Skip to main content

Advertisement

Log in

Intensity modulated radiation therapy treatment plan optimization

  • Invited Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

In this paper, we provide an overview of the state-of-the-art of optimization models for static radiation therapy treatment planning, focusing in particular on intensity modulated radiation therapy (IMRT) by (i) establishing a novel connection between risk management and radiation therapy treatment planning, and (ii) unifying and contrasting two different modeling approaches. In addition, we discussion recent and ongoing technological developments which show that this area of research is a lively and promising one that can continue to help patients by improving the clinical practice of radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agazaryan N, Solberg TD (2003) Segmental and dynamic intensity-modulated radiotherapy delivery techniques for micro-multileaf collimator. Med Phys 30(7):1758–1765

    Google Scholar 

  • Ahuja RK, Hamacher HW (2005) A network flow algorithm to minimize beam-on-time for unconstrained multileaf collimator problems in cancer radiation therapy. Networks 45(1):36–41

    Google Scholar 

  • Alber M, Nüsslin F (2001) A representation of an NTCP function for local complication mechanisms. Phys Med Biol 46:439–447

    Google Scholar 

  • Aleman DM, Kumar A, Ahuja RK, Romeijn HE, Dempsey JF (2007a) Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. Technical report, Department of Industrial and Systems Engineering, University of Florida. J Glob Optim (forthcoming)

  • Aleman DM, Romeijn HE, Dempsey JF (2007b) A response surface approach to beam orientation optimization in intensity modulated radiation therapy treatment planning. Technical report, Department of Industrial and Systems Engineering, University of Florida. INFORMS J Comput (forthcoming)

  • Aleman DM, Romeijn HE, Dempsey JF (2008) Beam orientation optimization methods in intensity modulated radiation therapy treatment planning. In: Lim G, Lee EK (eds) Optimization in medicine and biology. Taylor and Francis, London, pp 223–251

    Google Scholar 

  • American Cancer Society (2008) Cancer facts & figures. Report. http://www.cancer.org/

  • Baatar D, Hamacher HW, Ehrgott M, Woeginger GJ (2005) Decomposition of integer matrices and multileaf collimator sequencing. Discrete Appl Math 152(1):6–34

    Google Scholar 

  • Bednarz G, Michalski D, Houser C, Huq MS, Xiao Y, Anne PR, Galvin JM (2002) The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys Med Biol 47(13):2235–2245

    Google Scholar 

  • Boland N, Hamacher HW, Lenzen F (2004) Minimizing beam-on time in cancer radiation treatment using multileaf collimators. Networks 43(4):226–240

    Google Scholar 

  • Bortfeld T (1999) Optimized planning using physical objectives and constraints. Semin Radiat Oncol 19(1):20–34

    Google Scholar 

  • Bortfeld T, Burkelbach J, Boesecke R, Schlegel W (1990) Methods of image reconstruction from projections applied to conformal radiotherapy. Phys Med Biol 25(4):435–443

    Google Scholar 

  • Bortfeld TR, Kahler DL, Waldron TJ, Boyer AL (1994) X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 28:723–370

    Google Scholar 

  • Bortfeld T, Chan TCY, Trofimov A, Tsitsiklis JN (2008a) Robust management of motion uncertainty in intensity-modulated radiation therapy. Technical report, Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts. Operat Res (forthcoming)

  • Bortfeld T, Craft D, Dempsey JF, Halabi T, Romeijn HE (2008b) Evaluating target cold spots by use of tail EUDs. Phys Med Biol 71(3):880–889

    Google Scholar 

  • Brahme A (1995) Treatment optimization using physical and radiobiological objective functions. In: Smith AR (ed) Radiation therapy physics. Springer, Berlin, pp 209–246

    Google Scholar 

  • Brahme A (2001) Individualizing cancer treatment: biological optimization models in treatment planning and delivery. Int J Radiat Oncol Biol Phys 49(2):327–337

    Google Scholar 

  • Brahme A, Ågren AK (1987) Optimal dose distribution for eradication of heterogeneous tumours. Acta Oncol 26:377–385

    Google Scholar 

  • Carlsson F (2008) Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy. Med Phys 35(9):3828–3838

    Google Scholar 

  • Carlsson F, Forsgren A (2006) Iterative regularization in intensity-modulated radiation therapy optimization. Med Phys 33(1):225–234

    Google Scholar 

  • Carlsson F, Forsgren A (2008) A conjugate-gradient based approach for approximate solutions to quadratic programs. Technical report, Royal Institute of Technology (KTH), Stockholm, Sweden

  • Carlsson F, Forsgren A, Rehbinder H, Eriksson K (2006) Using eigenstructure of the Hessian to reduce the dimension of the intensity modulated radiation therapy optimization problem. Ann Operat Res 148:81–94

    Google Scholar 

  • Chan TCY, Bortfeld T, Tsitsiklis JN (2006) A robust approach to IMRT optimization. Phys Med Biol 51:2567–2583

    Google Scholar 

  • Chao KSC, Deasy JO, Markman J, Haynie J, Perez CA, Purdy JA (2001) A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys 49(4):907–916

    Google Scholar 

  • Choi B, Deasy JO (2002) The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Phys Med Biol 47:3579–3589

    Google Scholar 

  • Chu M, Zinchenko Y, Henderson SG, Sharpe MB (2005) Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty. Phys Med Biol 50:5463–5477

    Google Scholar 

  • Craft D, Bortfeld T (2008) How many plans are needed in an IMRT multi-objective plan database? Phys Med Biol 53(11):2785–2796

    Google Scholar 

  • Craft D, Halabi T, Bortfeld T (2005) Exploration of tradeoffs in intensity-modulated radiotherapy. Phys Med Biol 50(24):5857–5868

    Google Scholar 

  • Dai J, Zhu Y (2001) Minimizing the number of segments in a delivery sequence for intensity-modulated radiation therapy with a multileaf collimator. Med Phys 28(10):2113–2120

    Google Scholar 

  • Das SK, Marks LB (1997) Selection of coplanar or noncoplanar beams using three-dimensional optimization based on maximum beam separation and minimized nontarget irradiation. Int J Radiat Oncol Biol Phys 38:643–655

    Google Scholar 

  • Dempsey JF, Romeijn HE, Li JG, Low DA, Palta JR (2005) A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map optimization. Med Phys 32(2):380–388

    Google Scholar 

  • Engel K (2005) A new algorithm for optimal multileaf collimator field segmentation. Discrete Appl Math 152(1):35–51

    Google Scholar 

  • Fallone G, Carlone M, Murray B, Rathee S, Steciw S (2007) Investigations in the design of a novel linac-MRI system. Int J Radiat Oncol Biol Phys 69(3, Suppl. 1):S19. Abstract, 49th annual meeting of the American Society for Therapeutic Radiology and Oncology

    Google Scholar 

  • Ferris MC, Voelker MM (2004) Fractionation in radiation treatment planning. Math Program 101:387–413

    Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  Google Scholar 

  • Fraass B, Balter J, Ten Haken R, McShan D (2003) Margins, errors and plan optimization. Radiother Oncol 68(Suppl. 1):S34

    Google Scholar 

  • Goitein M (1987) Tumour control probability for an inhomogeneously irradiated target volume. In: Evaluation of treatment planning for particle beam radiotherapy. National Cancer Institute

  • Haas OC, Burnham KJ, Mills J (1998) Optimization of beam orientation in radiotherapy using planar geometry. Phys Med Biol 43:2179–2193

    Google Scholar 

  • Hall EJ (1993) Radiobiology for the radiologist, 4th edn. Lippincott Williams & Wilkins Publishers, Hagerstown

    Google Scholar 

  • Hamacher HW, Küfer K-H (2002) Inverse radiation therapy planning—a multiple objective optimization approach. Discrete Appl Math 118:145–161

    Google Scholar 

  • Hardy GH, Littlewood JE, Pólya G (1952) Inequalities. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffmann AL, Siem AYD, den Hertog D, Kaanders JHAM, Huizenga H (2006) Derivative-free generation and interpolation of convex Pareto optimal IMRT plans. Phys Med Biol 51(24):6349–6369

    Google Scholar 

  • Hoffmann AL, den Hertog D, Siem AYD, Kaanders JHAM, Huizenga H (2008) Convex reformulation of biologically-based multi-criteria IMRT optimisation including fractionation effects. Phys Med Biol 53(22):6345–6362

    Google Scholar 

  • Holmes T, Mackie TR (1994) A filtered backprojection dose calculation method for inverse treatment planning. Med Phys 21:321–333

    Google Scholar 

  • Hutchinson Encyclopaedia (2000) Helicon Publishing

  • ICRU (International Commission on Radiation Units and Measurements) (1993) Prescribing, recording and reporting photon beam therapy. Report 50

  • ICRU (International Commission on Radiation Units and Measurements) (1999) Prescribing, recording and reporting photon beam therapy. Supplement to report 50

  • Jackson A (2001) Partial irradiation of the rectum. Semin Radiat Oncol 11:215–223

    Google Scholar 

  • Jackson A, Kutcher GJ, Yorke ED (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20:613–625

    Google Scholar 

  • Kalinowski T (2004) The algorithmic complexity of the minimization of the number of segments in multileaf collimator field segmentation. Technical report, Fachbereich Mathematik, Universität Rostock, Rostock, Germany, August 2004

  • Kalinowski T (2005) A duality based algorithm for multileaf collimator field segmentation with interleaf collision constraint. Discrete Appl Math 152(1):52–88

    Google Scholar 

  • Kamath S, Sahni S, Li J, Palta J, Ranka S (2003) Leaf sequencing algorithms for segmented multileaf collimation. Phys Med Biol 48(3):307–324

    Google Scholar 

  • Kamath S, Sahni S, Palta J, Ranka S (2004a) Algorithms for optimal sequencing of dynamic multileaf collimators. Phys Med Biol 49(1):33–54

    Google Scholar 

  • Kamath S, Sahni S, Palta J, Ranka S, Li J (2004b) Optimal leaf sequencing with elimination of tongue-and-groove underdosage. Phys Med Biol 49(3):N7–N19

    Google Scholar 

  • Kamath S, Sahni S, Ranka S, Li J, Palta J (2004c) A comparison of step-and-shoot leaf sequencing algorithms that eliminate tongue-and-groove effects. Phys Med Biol 49(14):3137–3143

    Google Scholar 

  • Kamath S, Sahni S, Ranka S, Li J, Palta J (2004d) Optimal field splitting for large intensity-modulated fields. Med Phys 31(12):3314–3323

    Google Scholar 

  • Küfer K-H, Hamacher HW, Bortfeld TR (2000) A multicriteria optimization approach for inverse radiotherapy planning. In Bortfeld TR, Schlegel W (eds) Proceedings of the XIIIth ICCR, Heidelberg, Germany, pp 26–29

  • Küfer K-H, Monz M, Scherrer A, Trinkhaus HL, Bortfeld T, Thieke C (2003) Intensity modulated radiotherapy—a large scale multi-criteria programming problem. OR Spektrum 25:223–249

    Google Scholar 

  • Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 16:1623–1630

    Google Scholar 

  • Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hårdemark B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radiat Oncol 86(1):25–29

    Google Scholar 

  • Lahanas M, Schreibmann E, Baltas D (2003) Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys Med Biol 48:2843–2871

    Google Scholar 

  • Langen KM, Jones DTL (2001) Organ motion and its management. Med Phys 50(1):265–278

    Google Scholar 

  • Langer M, Brown R, Urie M, Leong J, Stracher M, Shapiro J (1990) Large-scale optimization of beam weights under dose-volume restrictions. Int J Radiat Oncol Biol Phys 18(4):887–893

    Google Scholar 

  • Langer M, Thai V, Papiez L (2001) Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf collimators. Med Phys 28(12):2450–2458

    Google Scholar 

  • Lee EK, Fox T, Crocker I (2000) Optimization of radiosurgery treatment planning via mixed integer programming. Med Phys 27(5):995–1004

    Google Scholar 

  • Lee EK, Fox T, Crocker I (2003) Integer programming applied to intensity-modulated radiation treatment planning. Ann Operat Res 119:165–181

    Google Scholar 

  • Lenzen F (2000) An integer programming approach to the multileaf collimator problem. Master’s thesis, University of Kaiserslautern, Department of Mathematics, Kaiserslautern, Germany, June 2000

  • Lim GJ, Choi J (2006) A two-stage integer programming approach for optimizing leaf sequence in IMRT. Technical report, Department of Industrial Engineering, University of Houston, Houston, Texas

  • Lim GJ, Choi J, Mohan R (2008) Iterative solution methods for beam angle and fluence map optimization in intensity modulated radiation therapy treatment planning. OR Spectrum 30(2):289–309

    Google Scholar 

  • Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Res Rep 8:S13–19

    Google Scholar 

  • Lyman JT, Wolbarst AB (1987a) Optimization of radiation therapy III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13:103–109

    Google Scholar 

  • Lyman JT, Wolbarst AB (1987b) Optimization of radiation therapy IV: a dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 13:103–109

    Google Scholar 

  • Mageras GS, Mohan R (1993) Application of fast simulated annealing to optimization of conformal radiation treatments. Med Phys 20:639–647

    Google Scholar 

  • Maguire PD, Sibley GS, Zhou S-M, Jamieson TA, Light KL, Antoine PA, Herndon JE, Anscher MS, Marks LB (1999) Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys 45:97–103

    Google Scholar 

  • McGary JE, Grant W III, Woo SY (2000) Applying the equivalent uniform dose formulation based on the linear-quadratic model to inhomogeneous tumor dose distribution: caution for analyzing and reporting. J Appl Clin Med Phys 1(4):126–137

    Google Scholar 

  • Men C, Romeijn HE, Taşkın ZC, Dempsey JF (2007) An exact approach to direct aperture optimization in IMRT treatment planning. Phys Med Biol 52(24):7333–7352

    Google Scholar 

  • Men C, Romeijn HE, Saito A, Dempsey JF (2008) A new stochastic programming approach to incorporating interfraction motion in IMRT treatment planning. Working paper

  • Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic, Boston

    Google Scholar 

  • Munro TR, Gilbert CW (1961) The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol 34:246–251

    Google Scholar 

  • Murphy GP, Lawrence WL, Lenlard RE (eds) (1995) American cancer society textbook on clinical oncology. The American Cancer Society, Atlanta

    Google Scholar 

  • Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24(1):103–110

    Google Scholar 

  • Niemierko A (1999) A generalized concept of equivalent uniform dose. Med Phys 26(6):1100

    Google Scholar 

  • Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture. Radiat Oncol 20:166–176

    Google Scholar 

  • Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25:135–145

    Google Scholar 

  • Pareto V (1971) Manual of political economy. AM Kelley, New York. Translation of Manuale di economia politica (1906)

    Google Scholar 

  • Perez CA, Brady LW (1998) Principles and practice of radiotherapy, 3rd edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Preciado-Walters F, Langer M, Rardin R, Thai V (2004) A coupled column generation, mixed integer approach to optimal planning of intensity modulated radiation therapy for cancer. Math Program 101(2):319–338

    Google Scholar 

  • Preciado-Walters F, Rardin R, Langer M, Thai V (2006) Column generation for IMRT cancer therapy optimization with implementable segments. Ann Operat Res 148:65–79

    Google Scholar 

  • Que W (1999) Comparison of algorithms for multileaf collimator field segmentation. Med Phys 26(11):2390–2396

    Google Scholar 

  • Que W, Kung J, Dai J (2004) “Tongue-and-groove” effect in intensity modulated radiotherapy with static multileaf collimator fields. Phys Med Biol 49(3):399–405

    Google Scholar 

  • Romeijn HE, Ahuja RK, Dempsey JF, Kumar A, Li JG (2003) A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning. Phys Med Biol 48(21):3521–3542

    Google Scholar 

  • Romeijn HE, Dempsey JF, Li JG (2004) A unifying framework for multi-criteria fluence map optimization models. Phys Med Biol 49:1991–2013

    Google Scholar 

  • Romeijn HE, Ahuja RK, Dempsey JF, Kumar A (2005) A column generation approach to radiation therapy treatment planning using aperture modulation. SIAM J Optim 15(3):838–862

    Google Scholar 

  • Romeijn HE, Ahuja RK, Dempsey JF, Kumar A (2006) A new linear programming approach to radiation therapy treatment planning problems. Operat Res 54(2):201–216

    Google Scholar 

  • Rosen I, Lam KS, Lane RG, Langer M, Morrill SM (1995) Comparison of simulated annealing algorithms for conformal therapy treatment planning. Int J Radiat Oncol Biol Phys 33(5):1091–1099

    Google Scholar 

  • Schreibmann E, Lahanas M, Xing L, Baltas D (2004) Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy. Phys Med Biol 49:747–770

    Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Google Scholar 

  • Shepard DM, Ferris MC, Olivera GH, Mackie TR (1999) Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev 41(4):721–744

    Google Scholar 

  • Shepard DM, Ferris MC, Reckwerdt PJ, Mackie TR (2000) Iterative approaches to dose optimization in tomotherapy. Phys Med Biol 45:69–90

    Google Scholar 

  • Shepard DM, Earl MA, Li XA, Naqvi S, Yu C (2002) Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29(6):1007–1018

    Google Scholar 

  • Siebers JV, Lauterbach M, Keall PJ, Mohan R (2002) Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization. Med Phys 29(6):952–959

    Google Scholar 

  • Siochi RAC (1999) Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int J Radiat Oncol Biol Phys 43(43):671–689

    Google Scholar 

  • Siochi RAC (2004) Modifications to the IMFAST leaf sequencing optimization algorithm. Med Phys 31(12):3267–3278

    Google Scholar 

  • Siochi RAC (2007) Variable depth recursion algorithm for leaf sequencing. Med Phys 34(2):664–672

    Google Scholar 

  • Sir MY, Pollock SM, Epelman MA, Lam KL, Ten Haken RK (2008) Ideal spatial radiotherapy dose distributions subject to positional uncertainties. Phys Med Biol 51(24):6329–6347

    Google Scholar 

  • Stavrev P, Hristov D, Warkentin B, Sham E, Stavreva N, Fallone BG (2003) Inverse treatment planning by physically constrained minimization of a biological objective function. Med Phys 30(11):2948–2958

    Google Scholar 

  • Stavreva NA, Stavrev P, Warkentin B, Fallone BG (2003) Investigating the effect of cell repopulation on the tumor response to fractionated external radiotherapy. Med Phys 30(5):735–742

    Google Scholar 

  • Steel GG (2002) Basic clinical radiobiology, 3rd edn. Arnold, Sevenoaks

    Google Scholar 

  • Steuer R (1986) Multicriteria optimization: theory, computation and applications. Wiley, New York

    Google Scholar 

  • Stroom JC, Heijmen BJM (2003) Usefulness of margins for normal structures. Radiother Oncol 68(Suppl. 1):S34

    Google Scholar 

  • Taşkın ZC, Smith JC, Romeijn HE, Dempsey JF (2008) Optimal multileaf collimator leaf sequencing in IMRT treatment planning. Technical report, Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida

  • Thieke C, Bortfeld T, Küfer KH (2003a) New optimization concepts in inverse treatment planning. Radiat Oncol 68(Suppl. 1):S2. Abstract, pre-meeting workshop on “optimization of IMRT”, 7th biennial ESTRO meeting on physics and radiation technology for clinical radiotherapy, Geneva, Switzerland

    Google Scholar 

  • Thieke C, Bortfeld T, Niemierko A, Küfer KH, Nill S (2003b) Multicriteria optimization in inverse radiotherapy planning. Radiat Oncol 68(Suppl. 1):S44. Abstract, 7th biennial ESTRO meeting on physics and radiation technology for clinical radiotherapy, Geneva, Switzerland

    Google Scholar 

  • Thieke C, Bortfeld T, Niemierko A, Nill S (2003) From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med Phys 30(9):2332–2339

    Google Scholar 

  • Tsien C, Eisbruch A, McShan D, Kessler M, Marsh R, Fraass B (2003) Intensity-modulated radiation therapy (IMRT) for locally advanced paranasal sinus tumors: Incorporating clinical decisions in the optimization process. Int J Radiat Oncol Biol Phys 55(3):776–784

    Google Scholar 

  • Van Santvoort JPC, Heijmen BJM (1996) Dynamic multileaf collimation without ‘tongue-and-groove’ underdosage effects. Phys Med Biol 41(10):2091–2105

    Google Scholar 

  • Webb S (1989) Optimization of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 34:1349–1370

    Google Scholar 

  • Webb S (1992) Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by multiple collimator. II. Inclusion of two-dimensional modulation of X-ray intensity. Phys Med Biol 37:1689–1704

    Google Scholar 

  • Webb S, Lomax T (2001) There is no IMRT? Phys Med Biol 46:L7–L8

    Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 15:751–759

    Google Scholar 

  • Withers HR, McBride WH (1998) Biologic basis of radiation therapy. In: Perez CA, Brady LW (eds) Principles and practice of radiotherapy. Lippincott-Raven, Philadelphia, pp 79–118, chap 2

    Google Scholar 

  • Wolbarst AB (1984) Optimization of radiation therapy II: the critical-voxel method. Int J Radiat Oncol Biol Phys 10:741–745

    Google Scholar 

  • Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52(1):224–235

    Google Scholar 

  • Xia P, Verhey LJ (1998) Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments. Med Phys 25(8):1424–1434

    Google Scholar 

  • Xing L, Chen GTY (1996) Iterative methods for inverse treatment planning. Phys Med Biol 41:2107–2123

    Google Scholar 

  • Yang Y, Xing L (2004) Inverse treatment planning with adaptively evolving voxel-dependent penalty scheme. Med Phys 31(10):2839–2844

    Google Scholar 

  • Yorke ED, Jackson A, Kutcher GJ, Ling CC (1993) Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Radiother Oncol 26:226–237

    Google Scholar 

  • Yu CX, Jaffray DA, Wong JW (1998) The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 43:91–104

    Google Scholar 

  • Zaider M, Minerbo GN (2000) Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys Med Biol 45:279–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Edwin Romeijn.

Additional information

This invited paper is discussed in the comments available at: http://dx.doi.org/10.1007/s11750-008-0065-0, http://dx.doi.org/10.1007/s11750-008-0066-z, http://dx.doi.org/10.1007/s11750-008-0067-y, http://dx.doi.org/10.1007/s11750-008-0068-x, http://dx.doi.org/10.1007/s11750-008-0069-9.

This work was supported by the National Science Foundation under grant no. DMI-0457394/CMMI-0852727.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romeijn, H.E., Dempsey, J.F. Intensity modulated radiation therapy treatment plan optimization. TOP 16, 215–243 (2008). https://doi.org/10.1007/s11750-008-0064-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-008-0064-1

Keywords

Mathematics Subject Classification (2000)

Navigation