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Poisson excess relative risk models: new
implementations and software

Manuel Higueras1,2,3 and Adam Howes2

Abstract

Two new implementations for fitting Poisson excess relative risk methods are proposed for as-
sumed simple models. This allows for estimation of the excess relative risk associated with a
unique exposure, where the background risk is modelled by a unique categorical variable, for
example gender or attained age levels. Additionally, it is shown how to fit general Poisson linear
relative risk models in R. Both simple methods and the R fitting are illustrated in three examples.
The first two examples are from the radiation epidemiology literature. Data in the third example
are randomly generated with the purpose of sharing it jointly with the R scripts.
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1. Introduction

The excess relative risk (ERR) represents the additional risk of disease (e.g., leukaemia,
brain tumour) per unit of exposure (e.g., absorbed dose of ionising radiation). In a linear
ERR model with d exposures, the risk is modelled by

eη

⎛

⎝1+
d
∑

j=1

β jD
( j)

⎞

⎠ ,

where each parameter β j is the ERR associated with the absorbed dose D( j). The risk is
represented by the product of the background risk term, eη, and the term within paren-
thesis, which is the relative risk. Poisson linear ERR models can be used to calculate
the ERR in longitudinal cohort studies with active follow-up. It is assumed that
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where Ci and PYi are the number of disease cases and the number of person-years of
follow-up, and D( j)

i is the mean dose (weighted by the person-years) of exposure j
for stratum i = {1, . . . ,n} respectively (BEIR VII Phase 2, 2006). The most common
situation in ERR models is to have only one exposure variable. More complicated ERR
models with effect modification of the dose-response are also often reported, e.g. Grant
et al. (2017).
The background risk can be modelled by m covariates, i.e. ηi = α0+

∑m
k=1αkx

(k)
i .

These covariates are usually time-dependent variables, e.g. attained age or transplant
status. The model (1) is not the canonical log-linear Poisson model (McCullagh and
Nelder, 1989). Since it mixes both log-linear and linear terms it is a generalised non-
linear model.
In this work, Poisson ERR models with simple forms are studied to obtain estimates

in closed or almost closed form. This allows calculations to be made faster and more
accurate. As an alternative to other implementations in the literature, such as Epicure
(Preston et al., 1993) and SAS (SAS Institute Inc., Cary, North Carolina) (Richardson,
2008), the software R (R Core Team, 2017) was used to fit general Poisson ERRmodels.
Three applied examples are detailed, and the data and R scripts of the third example are
included as supplementary material.

2. Simple ERR model

A simple ERR model may be defined by assuming one exposure, d = 1, and that the
background risk linear predictor, ηi, is of the form α1+

∑K
k=2αk1{k}(xi), where xi repre-

sents a categorical variable with K levels. This model is simple, with only one exposure,
and one categorical covariate in the background risk term.
Following these assumptions

Ci ∼ Pois
(

PYie
α1+

∑K
k=2αk1{k}(xi) (1+βDi)

)

. (2)

Let �α = {α1, . . . ,αK} and X = {C,PY,D,x}, then the likelihood of the parameter set
Θ= {�αβ} is given by

L(Θ|X) =
n

∏
i=1

[PYie
α1+

∑K
k=2αk1{k}(xi)(1+βDi)]

Ci exp(−PYieα1+
∑K

k=2αk1{k}(xi)(1+βDi))

Ci!
(3)

and the log-likelihood is
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l(Θ|X) = log(L(Θ|X)) =
n
∑

i=1

[

Ci(logPYi+α1+
K
∑

k=2

αk1{k}(xi)+ log(1+βDi))

]

−
n
∑

i=1

PYie
α1+
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k=2αk1{k}(xi)(1+βDi)−

n
∑

i=1

logCi!.

(4)

For this model two implementations are proposed, one is frequentist and the other is
Bayesian. The frequentist implementation provides a closed form of the profile likeli-
hood of β and the Bayesian provides the marginal posterior for β also in a closed form.

2.1. Profile likelihood and maximum likelihood estimator

A profile likelihood CI (PLCI) for the ERR parameter is preferred to the typical Wald
CI because the likelihood function of ERR models is usually non-normal in shape. Let
L(Θ|X) be the likelihood function as in 3, then the profile likelihood of β is

L1(β|X) =max
θ
L(θ,β|X).

The (1−a) ·100% PLCI are the values of β that meet the requirement

log(L1(β|X))> l̂−χ21,1−a/2,

where l̂ = l(Θ̂|X) is the maximum value of the log-likelihood function and χ21,1−a is the
1−a quantile of a chi-squared distribution with 1 degree of freedom. Note that L1(β|X)
is the likelihood of a Poisson GLM: C ∼ Pois(PY (1+βD)eη) where PY (1+ βD) is
the offset. In general, for only one exposure the profile likelihood of the ERR is the
likelihood of a Poisson GLM with canonical logarithm link.
Assuming a simple model as (2), the profile likelihood for β can be calculated by

solving
⎧
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∂ l
∂α1

= S− eα1
(

T1+
K
∑

k=2

Tke
αk

)

= 0

∂ l
∂αk

= Sk−Tkeα1+αk = 0, k = {2, . . . ,K}
,

where S=
∑n

i=1Ci, Sk =
∑

i|xi=kCi, and Tk =
∑

i|xi=k PYi(1+βDi). Let�α(β) = {α1(β),
. . . ,αK(β)} then the profile likelihood for β is L1(β) = L(�α(β),β|X) where

α1(β) = log

(

S−
K
∑

k=2

Sk

)

− log(T1) ,

αk(β) = log(Sk)− log(Tk)−α1(β), k = {2, . . . ,K}.
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To obtain the maximum likelihood estimators of the parameters, the partial derivative
of the log-likelihood with respect β is evaluated at �α=�α(β), i.e.

∂ l
∂β

∣

∣

∣

∣

�α=�α(β)

=
n
∑

i=1

CiDi

1+βDi
− eα1(β)R1− eα1(β)

K
∑

k=2

eαk(β)Rk = 0,

where Rk =
∑

i|xi=k PYiDi. This equation is solved numerically to get the estimator β̂

and the rest of the estimators are �̂α=�α(β̂).
The likelihood ratio test p-value for null hypothesis β = 0 is

P
(

χ21 > l(�α(β̂), β̂|X)− l (�α(0),0|X)) ,

where χ21 is a chi-squared distribution with 1 degree of freedom.
It is possible that the PLCI bound does not converge. In this situation, the Wald-type

CI bound is usually reported. This can be calculated by the Hessian matrix,
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,

and evaluating it at the maximum likelihood estimator, i.e. H(�α(β̂), β̂). The variance-
covariance matrix is −H(�α(β̂), β̂)−1.

2.2. Posterior ERR

Bayesian analysis combines prior information, in the form of probability distributions,
with the likelihood function of an assumed model, providing posterior results as proba-
bility distributions too. The continuous version of Bayes’ theorem establishes

P(Θ|X) = L(Θ|X)P(Θ)
∫

L(Θ|X)P(Θ)dΘ, (5)

where Θ is the continuous parameter set, X is the observed data set, L(Θ|X) is the
likelihood function, P(Θ) is the prior probability density function of Θ and P(Θ|X) is
the posterior probability density of Θ given data X . See, for instance Christensen et al.
(2011), for further description.
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Following model (2): X , Θ and L(Θ|X) are as stated in Section 2. Assuming all αk’s
and β are independent, the prior probability density is

P(Θ) = P(β)
K

∏
k=1

P(αk).

It is also assumed that all αk’s priors are non informative, such that the probability is
the same for all the values in the support of the parameters. This leads to the following
improper uniform priors:

αk ∼ U (−∞,+∞), k = {1 . . .K} (6)

and a prior for β open to any distribution with support bounded below by −1/max(D),
to ensure the Poisson intensity is positive. The Bayesian framework affords the defini-
tion of improper prior distributions.
Applying Bayes’ theorem (5), the posterior of Θ is

P(Θ|X)∝ P(β) ·L(Θ|X)

∝ P(β)
n

∏
i=1

(PYie
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Ci exp(−PYieα1+
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·

·
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(7)

The goal here is to get the marginal posterior of the ERR, the posterior distribution
of β. Let �α−1 = (α2, . . . ,αK), the first step is to calculate the joint marginal posterior of
(�α−1,β) which it is proportional to the integral of expression (7) over α1, i.e.

P(�α−1,β|X) ∝ P(β)
∫ +∞

−∞
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[
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= P(β)
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(8)

Then the marginal posterior of the ERR is proportional to the multiple integral of Ex-
pression (8) over �α−1,
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Consequently,
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where N is the normalizing constant
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that is calculated by numerical integration (there is no analytical solution). The prob-
ability density (10) does not have a recognizable form, but this is not unusual when
dealing with Bayesian analysis.
The integrals in expressions (8) and (9) are calculated by recursive integration by

parts.

3. Poisson ERR fitting in R

Cohort studies in radiation epidemiology are usually huge, and hence maximum likeli-
hood estimation of the model parameters is computationally intensive. This computa-
tional load increases for the calculation of the profile likelihood confidence intervals.
As mentioned in Section 1 a general ERR model has the form

Ci ∼ Pois
⎛

⎝PYie
α0+

∑m
k=1αkx

(k)
i

⎛

⎝1+
d
∑

j=1

β jD
( j)
i

⎞

⎠

⎞

⎠ . (12)

Let�α= {α0, . . . ,αm} and �β = {β1, . . . ,βd}, the log-likelihood function of of the param-
eter set Θ=

{

�α,�β
}
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The gradient of the log-likelihood function can be efficiently defined by the following
expressions

∂ l
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= �S− [(PY ◦ (1+�β ·D)◦E) ·A],
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E = exp
(

�α ·AT) , �S =C ·A,

and operators ◦ and � represents the Hadamard product and division respectively.
In cases where the PLCI bound does not converge, the Hessian can be calculated

using the following second-order partial derivatives of the log-likelihood to calculate
the Wald-type CI bound,

∂ 2l
∂αt∂αq

= −eα0Tt,q, t,q = {0, . . . ,m},

∂ 2l
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2 , t,q= {1, . . . ,d},
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where
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(k)
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In R (version 3.5.1), by means of the maxLik() function from the maxLik package
(Henningsen and Toomet, 2011) (version 1.3.4), model (12) can be fitted by defining the
log-likelihood function (13). For faster and more accurate results, the gradient function
implemented as in (14) can be included in the maxLik() function.
The R script for the results in Section 4.3 is provided as supplementary material, as

a reference for the R implementation of model (12) fitting.
ERR models are usually fitted by Epicure, a very specialised proprietary software,

which is the gold standard in radiation epidemiology practice. In recent years, some
studies have been published using SAS, e.g. Journy et al. (2015), but there is not a
SAS Stored Process for this aim. However, there are some SAS macros for fitting ERR
models and calculating PLCI’s, e.g. in Richardson (2008) for Poisson models by means
of PROC NLMIXED. In Grant et al. (2017), an R routine was developed to analyze the
Life Span Study data of a-bomb survivors in Hiroshima and Nagasaki, by means of the
gnm() function in package gnm (Turner and Firth, 2018). There is also an R package
called linERR which fits ERR models for censored survival data (Morinña, 2016).
This is proposed as a free licence and open source alternative of Epicure’s AMFIT

module, which is used to fit Poisson ERR models. Moreover, the R routines in Grant
et al. (2017) also cover this purpose, in fact they also allow to fit more complex models
with dose-effect modification.
The previous step to fitting the Poisson ERR model is to generate the person-years

table. These tables are created by stratifying by categories of different variables, e.g.
attained age, the original censored data. For each cell of the table, the accumulated
person-years and events are calculated. In Epicure the module DATAB generates these
tables. Further work in this project includes the creation of an R package with tools to
fit Poisson ERR models, calculate PLCI’s and generate person-years tables. Function
pyears() in the survival package (Therneau, 2015) builds person-time tables, but for
non-dynamic exposures.

4. Practical examples

Two applied examples for data from the literature are given. The third example is the
application of the proposed implementations here to a subset from the first example data
set. This third example is presented to facilitate reproducible and replicable research,
because the data sets of the first two examples are not shareable.
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The ERR is per mGy (milligray) in all examples shown here.

4.1. Pearce et al. 2012

Pearce et al. (2012) analysed the risk of leukaemia and brain tumours in young patients
who were first underwent computed tomography (CT) scans in National Health Service
hospitals in England, Wales, or Scotland in a 23 years retrospective cohort study. In
the leukaemia follow-up, there were 74 leukaemia diagnosis for 178,604 patients, and
a total of 1,720,984 person-years. The person-year table was built assuming 2 years
exclusion and lag periods.
A Poisson ERR model is assumed with unique exposure (the accumulated ionising

radiation dose), and the background risk is modelled by

η = α11ai<5+α215≤ai<20+α3120≤ai<30+α4130≤ai<35+α51ai≥35

where ai is the attained age. This model has the same form as the simple model in
Section 2: one exposure and baseline rate modelled by a unique categorical variable.
Following the implementation in Section 2.1, the maximum likelihood estimate of

the ERR is β̂= 0.0362 and its 95% PLCI is (0.0052,0.1198)with p-value 0.0097. These
values match with those shown in Pearce et al. (2012).
Following the implementation in Section 2.2 and considering β∼U (−1/max(D)=

−0.0015,+∞), Figure 1 shows the posterior density function of the ERR following
Equation (10). The modal posterior ERR value is 0.0361 and its 95% highest posterior
density (HPD) interval is (0.0023, 0.1460).
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Figure 1: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.1.
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One of the big advantages of the Bayesian framework is that it is possible to calculate
the posterior probability of a parameter being contained by a given interval. For instance
in this case there is a posterior probability of 0.5111 for the ERR being greater than
0.050.
In order to compare this model with improper flat priors to a model with informative

priors, a model with the following priors is assumed

�α ∼ N ([−10,0,0,0,0]T,0.1 · I5),
β ∼ Gamma(1.1,5).

(15)

I5 is the identity matrix of size 5. The parametrization of the multivariate normal dis-
tribution is represented by the mean vector and precision matrix, and for the gamma
distribution by the shape and rate values. The posterior distribution of the ERR is drawn
using JAGS (version 4.3.0) (Plummer (2003)). The modal posterior ERR value is 0.0377
and its 95% HPD interval is (0.0042, 0.114). This MCMC model has 2 chains of 50,000
iterations after 1000 burning iterations and thinning interval 10. It is computational
intensive, it takes around 20 hours.
Although both the Bayesian and the frequentist methods provide estimation and un-

certainty results, when comparing them it is important to note that they represent dif-
ferent foundational approaches. In particular, the frequentist method assumes that the
parameter is a fixed value and the maximum likelihood estimator is a random variable
whereas the Bayesian method assumes the opposite.

4.2. Harbron et al. 2018

Harbron et al. (2018) analysed the risk of leukaemia and lymphoma in patients who
underwent cardiac catheterizations while aged 22 years or younger. There were 36 cases
for 9,467 patients, and a total of 74,405.88 person-years at risk in this study. Doses were
lagged by 2 years. The exclusion period was also 2 years.
To calculate the ERR, a Poisson ERRmodel was assumedwith unique exposure with

background risk as

η = α11ai<5+α215≤ai<10+α3110≤ai<15+α4115≤ai<20+α5120≤ai<25+α61ai≥25+Ti

where ai is the attained age and Ti represents the status of organ transplantation. Note
that this model does not have the same structure as the simple model in Section 2.
In Harbron et al. (2018) this model was fitted in R as stated in Section 3. The max-

imum likelihood estimate of the ERR is β̂ = 0.0180, and its 95% PLCI is (−0.0021,
0.0961) with p-value 0.1084.
Assuming a simple model with background risk modelled only by the transplant

status, the results for the two methods are:
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Figure 2: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.2.

• Following the method in Section 2.1 the maximum likelihood estimate of the ERR
is β̂ = 0.0214 and its 95% PLCI is (−0.0008, 0.1049) with p-value = 0.0661.

• Following the method in Section 2.2 and considering β ∼ U (−1/max(D) =
−0.0030,1), Figure 2 shows the posterior density function of the ERR follow-
ing Equation (10). The modal posterior ERR value is 0.0215 and its 95% HPD is
(−0.0030, 0.2125), and P(β|X > 0.050) = 0.4091.

4.3. Sub-cohort

A 14,000 random row subset of the person-years table from the leukaemia analysis in
Section 4.1, with information of accumulated person-years, weightedmean accumulated
dose, sex and weighted mean attained age was generated. In this sub-cohort there are 9
leukaemia cases in a total of 158,953.3 person-years.
A Poisson ERR model is assumed, with unique exposure and background risk mod-

elled by η= α0+α1ai, where ai is the attained age. The attained age is not a categorical
variable, so this model does not have the same structure as the simple model in Section 2.
Fitting this model in R as stated in Section 3, the maximum likelihood estimate of

the ERR is β̂ = 0.0247 (it agrees with the result returned by gnm()), and its 95% PLCI is
(−0.0553∗, 0.3341) with p-value 0.4535. The symbol ∗ denotes the bound is Wald-type.
To check the effect of gender on the ERR, an interaction between the dose and the

sex is added to the previous model, i.e. the ERR term is (1+β1Di+β2FiDi where Fi is
the indicator of female patient.
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Figure 3: Posterior probability density of the ERR (solid line) and its 95% HPD (shaded grey) in Sec-
tion 4.3.

This can be fitted as a model with two exposures, Di and FiDi, and the ERR results
0.0039 for male and 0.0541 for female, this is β̂1 = 0.0039 and β̂2 = 0.0502, but the
female effect is not significant because the likelihood ratio test p-value for testing β2 = 0
is 0.3059.
Now, assuming a simple model with background risk modelled by three categories

of attained age, i.e.
η = α11ai<10+α2110≤ai<15+α31ai≥15,

the results for the two methods are:

• Following the method in Section 2.1 the maximum likelihood estimate of the ERR
is β̂ = 0.0247 and its 95% PLCI is (−0.0584∗, 0.3659) with p-value = 0.3884.

• Following the method in Section 2.2 and considering β ∼ U (−1/max(D) =
−0.0015,1), Figure 3 shows the posterior density function of the ERR following
Equation (10). The modal posterior ERR value is 0.0247 and its 95% HPD inter-
val is (−0.0015, 0.7717), and P(β|X > 0.050) = 0.7724. If β ∼ Gamma(1.1,5),
the modal posterior ERR value is 0.0234 and its 95% HPD interval is (0, 0.3294).
Analogously to example at Section 4.1, an MCMC model is applied to draw the
posterior of the ERR, assuming the same priors (with the difference of the dimen-
sion of �α, i.e. �α ∼ N ([−10,0,0,0,0]T,0.1 · I3)), the modal posterior ERR value
is 0.0346 and its 95% HPD interval is (0.0001, 0.3073).
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5. Conclusion

The simple methods presented here for estimating the ERR in radiation epidemiology
follow-up studies are easy to implement. Although these models have restricted forms,
they cover a wide range of situations. For instance, the leukaemia analysis in Pearce et
al. (2012) was performed with this type of model. Additionally, they can be used to get
sensible initial values for fitting ERR models with more complex structures.
R is an open-source statistical software program with a free license and large user

community. As such, it is well suited for the development of reproducible and repli-
cable research. In this work an R script for fitting Poisson ERR models is shared and
guidelines for implementing ERR models in R are given in Section 3.
Further work in this project will lead to the development of an R package with tools

to fit Poisson ERRmodels, build person-years tables with time-dependent variables, and
calculate PLCI’s. This package will have application in radiation epidemiology follow-
up studies.
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