(s), that is,
a + b ≤ s, q(·|s − a − b) is a probability measure on S,

(v) β ∈ (0, 1) is a discount coefficient.

We assume that u1 = u2 =: u. The function u may be unbounded, but it satisfies
the following condition.

(W1) There exists a continuous increasing function w : S → [1,∞) such that 0 ≤
u(c) ≤ w(c) for all c ∈ S.

(W2) There exists a constant α > 0 such that αβ < 1 and

∫
S
w(z)q(dz|y) ≤ αw(y) for all y ∈ S

In each period the players observe the state s ∈ S and simultaneously choose their
actions (a, b) ∈ A1(s) × A2(s) that yield the utility vector (u(a), u(b)) provided that
the actions are feasible, i.e., a + b ≤ s. A new state s′ is realised from the probability
distribution q(·|s−a−b) and the next period begins. The stage utilities are discounted
by β. Note that the actions available at any state to one player depend on those chosen
by the other player. This model is known as a generalised game in the terminology of
Debreu (1954), or a coupled constraint game as in Haurie et al. (2012). If the pair of
actions (a, b) is infeasible in state s, then one can follow Dutta and Sundaram (1992)
and assume that every player receives utility u(s/2). We restrict attention to strategies
generating feasible action pairs during the play. An equilibrium in the symmetric case
(where the stage utility functions are identical) will consist of feasible strategies of
the players.

A strategy for player i ∈ P is a sequence of Borel-measurable mappings from the
history space to the space of actions available to her/him.1 The set of strategies for
player i is denoted by Πi and its generic element by πi . Let Fi be the set of all Borel-
measurable functions φi : S → S such that φi (s) ∈ Ai (s) = [0, s] for each s ∈ S.

A stationary Markov strategy for player i ∈ P is a constant sequence (πi t ) where
πi t = φi for some φi ∈ Fi and for all t ∈ N. Hence, a stationary Markov strategy
for player i can be identified with the Borel-measurable mapping φi ∈ Fi . For any
feasible pair (π1, π2) ∈ Π1 × Π2, an initial state s ∈ S and t ∈ N, by u(t)

i (π1, π2)(s)
we denote the expected utility for player i in the t th period of the game. The expected
discounted utility for player i ∈ P is

1 It is natural to restrict attention to deterministic consumption strategies.
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Ui (s, π1, π2) =
∞∑
t=1

β t−1u(t)
i (π1, π2)(s).

A feasible profile of strategies (π∗
1 , π∗

2 ) ∈ Π1 ×Π2 is called a Nash equilibrium if

U1(s, π
∗
1 , π∗

2 ) ≥ U1(s, π1, π
∗
2 )

for each s ∈ S and π1 ∈ Π1 such that (π1, π
∗
2 ) is feasible, and

U2(s, π
∗
1 , π∗

2 ) ≥ U2(s, π
∗
1 , π2)

for each s ∈ S and π2 ∈ Π2 such that (π∗
1 , π2) is feasible.

Definition 1 AStationaryMarkov Perfect Equilibrium (SMPE) is a Nash equilibrium
(φ∗

1 , φ
∗
2 ) that belongs to the class of strategy pairs F1 × F2. An SMPE(φ∗

1 , φ
∗
2 ) is

symmetric if φ∗
1 = φ∗

2 .

Remark 1 Conditions (W1)–(W2) are used to guarantee the convergence of the dis-
counted utilities for the players. These assumptions have been already used in dynamic
programming and in zero-sum stochastic games, see for instance, Wessels (1977),
Hernández-Lerma and Lasserre (1999), Jaśkiewicz and Nowak (2011) and references
cited therein. One can observe that under conditions (W1)-(W2), for any feasible pair
of strategies (π1, π2) and t ≥ 2, we have u(t)

i (π1, π2)(s) ≤ αt−1w(s), and conse-
quently

0 ≤ Ui (s, π1, π2) ≤ w(s)

1 − αβ
, i ∈ P, s ∈ S.

Hence, the discounted expected utility is well-defined for any pair of feasible strategies
for the players.

3 Main result

Let Pr(S) be the set of all probability measures on the state space S. We recall that a
sequence (μn) of probability measures on S converges weakly to some μ0 ∈ Pr(S)

(μn ⇒ μ0 for short) if, for any bounded continuous function v : S → R, we have
limn→∞

∫
S v(s)μn(ds) = ∫

S v(s)μ0(ds); see Billingsley (1968).
We now formulate further assumptions which will be needed in our proofs.

(U) The function u : S → R is non-negative, increasing, strictly concave and contin-
uous at s = 0.
For the transition probabilities, we accept two alternative sets of conditions (A) or
(B1)–(B3).
(A) The transition probability q is weakly continuous on S, that is, if ym → y0 in
S, then q(·|ym) ⇒ q(·|y0) as m → ∞. Moreover, for each y ∈ S+, the probability
measure q(·|y) is non-atomic and q(·|0) has no atoms in S+.
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(B1) Assume that λ j : S → [0, 1], j ∈ J := {1, . . . , l}, are continuous functions
such that

∑l
j=1 λ j (y) = 1 for all y ∈ S. In addition, suppose that there exist

transition probabilities q j from S to S, j ∈ J , such that for each y ∈ S, we have

q(·|y) =
l∑

j=1

λ j (y)q j (·|y). (1)

Moreover, for every j ∈ J, the transition probability q j (·|y) is weakly contin-
uous on S and q j ({0}|0) = 1.

(B2) Every transition probability q j (·|y) in (1) is either non-atomic for y ∈ S+ or it
satisfies the stochastic dominance condition.2

(B3) For every s ∈ S the set Zs = {y ∈ S : q({s}|y) > 0} is countable.
We also impose the following assumption.
(C) The function y → ∫

S w(z)q(dz|y) is continuous on S.

We now define a special class of stationary strategies of the players. By F0
i , we

denote the set of mappings φ ∈ Fi such that the function ϕ(s) := s − φ(s) is non-
decreasing, upper semicontinuous and 0 ≤ φ(s) ≤ s/2 for all s ∈ S. Note that ϕ and
thus φ are continuous from the right. Clearly, φ ∈ F0

i is lower semicontinuous.
We can now state our main result.

Equilibrium Theorem Let either (A) or (B1)–(B3) hold. Assume that (U), (W1)–(W2)
and (C) are also satisfied. Then, the gamehas a symmetric SMPE(φ∗, φ∗) ∈ F0

1 ×F0
2 .

Remark 2 The result of Dutta and Sundaram (1992) is based on the following assump-
tion.

(DS) For any s ∈ S+ and y1 < y2, we have

lim
z↗s

Q(z|y1) := Q(s−|y1) ≥ Q(s|y2),

where Q(z|y) := q([0, z]|y).
This assumption is called strong stochastic dominance. Clearly, condition (DS) implies
the stochastic dominance property called by Dutta and Sundaram (1992) the weak
stochastic dominance. It is not difficult to construct q(·|y) that has the stochastic
dominance property and does not satisfy condition (DS). In Examples 4 and 5 we
provide transition probabilities q for which conditions (B1)–(B3) hold and (DS) is not
satisfied.

Remark 3 The predecessors of our work on symmetric dynamic games of resource
extraction are Dutta and Sundaram (1992), Majumdar and Sundaram (1988) and Sun-
daram (1989).Thefirst twopapers dealwith stochastic transitionprobabilities,whereas
the last one studies the purely deterministic case. As noted by Dutta and Sundaram

2 If z → Q j (z|y) := q j ([0, z]|y) is the cumulative distribution function for q j (·|y), then for any y1 < y2
and z ∈ S, we have that Q j (z|y1) ≥ Q j (z|y2).
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(1992), their assumptions cover the ones studied not only by Sundaram (1989) but also
by Majumdar and Sundaram (1988), who examined games with atomless transition
probabilities. We propose two alternative set of assumptions: (A) or (B1)–(B3). Con-
ditions (A) require q(·|y) to be non-atomic measure on S for any y ∈ S+. However,
in contrast to the aforementioned papers our novelty is twofold. First, we allow u to
be unbounded. As pointed out by Bhattacharya and Majumdar (2007) or Stachurski
(2009), such unbounded utilities are commonly used in the theory of economic growth.
Second, we get rid of compactness of the resource space S.

More importantly, the alternative set of conditions (B1)–(B3) embraces tran-
sition probabilities which were not covered by Dutta and Sundaram (1992).
Specifically, our assumptions allow to consider transition probabilities that do not
satisfy stochastic dominance property, even its weak version. As mentioned in
Remark 2, the strong stochastic dominance was the crux in their proof on exis-
tence of a symmetric equilibrium. In particular, conditions (B1)–(B3) enable to
analyse transition probabilities which are convex combinations of deterministic
transitions with coefficients depending on the investment. Such transition prob-
abilities, as observed in Examples 4–5 in Sect. 4, do not meet the stochastic
dominance property. Hence, they do not satisfy the strong version of this condition
either.

Our proofs owe much both the techniques developed in Majumdar and Sundaram
(1988) and Dutta and Sundaram (1992), and the methods used in the study of multi-
generational games; see Balbus et al. (2015b) and references cited therein. In the main
body of our proof we exploit assumption (B3) instead of (DS). Assumption (B3) was
applied by Balbus et al. (2015b), who studied a different class of non-cooperative
games with countably many players called multigenerational games. Here, we only
mention that under the (weak) stochastic dominance property condition (B3) implies
(DS). However, in general assumptions accepted by Dutta and Sundaram (1992) and
in this paper do not coincide. Finally, we wish to mention that our proof, in contrast
to Dutta and Sundaram (1992) and Majumdar and Sundaram (1988), does not require
an analysis of the generalised game in the sense of Debreu (1954).

Remark 4 Dutta and Sundaram (1992) and Majumdar and Sundaram (1988) also
impose other conditions except either strong stochastic dominance or atomless of
transition probabilities, respectively. For instance, they assume that for a positive, suf-
ficiently small level of investment, the stock tomorrow is no less than investment today
with probability one. This requirement is usually referred to as the Inada condition.
Moreover, they also assume that the utility function is differentiable and its right-hand
side derivative at zero is +∞. These two assumptions allow them to obtain an interior
symmetric equilibrium. However, their analysis exclude the following utility func-
tions: u(c) = 1 − e−c or u(c) = r ln(1 + c), where r is arbitrary positive constant.
Here, we do not impose the Inada conditions, but then in equilibrium (φ∗, φ∗) it may
happen that φ∗(s) is zero or s/2 for some states.

We do not assume we do not assume other assumptions made by Dutta and Sun-
daram (1992) either. Specifically, they assume that there is no free production, that
strictly positive investment today results in strictly positive stock tomorrow and that
there is a maximum sustainable stock.
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4 Examples

In this section, we provide some examples of transition probabilities and utility func-
tions for which our assumptions hold. We start with condition (A). A natural transition
probability satisfying this assumption is given by the recurrence equation

st+1 = f̄ (yt , ξt ),

where yt = st − at is the investment in state st , (ξt ) is a sequence of i.i.d. random
“shocks” having a probability distribution π ∈ Pr(S). The function f̄ : S × S → S is
continuous and for any Borel set D in S, investment y ∈ S, the transition probability
is

q(D|y) =
∫
S
1D( f̄ (y, ω))π(dω).

Here, 1D denotes the indicator function of the set D. We now point out three special
cases for the above recurrence equation.

Example 1 Let f̄ (yt , ξt ) = ξt f1(yt )+(1−ξt ) f2(yt ), where fi : S → S is continuous,
increasing for i = 1, 2 and f1(y) > f2(y) for y ∈ S+. Moreover, assume that
f1(0) = f2(0) = 0. In addition, π is a non-atomic probability measure on [0, 1].
Example 2 Amodel with additive shocks. Let f̄ (yt , ξt ) = f (yt )+ξt ,where f : S →
S is a continuous increasing function. The probability measure π is non-atomic with
support included in [0,+∞).

Example 3 A model with multiplicative shocks. Assume that f̄ (yt , yt ) = f (yt )ξt ,
where f is as in Example 2 and the probability measure π is non-atomic with support
included in [0,+∞).

Nextwegive three examples of transition probabilities satisfying conditions (B1)–(B3)
with l = 2.

Example 4 Let the transition probability be as follows:

q(·|y) = λ1(y)δ f1(y)(·) + λ2(y)δ f2(y)(·)

and let f1, f2 be as in Example 1. The symbol δ fi (y)(·) denotes the Dirac measure
concentrated at the point fi (y). The functions λ1, λ2 : S → [0, 1] are continuous
and λ1(y) + λ2(y) = 1 for all y ∈ S. Obviously, this transition probability satisfies
conditions (B1) and (B2). In order to see that (B3) holds as well, choose any s ∈ S
and note that Zs = {y ∈ S : fi (y) = s} consists of at most two elements. In the pure
deterministic case (where q(·|y) = δ f1(y)(·)) Zs has at most one point. Furthermore,
let Eq(y)we denote the expected value of the resource stock following y ∈ S, that is,

Eq(y) = f1(y)λ1(y) + f2(y)λ2(y) = λ2(y)( f2(y) − f1(y)) + f1(y).
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Assume that f1(y) = y + √
y, f2(y) = y, for y ∈ S. Moreover, let λ1(y) = y for

y ∈ [0, 1], λ1(y) = 1/y for y ≥ 1 and λ2(y) = 1 − λ1(y) for each y ∈ S. Let
Q(z|y) := q([0, z]|y). Note that Q(z|4) = 3/4 for z ∈ [4, 6) and Q(z|5) = 4/5 for
z ∈ [5, 5 + √

5). Hence, Q(z|4) < Q(z|5) for z ∈ [5, 6), i.e., q(·|y) does not satisfy
the stochastic dominance condition. Observe that in this case

Eq(y) = y(
√
y + 1) for y ∈ [0, 1) and Eq(y) = y + 1√

y
for y ≥ 1.

Hence, the function y → Eq(y) is continuous and increasing, although the stochastic
dominance condition fails.

Example 5 Consider now the transition probability fromExample 4with the following
functions: f1(y) = y, f2(y) = √

y, for y ∈ S andλ1(y) = 1−λ2(y), for y ∈ S,where
λ2(y) = y for y ∈ [0, 1], λ2(y) = 1 − 1/y for y ≥ 1. Observe that Q(z|9) = 8/9
for z ∈ [3, 9) and Q(z|16) = 15/16 for z ∈ [4, 16). Hence Q(z|9) < Q(z|16) for
z ∈ [4, 9), i.e., q(·|y) does not satisfy the stochastic dominance condition. Observe
that

Eq(y) = y
√
y + y − y2 for y ∈ [0, 1) and Eq(y) = √

y − 1√
y

+ 1 for y ≥ 1.

Hence, the expected value Eq(y) is again an increasing and continuous function with
respect to y ∈ S.

Example 6 Assume now that

q(·|y) = λ1(y)q1(·|y) + λ2(y)δ f (y)(·),

where the functions λi are as in (B1) and the function f : S → S is continuous and
increasing with f (0) = 0. If q1(·|y) is non-atomic for y > 0 and q({0}|0) = 1, then
this transition probability satisfies assumptions (B1)–(B3). Note that the stochastic
dominance condition may fail in this case either.

Finally, we give two examples satisfying conditions (W1)–(W2) and either (A) or
(B1)–(B3).

Example 7 A model with Cobb–Douglas production function with constant depreci-
ation. Suppose that the resource stock evolves due to the following recursive equation

st+1 = yθ
t ξt + (1 − δ)yt , t ∈ N,

where θ ∈ (0, 1) and δ ∈ (0, 1] is a depreciation rate. Suppose that z̄ := ∫
S ξπ(dξ) is

finite and π is a non-atomic measure with support included in [0,+∞). In addition,
let the utility function be given by u(c) = cσ with σ ∈ (0, 1). Clearly, assumptions
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(U) and (A) are satisfied. We claim that (W2) also holds for w(y) = (r + y)σ with
arbitrary r ≥ 1. Then,

∫
S
w(z)q(dz|y) =

∫
S
(r + yθ ξ + (1 − δ)y)σ π(dξ).

Analogous calculations to the ones on p. 263 in Jaśkiewicz and Nowak (2011) show
that (W2) is met with

α :=
(
1 + (z̄/δ)

1
1−θ

r

)σ

,

where r ≥ 1 must be sufficiently large so that αβ < 1. Obviously, (C) also holds true.

Example 8 Let u(c) = √
c for each c ∈ S and

q(·|y) =
l∑

j=1

λ j (y)δ f j (y)(·), y ∈ S,

where each function f j : S → S is continuous, increasing and f j (0) = 0 for every
j = 1 ∈ J. The coefficient λ j (y) describes a chance that the resource stock will be
f j (y). Moreover, let the functions λ j , j ∈ J, be as in (B1). Assume that there exist
two constants ρ > 0 and θ > 1 such that θβ < 1 and f j (y) ≤ ρ + θy for all j ∈ J
and y ∈ S. For some r ≥ 1 define w(y) = r + y, y ∈ S. Then,

∫
S
w(z)q(dz|y) =

l∑
j=1

λ j (y) f j (w(y)) ≤ ρ + θ(r + y).

Hence, it follows that

∫
S w(z)q(dz|y)

w(y)
≤ ρ + θ(r + y)

r + y
≤ ρ

r
+ θ, y ∈ S.

If we set α := ρ
r + θ , then (W2) holds for sufficiently large values of r. Note that

(W1), (U), (C) hold as well. Moreover, this transition probability satisfies (B1)–(B3).

Other transition probabilities and utility functions satisfying our conditions can be
obtained by an adaptation of examples from Sect. 4 in Jaśkiewicz and Nowak (2011)
or from Sect. 6 in Jaśkiewicz and Nowak (2018).

5 Basic compactness lemmas

Let X be the vector space of all continuous from the right functions φ : S → R with
bounded variation on every interval [0, n], n ∈ N. We assume that X is endowed with

123
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the topology of weak convergence. Recall that a sequence (ϕm) converges weakly to
ϕ ∈ X iff ϕm(s) → ϕ(s) as m → ∞ at any continuity point s ∈ S of ϕ. The weak
convergence of (ϕm) to ϕ is denoted by ϕm

ω→ ϕ.
Let η : S → S be a continuous increasing function. We define Xη as the set of all

non-decreasing functions ϕ ∈ X such that 0 ≤ ϕ(s) ≤ η(s) for all s ∈ S. Note that
each ϕ ∈ Xη is upper semicontinuous. Observe that 0 is a continuity point of every
function ϕ ∈ Xη.

Proposition 1 The set Xη is convex and sequentially compact in X.

Proof It is obvious that Xη is convex. For any f ∈ Xη and m ∈ N, we define
the function f m as follows: f m(s) = f (s) for all s ∈ [0,m) and fm(s) = η(m)

for al s ≥ m. Then f m ∈ Xη and can be viewed as a continuous from the right
“distribution function” of some non-negative countably additive measure νm such that
νm(S) = η(m).

Consider now an arbitrary sequence (ϕk) of functions in Xη. We now apply the
standard “diagonal method”. By Helly’s selection theorem [see p. 227 in Billingsley
(1968)], there exists a subsequence (n1(k)) of (n) such that (ϕ1

n1(k)
) converges weakly

(as k → ∞) to some γ 1 ∈ Xη. Next, there exists a subsequence (n2(k)) of (n1(k))
such that (ϕ2

n2(k)
) converges weakly to some γ 2 ∈ Xη and γ 2(s) = γ 1(s) for each

s ∈ [0, 1). By induction we infer that for any r ≥ 2, there exists a subsequence
(nr (k)) of (nr−1(k)) such that (φr

nr (k)
) converges weakly to some γ r ∈ Xη and

γ r (s) = γ r−1(s) for each s ∈ [0, r − 1). Define γ (s) := γm(s) if s ∈ [0,m),m ∈ N.

Then, γ ∈ Xη. Consider the “diagonal sequence” defined by d(k) := nk(k), k ∈ N.

Then, (ϕd(k))
ω→ γ as k → ∞. Thus Xη is sequentially compact. �


Let Y = Xη where η(s) = s for all s ∈ S and let Y 0 be the subset of all ϕ ∈ Y
such that ϕ(s) ≥ s/2. Observe that F0

i = K (Y 0) where K is the continuous mapping
defined by K (ϕ)(s) = s − ϕ(s), s ∈ S. From Proposition 1, we obtain the following
conclusion.

Proposition 2 Y and F0
i are convex and sequentially compact spaces when endowed

with the topology of weak convergence.

Observe that every φ ∈ F0
i is lower semicontinuous and continuous from the right,

but it need not be non-decreasing. The function s → s − φ(s) that belongs to Y 0 is
non-decreasing and upper semicontinuous. This fact will be used frequently in our
considerations.

6 Proofs

In this section, Xη is considered with η(s) = w(s)/(1 − αβ) for all s ∈ S.

Lemma 1 Assume that fn
ω→ f in Xη and yn → y0 in S as n → ∞. Then, f (y0) ≥

lim supn→∞ fn(yn).
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Proof Let y > y0 be a continuity point of f. Then, there is some N ∈ N such that
yn < y for all n > N . Hence, fn(yn) ≤ fn(y) for n > N and consequently,

lim sup
n→∞

fn(yn) ≤ lim sup
n→∞

fn(y) = f (y).

Since y can be chosen arbitrarily close to y0 and f is continuous from the right, we
deduce that lim supn→∞ fn(yn) ≤ f (y0). �


Lemma 2 Let either (A), (W1), (C) or (B1), (W1), (C) hold. Assume that fn
ω→ f in

Xη and yn → y in S as n → ∞. Then, it follows that

lim sup
n→∞

∫
S
fn(z)q(dz|yn) ≤

∫
S
f (z)q(dz|y).

Proof Let f̃n(z) := fn(z) − w(z)/(1 − αβ) for z ∈ S. Define

f ∗(z) = sup{lim sup
n→∞

f̃n(zn) : zn → z}

and observe that by the continuity of w

f ∗(z) = sup{lim sup
n→∞

fn(zn) : zn → z} − w(z)/(1 − αβ).

By Lemma 3.2 in Serfozo (1982) and Lemma 1, we have

lim sup
n→∞

∫
S
f̃n(z)q(dz|yn) ≤

∫
S
f ∗(z)q(dz|y) ≤

∫
S
( f (z) − w(z)/(1 − αβ))q(dz|y).

On the other hand, by (C) we obtain

lim sup
n→∞

∫
S
f̃n(z)q(dz|yn) = lim sup

n→∞

∫
S
fn(z)q(dz|yn) − lim

n→∞

∫
S
w(z)/(1 − αβ)q(dz|yn)

= lim sup
n→∞

∫
S
fn(z)q(dz|yn) −

∫
S
w(z)/(1 − αβ)q(dz|y).

Thus, the result follows. �

Lemma 3 Let (A), (W1) and (C) hold. Assume that f ∈ Xη and yn → y in S as
n → ∞. Then, we have

lim
n→∞

∫
S
f (z)q(dz|yn) =

∫
S
f (z)q(dz|y).

Proof For any z ∈ S define

f∗(z) = inf{lim inf
n→∞ f (zn) : zn → z}.
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The function f∗ is lower semicontinuous and f∗(z) = f (z) for any continuity point
z ∈ S of f (hence, f∗(0) = f (0) as well). Therefore, by (A) we infer

∫
S
f∗(z)q(dz|y) =

∫
S
f (z)q(dz|y), for y ∈ S.

By Lemma 3.2 in Serfozo (1982), it follows that

lim inf
n→∞

∫
S
fn(z)q(dz|yn) ≥

∫
S
f∗(z)q(dz|y).

These facts and Lemma 2 yield

lim sup
n→∞

∫
S
fn(z)q(dz|yn) ≤

∫
S
f (z)q(dz|y) ≤ lim inf

n→∞

∫
S
fn(z)q(dz|yn).

Thus, the result follows. �

Lemma 4 Let (B1), (B2), (W1) and (C) hold. Assume that yn ↘ y in S as n → ∞
and f ∈ Xη. Then, it follows that

lim
n→∞

∫
S
f (z)q(dz|yn) =

∫
S
f (z)q(dz|y).

Proof By (B1), we have

∫
S
f (z)q(dz|yn) =

l∑
j=1

λ j (yn)
∫
S
f (z)q j (dz|yn),

where the functions λ j are continuous. If q j is non-atomic, then by Lemma 3 (with
q := q j ), we obtain

∫
S
f (z)q j (dz|yn) →

∫
S
f (z)q j (dz|y). (2)

Suppose that q j admits some atoms and satisfies the stochastic dominance condition.
Since f is non-decreasing, by Corollary 3.9.1(a) in Topkis (1998) , we have

∫
S
f (z)q j (dz|yn) ≥

∫
S
f (z)q j (dz|y) (3)

for all n ∈ N. Using (2) or (3) and Lemma 2, we obtain that

lim inf
n→∞

∫
S
f (z)q j (dz|yn) ≥

∫
S
f (z)q j (dz|y) ≥ lim sup

n→∞

∫
S
f (z)q j (dz|yn).

These inequalities finish the proof. �
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Let φ ∈ F0
2 and Π1(φ) be the set of all strategies π1 for player 1 such that the pair

(π1, φ) is feasible. Define

Vφ(s) := sup
π1∈Π1(φ)

U1(s, π1, φ), s ∈ S.

In below lemmas we assume that (C), (U), (W1)–(W2) hold. In addition, we assume
that (A) or (B1), (B2) are satisfied.

Lemma 5 LetΦ(s) = [0, s−φ(s)] for each s ∈ S. The function Vφ is non-decreasing
and upper semicontinuous and belongs to the space Xη. Moreover, Vφ is the unique
solution to the Bellman equation, i.e.,

Vφ(s) = max
c∈[0,s]

(
u(c) + β

∫
S
Vφ(z)q(dz|s − φ(s) − c)

)

= max
y∈Φ(s)

(
u(s − φ(s) − y) + β

∫
S
Vφ(z)q(dz|y)

)
(4)

for all s ∈ S.

Proof For any function V ∈ Xη define the dynamic programming operator T as
follows:

T V (s) = max
y∈Φ(s)

(
u(s − φ(s) − y) + β

∫
S
V (z)q(dz|y)

)
, s ∈ S.

ByLemma2, the fact that u is continuous and increasing and the function s → s−φ(s)
upper semicontinuous, it follows that the function (s, y) → u(s − φ(s) − y) +
β

∫
S V (z)q(dz|y) is upper semicontinuous. Since the correspondence s → Φ(s) has

a closed graph, it follows by Theorem 2 in Berge (1963) that T V is upper semicon-
tinuous.

Since s → s − φ(s) is non-decreasing, we observe that u(s − φ(s) − y) ≤ u(s′ −
φ(s′) − y) for s < s′ and all y ∈ Φ(s). Hence, T V (s) ≤ T V (s′), because Φ(s) ⊂
Φ(s′).Thus, the above considerations and (W1)–(W2) imply that T V ∈ Xη.We claim
that T is contractive. Indeed, by (W2) for any V1, V2 ∈ Xη we obtain that

|T V1(s) − T V2(s)| ≤ sup
y∈Φ(s)

β

∫
S
|V1(z) − V2(z)|q(dz|y)

≤ αβ sup
s′∈S

|V1(s′) − V2(s′)|
w(s′)

w(s).

Defining the w-norm of any function V ∈ Xη as follows ‖V ‖w := sups∈S
|V (s)|
w(s) , it is

easily seen that the last display implies the inequality

‖T V1 − T V2‖w ≤ αβ‖V1 − V2‖w.
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By the Banach fixed point theorem, there exists a unique function Vφ ∈ Xη

such that T Vφ = Vφ. Note that Xη is a closed subset of the Banach space of
all Borel-measurable functions with the finite w-norm. By standard programming
arguments (see Hernández-Lerma and Lasserre 1999), it follows that Vφ(s) =
supπ1∈Π1(φ) U1(s, π1, φ) for all s ∈ S, which completes the proof. �

Define

Aφ(s) := arg max
y∈Φ(s)

(
u(s − φ(s) − y) + β

∫
S
Vφ(z)q(dz|y)

)
.

Obviously, the set Aφ(s) is non-empty and compact. For any s ∈ S we set

g(φ)(s) := max Aφ(s).

Lemma 6 The mapping s → Aφ(s) is ascending, i.e., if s1 < s2 and y1 ∈
Aφ(s1), y2 ∈ Aφ(s2), then y1 ≤ y2.

Proof Suppose that s → Aφ(s) is not ascending. Then there exist s1 < s2 and
y1 ∈ Aφ(s1), y2 ∈ Aφ(s2) such that y1 > y2. Clearly, the set L := {(s, y) : s ∈
S, y ∈ Φ(s)} is a lattice with the usual component-wise order on the plane R

2.

Thus (s2, y1) and (s1, y2) belong to L. Since u is strictly concave, from the proof of
Lemma 2 in Nowak (2006) and the fact that s2 − φ(s2) > s1 − φ(s1), we conclude
the following

u(s2−φ(s2)−y1)−u(s2−φ(s2)−y2) > u(s1−φ(s1)−y1)−u(s1−φ(s1)−y2). (5)

Addingβ
∫
S Vφ(z)q(dz|y1)−β

∫
S Vφ(z)q(dz|y2) to both sides of (5) and remembering

that y1 ∈ Aφ(s1) and y2 ∈ Aφ(s2), we obtain

0 ≥ u(s2 − φ(s2) − y1) + β

∫
S
Vφ(z)q(dz|y1) − Vφ(s2) >

Vφ(s1) − u(s1 − φ(s1) − y2) − β

∫
S
Vφ(z)q(dz|y2) ≥ 0.

This contradiction implies that the correspondence s → Aφ(s) is ascending. �

Lemma 7 Letψ be any selector of the correspondence s → Aφ(s), i.e.,ψ(s) ∈ Aφ(s)
for all s ∈ S. If ψ is continuous at s0, then Aφ(s0) is a singleton.

Proof Clearly, ψ(0) = 0. Hence, it is enough to consider s0 > 0. Suppose that y1 and
y2 belong to Aφ(s0) and y1 < y2. Since s → Aφ(s) is ascending, we conclude that
ψ is non-decreasing. Therefore, we have lims→s−0

ψ(s) ≤ y1 < y2 ≤ lims→s+0
ψ(s).

This contradicts our assumption that ψ is continuous at s0 ∈ S+. �

Lemma 8 The function g(φ) is the unique non-decreasing and continuous from the
right selector of the correspondence s → Aφ(s).
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Proof Clearly, by Lemma 6 the function g(φ) is non-decreasing. Note that the graph
of the correspondence s → Aφ(s) is closed from the right, i.e., for any sn ↘ s
and yn ∈ Aφ(sn) such that yn converges to some y, it follows that y ∈ Aφ(s).
Therefore, we infer that g(φ) is continuous from the right. Consequently, g(φ) is
upper semicontinuous. The uniqueness is a consequence of Lemma 7. �

Proof of the equilibrium theorem Define the operator L : F0

2 → F0
1 = F0

2 by

Lφ(s) = (s − g(φ)(s))/2, where s ∈ S, φ ∈ F0
2 .

By Lemma 8, Lφ ∈ F0
1 . We must show that L is continuous. Suppose that φn

ω→ φ

as n → ∞. By Proposition 1, we can assume without loss of generality that Vn :=
Vφn

ω→ V in Xη (if necessary take a subsequence). By Proposition 2, we also assume

that ψn := g(φn)
ω→ ψ in Y. Thus, for each n ∈ N, we have

Vn(s) = u(s − φn(s) − ψn(s)) + β

∫
S
Vn(z)q(dz|ψn(s)), for all s ∈ S. (6)

Let S1 ⊂ S be the set of all continuity points of the functions V , φ and ψ. For any
s ∈ S1, Vn(s) → V (s), φn(s) → φ(s) and ψn(s) → ψ(s) as n → ∞. By (6),
Lemma 2 and assumption (U), we obtain that

V (s) ≤ u(s − φ(s) − ψ(s)) + β

∫
S
V (z)q(dz|ψ(s)). (7)

Let s /∈ S1. Since S1 is dense in S and the functions V , ψ and φ are continuous from
the right, we may choose a sequence (sm) in S1 such that sm ↘ s as m → ∞. Thus,
we have

V (sm) ≤ u(sm − φ(sm) − ψ(sm)) + β

∫
S
V (z)q(dz|ψ(sm)).

Letting m → ∞ in the above inequality, we conclude from Lemma 2, the continuity
from the right of V and s → s − φ(s) that (7) holds for all s ∈ S.

On the other hand, for any n ∈ N, s ∈ S and y ∈ [0, s − φn(s)], we have the
following inequality

Vn(s) ≥ u(s − φn(s) − y) + β

∫
S
Vn(z)q(dz|y). (8)

Let Sd be the countable set of discontinuity points of the function V .Note that 0 /∈ Sd .
By S2 we denote the set of all continuity points of the functions V and φ. Further
define S3 as the set of all y ∈ S such that q(Sd |y) = 0. The set S2 is dense in S and
the set S3 is also dense in S either by (A) or (B3). Clearly, by (A) or (B1), the state
0 ∈ S3. Choose any s ∈ S2 ∩ S+ and y ∈ S3 ∩ [0, s − φ(s)). Then, there exists some
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254 A. Jaśkiewicz, A. S. Nowak

N ∈ N such that, y ∈ [0, s − φn(s)] for all n > N . Hence, we have

Vn(s) ≥ u(s − φn(s) − y) + β

∫
S
Vn(z)q(dz|y), n > N .

By the dominated convergence theorem and the fact that y ∈ S3, we have

lim
n→∞

∫
S
Vn(z)q(dz|y) =

∫
S
V (z)q(dz|y).

Therefore, we can conclude that

V (s) ≥ u(s − φ(s) − y) + β

∫
S
V (z)q(dz|y), (9)

for y ∈ [0, s − φ(s)) ∩ S3 and s ∈ S2 ∩ S+. Now let us consider s0 ∈ S and
y0 ∈ [0, s0−φ(s0)].There exist sequences (sm) and (ym) such that sm ↘ s0, ym ↘ y0
as m → ∞ and sm ∈ S2 ∩ S+, ym ∈ S3 ∩ [0, sm −φ(sm)) for all m ∈ N. Observe that
sm − φ(sm) ≥ s0 − φ(s0). Hence, by (9) we obtain

V (sm) ≥ u(sm − φ(sm) − ym) + β

∫
S
V (z)q(dz|ym).

Letting m tend to infinity and making use of Lemma 3 in case of assumption (A) or
of Lemma 4 in case of assumptions (B), the continuity of u and the continuity from
the right of the functions V, s → s − φ(s), we deduce that inequality (9) holds for
s0 ∈ S and y0 ∈ [0, s0 − φ(s0)].

By (7) and (9), we obtain for any s ∈ S that

V (s) = u(s − φ(s) − ψ(s)) + β

∫
S
V (z)q(dz|ψ(s))

= max
y∈[0,s−φ(s)]

(
u(s − φ(s) − y) + β

∫
S
V (z)q(dz|y)

)
. (10)

Since ψ is non-decreasing and upper semicontinuous, from Lemma 8, it follows that
ψ = g(φ). Thus, the operator L is continuous. By the Schauder–Tychonoff fixed
point theorem, there exists φ∗ ∈ F0

2 such that Lφ∗ = φ∗. This implies that φ∗ is the
best response of player 1 to the strategy φ∗ chosen by player 2. Since the game is
symmetric, it follows that (φ∗, φ∗) is a SMPE . �


7 Concluding remarks

This section contains a list of conclusions and open problems:

1. Our result on the equilibrium existence is also valid for bounded state space S =
[0, s̄], with some s̄ > 0. Then, it is enough to put w ≡ 1 in (W1) and (W2).
However, in order to avoid upper-endpoint problems in S, we need to apply the
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trick used, for instance, byDutta andSundaram (1992). They expand the state space
to S∗ = [0, s∗] with some s∗ > s̄ and study a set of investment functions defined
on S∗. Particularly, Dutta and Sundaram (1992) deal with upper semicontinuous
non-decreasing functions on S∗ whose values at s do not exceed s and such that
the value of such a function at s∗ is s∗.

2. The problem of proving the existence of a Nash equilibrium in a stochastic game
of resource extraction with different utility functions for the players seem to be
difficult. Partial results were reported by Amir (1996), Balbus and Nowak (2008),
Jaśkiewicz and Nowak (2015), where specific structures of transition probabilities
were accepted. For example, Amir (1996) analysed so-called “convex transitions”.
More precisely, he assumed that the conditional cumulative distribution function
induced by the transition probability is convex with respect to investments. He
proved the existence of pure stationary Markov perfect equilibria in the class of
Lipschitz continuous strategies. The convexity assumption imposed on the transi-
tion functions made by Amir (1996) is very restrictive. It holds, for example, if the
transition probability is a convex combination of some probability measures on the
state space with coefficients depending on joint investments. This class was also
examinedBalbus andNowak (2008).However, as arguedby Jaśkiewicz andNowak
(2015), this type of transition probabilities makes sense only in the bounded state
space case. The most general class of non-symmetric resource extraction games
was studied by Jaśkiewicz and Nowak (2015), who considered transition proba-
bilities being a convex combinations of transition probabilities depending on the
state space and coefficients depending on a joint investment. Under these condi-
tions they proved the existence of pure stationary Markov perfect equilibria. For
further comments and references the reader is referred to Jaśkiewicz and Nowak
(2018).

3. The problem of an equilibrium existence in non-symmetric stochastic games with
weakly continuous transition probabilities is an open non-trivial problem. There
are two main reasons. First, the state space is uncountable. Second, the payoff
functions for either player i in the auxiliary one-shot game with a continuation
vector function v = (v1, v2) are neither convex nor concave. More precisely, the
function

y → ui (ci ) + β

∫
S
vi (z)q(dz|y), c = (c1, c2)

is neither convex nor concave for some non-decreasing function vi on S. Hence,
we cannot apply the Nash theorem (see Nash 1951). Furthermore, if we allow
to study a general form of the transition probability q(·|s, c), then the auxiliary
games are not supermodular in the sense of Milgrom and Roberts (1990) either.
Therefore, we cannot apply the techniques from lattice programming, see Topkis
(1998). Further examples and a detailed discussion can be found in Jaśkiewicz and
Nowak (2015) and Jaśkiewicz and Nowak (2018).

4. Finally, we would like to pay attention of researchers to the paper of Amir (1989).
It contains some errors that cannot be fixed. Specifically, the limit argument given
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on p. 1349 is incorrect. Therefore, the problem of equilibrium existence in non-
symmetric deterministic dynamic games of resource extraction is still open.
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Jaśkiewicz A, Nowak AS (2018) Non-zero-sum stochastic games. In: Başar T, Zaccour G (eds) Handbook
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