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ON CREMONA TRANSFORMATIONS OF P3 WHICH

FACTORIZE IN A MINIMAL FORM

IVAN PAN

Abstract. We consider Cremona transformations of the complex projective

space of dimension 3 which factorize as a product of two elementary links
of type II, without small contractions, connecting two Fano 3-folds. We show

there are essentially eight classes of such transformations and give a geometric

description of elements in each of these classes.

1. Introduction

Denote by Pn = PnC the projective space of dimension n over the field C of
complex numbers. A Cremona transformation of Pn is a birational map ϕ :
Pn //___ Pn; the set Cr(Pn) of Cremona transformations is the Cremona group
of Pn. Since the beginning, from the Luigi Cremona works in the 1860’s until
nowadays, Cremona transformations in the plane have been an object of inter-
est and the knowledge about this group and its elements is satisfactory (for a
survey see [Hu] or [Alb]; for some recent works see for example [Gi82, BaBe00,
dFe04, Be07, Bl07, DoIs09, BlPaVu09, CaLa13, CeDe, Ca11]). For higher dimen-
sion there has also been a lot of contemporary research on the subject (see for
example [ESB89, CK89, Pa01, RS01, PR05, GSP06, Bl11]), though the results
obtained remain sporadic and, in general, there are no substantial advances with
respect to the pioneering works about either the structure of arbitrary Cremona
transformations or the structure of the group Cr(Pn), even for n = 3.

On one hand, in [Co95] A. Corti proved that the so-called Sarkisov program,
consisting of an algorithm to decompose a birational map between two Mori fiber
spaces as product of elementary links, works in dimension 3 in the context of termi-
nal singularities. This deep result about the structure of birational maps does not
give straightforward information about either the geometric structure of Cremona
transformations or the structure of Cr(P3). Indeed, consider the directed graph
whose vertices and edges are, respectively, the (isomorphism classes of) Mori fiber
spaces and the elementary links connecting two Mori fiber spaces. The Sarkisov
program establishes a strategy which to a Cremona transformation associates a
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non trivial path in that graph which starts and ends at P3; however, that path is
in general not unique and the strategy above introduces singular varieties.

On the other hand, in [Ka87] S. Katz rediscovers the interesting classical result
that general cubo-cubic Cremona transformations (i.e. defined by the maximal
minors of a 4 × 3 matrix of general linear forms) are the unique birational maps
ϕ : P3 //___ P3 not defined exactly along a smooth curve. In particular he shows
that such a ϕ may be realized by blowing up that curve and then contracting
an irreducible divisor onto a smooth curve; in other words, ϕ is a special kind of
elementary link of type II in the sense of the Sarkisov program (see [Co95], [Ma,
Chap. 14] or [Do11, Chap. 5]).

Then, the main result in [Ka87] may be reinterpreted, in the context of the
Sarkisov program, by saying that general cubo-cubic Cremona transformations
realize the shortest non trivial way to go from P3 to itself in the graph mentioned
above.

Finally, in order to search other interesting Cremona transformations, and taking
into account the considerations above, it is natural to study birational maps of P3

factorizing as a product of elementary links of type II which are “special” (i.e. in
the smooth varieties category and without small contractions).

In this paper we consider that problem in the following simplest case: the number
of special links is ≤ 2. We think this special case merits to be studied for several
reasons. Indeed, first of all, the 3-folds associated to the vertices above (the Fano
3-folds) have historically revealed very interesting properties from which one can
expect the same is true for the Cremona transformations related to them; on the
other hand, this kind of transformation is extremely rare since, as we will see, it
only arises for very particular degrees; finally, it shows another difference between
the situation we find in P3 and that of P2, where such a transformation cannot
exist as follows from a classical result of Max Noether ([Alb, Lemma 2.6.1]).

We prove that, besides special cubo-cubic transformations, which are already
special links of type II, there are essentially seven families of Cremona transfor-
mations of P3 which factorize as a product of two special links (Theorem 14 and
Corollary 15); as expected, these transformations are very rare, they are defined by
polynomials of degrees 2, 3, 4, 6 or 9. Moreover, we give a geometric description
of these transformations when the degree 9 above does not occur (Theorems 16
and 18).

In order to obtain our results we describe all links of type II, under the above
specialness assumption, connecting P3 to a projective 3-fold of Picard number 1,
that is, to a rational Fano 3-fold (Theorem 7). We use the classification of Fano 3-
folds of Picard number 1 obtained by V. Iskovskih in [Is77] and [Is78]; these papers
will be our main references for Fano 3-folds properties.

We notice that some time after this work has been archived as a preprint on
arxiv.org (see [Pa11b]) J. Blanc and S. Lamy presented there a classification of
Sarkisov links coming from the blowup of P3 along a smooth curve; their classifi-
cation (which includes also links of type I) generalizes our Theorem 7 since they
consider links containing some kind of small contractions (see [BlLa12]).
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2. Special links of type II from P3 to a Fano 3-fold

In this section we classify links of type II connecting P3 to a Fano 3-fold which
are special in the sense that they arise in the category of smooth varieties and do
not contain small contractions.

Let Z be a dimension 3 smooth projective variety; as always KZ denotes the
canonical class of Z. Let p : Z → P3 be a KZ-negative extremal contraction whose
center is an irreducible curve Γ ⊂ P3. By the Mori’s classification of (divisorial)
extremal contractions ([Mo82, Thm. 3.3 and Cor. 3.4]) we deduce Γ is a smooth
curve and p is the blow-up of this curve.

The closed cone of curves NE(Z) has dimension 2 and one of its edges is the
negative ray corresponding to p. We assume that the other edge of that cone is
also a KZ-negative extremal ray; denote by q : Z → X the extremal contraction
associated to it, which may not be a flip since Z is smooth. We fix an embedding
X ⊂ PN which is supposed to be non-degenerate (the case X = P3 is not excluded).

When dim X = 3 it is normal, Q-factorial, and has at most terminal singular-
ities. A general codimension 2 linear space in PN intersects X along a smooth
irreducible curve, say of genus g; we say g is the sectional genus by curves of X.
When dim X = 2, then X is a smooth surface and a general fiber of q : Z → X is
a smooth rational curve. In the case where dim X = 1 this curve is smooth and a
general fiber of q is a del Pezzo surface ([Mo82, Thm. 3.5].

On the other hand, the rational map χ := q ◦ p−1 : P3 //___ X is defined by a
linear system Λχ of degree n ≥ 1 surfaces containing Γ, a subsystem of |χ∗OPN (1)|;
we denote by m ≥ 1 the multiplicity of a general member of that linear system at
a general point of Γ.

The following result was inspired by [Ka87] (see also [Pa11, Lemma 3]).

Proposition 1. Suppose dim X > 1 and let d := deg Γ, d0 := (dim X − 2) deg X
and g0 = (dim X − 2)g. Then

(n2 −m2d)(4m− n) = 2m(d0 + 1− g0)− d0 (1)

n2 > m2d (2)

m2 | (n3 − d0), m | (n2(n− 2) + 1− g0). (3)

Proof. Take a general divisor H ∈ |p∗OP3(1)| and let us denote E := p−1(Γ).
By construction, q is defined by the complete linear system |nH −mE|. A general
element in |nH−mE| corresponds by p to a degree n surface in P3 passing through
Γ with multiplicity m, from which (2) follows.

The projection formula implies

H3 = 1, H2 · E = 0, H · E2 = −d;
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Therefore, we have

(nH −mE)3 = n3 − 3nm2d−m3E3 = d0, (4)

since it corresponds to intersecting p(Z) = X ⊂ PN with a general codimension 3
linear space. Then m2 divides n3 − d0 as stated in (3).

On the other hand, since q : Z → q(Z) = X ⊂ PN is a morphism, dimX > 1
and Z is smooth, Bertini’s Theorem implies that the strict transform of a general
codimension 2 linear space in PN , under q, is a smooth complete intersection of
two smooth members of |nH − mE|; of course, when dimX = 2 that complete
intersection is the disjoint union of degX smooth rational curves. The adjunction
formula yields

2g0 − 2 = (nH −mE)2 · [2(nH −mE) + p∗(K) + E]

= (n2H2 − 2nmH · E +m2E2) · [(2n− 4)H − (2m− 1)E]

= 2
[
n2(n− 2)− nmd(2m− 1)−m2(n− 2)d

]
−m2(2m− 1)E3;

(5)

in particular, we obtain the second divisibility condition in (3).
Finally, by eliminating (2m− 1)m3E3 between (5) and (4), we obtain the rela-

tion (1). �

A dimension 3 projective variety X is said to be a Fano 3-fold if it is smooth and
its anti-canonical class −KX is ample. In [Is77] and [Is78] V. Iskovskih gives an
essentially complete classification of Fano 3-folds with Picard number 1 (see also
[Is83]); following Iskovskih the index of such a Fano 3-fold is the positive integer r
such that −KX ' HrX , where HX generates the Picard group of X. On the other
hand, we need to consider Fano 3-folds which are rational and in the present work
we only pay attention to them except once (maybe twice) when we will consider
a Fano 3-fold whose rationality was not yet established (according to [IsSh79] and
[Is83]).

Let us recall what an elementary link of type II is.
Let X1, X2 be normal projective dimension 3 varieties which are Q-factorial and

have at most terminal singularities. Suppose Xi admits a Mori fiber structure,
that is a fibration Xi → Yi, dim Yi < dim Xi, which is an extremal KXi

-negative
contraction, for i = 1, 2. A link of type II connecting X1 to X2 is a birational map
χ : X1

//___ X2 which admits a decomposition

X1 Z1
τ1oo //___ Z2

τ2 // X2

where τi is an divisorial extremal contraction with respect to KZi
, Zi is also a

normal projective (dimension 3) variety, Q-factorial and having at most terminal
singularities, i = 1, 2, and Z1

//___ Z2 is a sequence of logarithmic flips (small
contractions); in this work we will always deal with the case Z1 = Z2, that is, there
are no small contractions, and where X1 = P3 and X = X2 is smooth. Since X
has Picard number 1 the Mori fiber structure is nothing but X → Spec(C), and we
know X is a Fano 3-fold, that is, its anti-canonical class −KX is ample. We say χ
is nontrivial if it is not defined somewhere.
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Definition 1. A link of type II is said to be special if it arises into the category of
smooth varieties and does not contain small contractions.

Remark 2. If χ = q ◦ p−1 : P3 //___ X is a special link of type II, the center of
p is a curve: indeed, otherwise p is the blow-up of a point ([Mo82, Thm. 3.3]) and
then q is a Mori fiber space.

In the following series of examples we give a list of special links of type II
connecting P3 to a Fano rational 3-fold. For a curve Γ ⊂ P3 we denote by JΓ ⊂ OP3

its ideal sheaf.

Examples 3.
(L.1). Let Γ ⊂ P3 be a smooth quintic curve of genus 2. Then h0(JΓ(3)) = 6. If
φ : P3 //___ P5 is the rational map defined by the choice of a basis of H0(JΓ(3)),
it is birational onto its image; this image is exactly the famous quadratic complex
of lines, that is, a complete intersection of smooth hyperquadrics (see for example
[GH, Chap. 6]).

(L.2). Let Γ ⊂ P3 be a smooth rational curve of degree 4. Using a parameterization
η : P1 → Γ by polynomials of degree 4 we obtain h0(JΓ(3)) = 7 and h0(JΓ(2)) = 1;
take S and Q irreducible cubic and quadric containing Γ, respectively. Hence
S ∩ Q = Γ ∪ C where deg C = 2. If C were in a plane, then Γ would be arith-
metically Cohen-Macaulay, which contradicts formulae in [PS74, Prop. 3.1], since
Γ has arithmetic genus 0. Therefore C is the union of two skew lines.

We obtain a rational map φ : P3 //___ P6 defined by cubic homogeneous poly-
nomials. By restriction to a general plane we easily conclude that the blow-up
p : Z → P3 of P3 along Γ resolves the indeterminacies of φ; denote by q : Z → P6

the morphism obtained by composing φ with that blow-up. If H ⊂ X is the pull-
back of a general plane in P3, then q∗OP6(1) = OZ(3H−E), where E is the excep-
tional divisor produced by blowing up Γ. Since p∗(E

3) = 2−2g(Γ)+KP3 ·Γ = −14,
from (4) we obtain (3H − E)3 = 5. Therefore q(Z) ⊂ P6 is a degree 5 threefold.

Finally, fix a point x ∈ Γ and denote by Wx the strict transform in Z of a
general plane passing through x; by construction the restriction of q to Wx is the
anticanonical embedding of a del Pezzo surface of degree 5. We conclude that
X := q(Z) is smooth.

(L.3). Let Γ ⊂ P3 be a smooth conic. Then h0(JΓ(2)) = 5 and we obtain a rational
map φ : P3 //___ P4 defined by quadratic homogeneous polynomials. This is a
link of type II obtained by blowing up Γ and contracting the (strict transform of)
chords of this conic.

(L.4) Let Γ ⊂ P3 be a smooth elliptic curve of degree 5. Then h0(OΓ(3)) = 15. It
follows that r := h0(JΓ(3)) ≥ 5; denote by φ : P3 //___ Pr−1 the rational map
defined by the cubic forms vanishing on Γ. If p : Z → P3 is the blow-up of P3

along Γ, by restricting φ to planes, we note that q = φ ◦ p is a morphism whose
image, say X, is a 3-fold. Take a general divisor H ∈ |p∗OP3(1)| and let us denote
E := p−1(Γ). By construction, q is defined by the complete linear system |3H−E|.
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We have H · E2 = −5 and E3 = −20, so (3H − E)3 = 2. Since q(Z) is
nondegenerate, we deduce q is birational onto its image which is a dimension 3
variety of degree 2, that is, r − 1 = 4 and Q := q(Z) ⊂ P4 is a hyperquadric.

Projecting from a point of Γ to P2, we see that through such a point, there
pass two 3-secant lines of Γ; then the union of the strict transforms, in Z, of these
3-secant lines defines a (divisor) surface F . Moreover, since

KZ = −4H + E = −3HZ + F,

where HZ ∈ |3H − E|, we deduce, on one side, that q is an extremal contraction
which contracts F , and on the other side, that F ∈ |5H − 2E|, that is, p(F ) is a
degree 5 surface passing through Γ with multiplicity 2.

Finally, we have F 2 ·HZ = −5 and F 3 = −15, so q(F ) is an elliptic quintic curve
on Q. Moreover, this quintic is not contained in a dimension 3 linear space: indeed,
otherwise the class HZ−F = −2H+E would be represented by an effective divisor
but H2 · (−2H + E) = −7.

(L.5). Let Γ ⊂ P3 be a smooth genus 3 curve of degree 6 which is arithmetically
Cohen-Macaulay. That is, the ideal sheaf JΓ is generated by the maximal minors
of a 4 × 3 matrix of linear forms. These four homogeneous polynomials define a
birational map χ : P3 //___ P3 whose inverse is defined also by cubic polynomi-
als. This map is a link of type II obtained by blowing up the curve Γ and then
contracting the (strict transform of) the trisecant lines to Γ (see [Ka87]).

Remark 4. In case (L.2) above the unique quadric containing Γ is smooth: in fact,
our argument above shows that quadric contains two skew lines.

Remark 5. Note that in the case where d0 = 2g0 − 2, the equation (1) becomes

(n2 −m2d)(4m− n) = (m− 1)d0; (6)

in this case (m,n, d) = (1, n, n2) always gives a solution. On the other hand,
there is no birational map χ : P3 //___ X satisfying such a solution: indeed, this
solution corresponds to a pencil.

A divisorial extremal KZ-negative contraction p : Z → Y is (also) called an
extraction; denote by E the exceptional divisor associated to p.

Consider now a birational map χ : P3 //___ X ⊂ PN and let H be the linear
system of strict transforms, under χ, of hyperplane sections of X. Hence H is the
homaloidal transform of |OX(1)|; it is a linear system of surfaces, of degree n say.
If p : Z → P3 is an extraction, the homaloidal transform HZ := p−1

∗ H of H satisfies

HZ = p∗H−mEE

for a integer mE ≥ 0. The ramification formula for p is

KZ = p∗KP3 + aEE,

where aE > 0 is the discrepancy of E, which is known to be a rational number.
If χ is not a morphism, the Noether-Fano-Iskovskih Criterion ([Ma, Prop. 13-1-3])
implies mE/aE > n/4.
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In the following Lemma and Theorem we need to solve the arithmetic equa-
tion (1) under the conditions (2) and (3), where d0 and g0 take some fixed values.
For this porpose we use Maxima Algebra System, a free computer algebra system
(see details in [Pa11c]); nevertheless we try there to bound the values of solutions in
such a way that the reader may, if preferred, do all computations by hand instead
(maybe a long and tedious work).

Lemma 6. Let X be a rational Fano 3-fold of Picard number 1 and index r = 1.
Then there are no non trivial special links of type II connecting P3 to X.

Proof. Suppose there exists a non trivial special link of type II, say χ = q ◦ p−1 :
P3 //___ X. We will show this gives a contradiction.

First of all we notice that p : Z → P3 is the blow-up of an irreducible smooth
curve, say Γ, of degree d (Remark 2); we keep integers m and n as in Proposition 1.
Therefore the discrepancy associated to p is aE = 1. Moreover, since the birational
map χ is not a morphism then n < 4m. Since χ is birational we get m < n
(inequality (2)); hence the equation (6) implies m > 1.

Second, since X is rational and following the Iskovskih classification of Fano
3-folds (see [Is83, Thm. 1]) we may suppose either g0 = 6 and X = X10 ⊂ P9 has
degree 10, or X = X2g0−2 ⊂ Pg0+1 has degree d0 = 2g0 − 2 ∈ {6, 10, 12, 16, 18, 22};
note that for degree 6 and degree 10 cases X is known to be non-rational only for
general varieties; however, in [Is83, Thm. 6 and Cor.] Iskovskih asserted that any
smooth complete intersection of type (2, 3) in P5 is not rational; we did not find the
reference he gave for it but we omit this case in our proof since it may be worked
analogously to the other cases.

In the sequel we then assume that the center of p is a smooth and irreducible
curve Γ of degree d ≥ 1.

Take two general degree n surfaces S, S′ in the linear system Λχ defining χ =
q ◦ p−1. Then, thinking of S ∩ S′ as a 1-cycle we have S ∩ S′ = m2Γ + T , where
T is a curve of degree n2 − m2d which is the strict transform by χ of a general
codimension 2 linear section of X; in particular T has (geometric) genus g0.

a) Case d0 = 10 and g0 = 6. From condition (3) we obtain m2 | (n3 − 10) and
m | (n3 − 2n2 − 5). Hence m divides

135 = (2n2 + 4n− 11)(n3 − 10)− (2n2 + 8n+ 5)(n3 − 2n2 − 5).

Moreover, m < n < 4m by (2). The solutions (m,n, d) for the equation (6) are

(3, 7, 5) and (3, 10, 10).

The first case is excluded for otherwise the curve T above should be a quartic curve
of genus 6. In the second one, suppose that solution gives a birational morphism
q : Z → X10 ⊂ P7. From equation (4) we deduce

10 = (10H − 3E)3

= −1700− 27E3,

which implies that E3 is not an integer number: contradiction.

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



44 IVAN PAN

b) Case d0 = 12, g0 = 7. Then m2 | (n3 − 12) and m | (n3 − 2n2 − 6), and m
divides

156 = (2n2 + 4n− 10)(n3 − 12)− (2n2 + 8n+ 6)(n3 − 2n2 − 6).

There are no solutions for the equation (6).

c) Case d0 = 16, g0 = 9. Then m divides

96 = (n2 + 2n− 4)(n3 − 16)− (n2 + 4n+ 4)(n3 − 2n2 − 8).

The corresponding solutions for the equation (6) are (2, 4, 3) and (2, 6, 7).
The case (2, 4, 3) may be excluded: in fact, otherwise T should be a quartic of

genus 9.
Now we exclude the case (2, 6, 7): suppose that solution gives a birational mor-

phism q : Z → X20 ⊂ P10; denote by F the exceptional divisor associated to q.
Comparing the ramification formulae for p and q, respectively, we obtain

−4H + E = −6H + 2E + F.

We deduce p(F ) ⊃ Γ is a quadric surface. By restricting to a general plan we get
all sextic surfaces singular along Γ must contain that quadric: contradiction.

d) Case d0 = 18, g0 = 10. Then m divides

414 = (4n2 + 8n− 14)(n3 − 18)− (4n2 + 16n+ 18)(n3 − 2n2 − 9).

There are no solutions for the equation (6) in this case.

e) Finally we deal with the case d0 = 22, g0 = 12. Then m divides

464 = (4n2 + 8n− 10)(n3 − 22)− (4n2 + 16n+ 22)(n3 − 2n2 − 11).

We obtain the solution (7, 16, 5). This solution may also be excluded: indeed,
suppose that solution gives a birational morphism q : Z → X22 ⊂ P13. Since
H · E2 = −5 we deduce

deg X22 = 22 = (16H − 7E)3

= −7664− 73E3,

which implies that E3 is not an integer number: contradiction. �

Theorem 7. Let X be a smooth Fano 3-fold with Picard number 1 and index r.
Let χ = q ◦ p−1 : P3 //___ X be a non trivial special link of type II. Then, r ≥ 2
and we have exactly one of the following statements:

a) r = 2, X is the complete intersection of two hyperquadrics in P5, and χ is as
in (L.1).

b) r = 2, X is a quintic in P6, and χ is as in (L.2).
c) r = 3, X is a hyperquadric in P4, and χ is as in (L.3) or (L.4).
d) r = 4, X = P3, and χ is as in (L.5).

Proof. From Lemma 6 we get r ≥ 2 and from the Iskovskih classification of Fano 3-
folds we get that the unique cases we need to consider are those as in the statement
of Theorem 7. We keep all notations (m,n, d, etc.) as before.

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



CREMONA TRANSFORMATIONS OF P3 45

a) From (1) we know m2 | (n3 − 4) and m | (n3 − 2n2). Therefore m divides

8 = (n3 − 4)(n2 − 2)− (n3 − 2n2)(n2 + 2n+ 2).

On the other hand, since m < n < 4m we deduce m ≤ 2. A straightforward
computation yields (m,n, d) = (1, 3, 5) as the unique solution for (1).

Take general cubic surfaces S, S′ in the linear system Λχ. Then S ∩ S′ = Γ∪ T ,
where T is a quartic curve whose geometric genus is g0 = 1. Since T is not contained
in a plane and all nondegenerate singular quartic curves are rational, it follows that
T is smooth; in particular T is arithmetically Cohen-Macaulay. By liaison ([PS74,
Prop. 3.1 (vi)]) we deduce that Γ is an arithmetically Cohen-Macaulay curve of
arithmetic genus 2.

b) An easy computation using the adjunction formula yields g0 = 1 in this case.
From (1) we obtain m2 | (n3 − 5) and m | (n3 − 2n2). Hence m divides

15 = (2n2 − 3)(n3 − 5)− (2n2 + 4n+ 5)(n3 − 2n2);

as we know m < n < 4m, and then m > 1 is easily seen to be not possible. Solving
equation (1) we get the unique solution (1, 3, 4).

Now we know Γ is a nondegenerate smooth quartic, it suffices to show that curve
is not elliptic. In fact, such an elliptic curve is a complete intersection of quadrics
which implies h0(JΓ(3)) = 8, and then X is the projection of a dimension three
variety X ′ ⊂ P7, from a point p 6∈ X ′. The birationality of χ implies that projection
is an isomorphism, which is not possible because X is projectively normal (see [Is77,
Prop. 4.4 (iii)]).

c) Then d0 = 2 and g0 = 0. As before we have m divides

5 = (6n2 − 4n− 7)(n3 − 2)− (6n2 + 8n+ 9)(n3 − 2n2 + 1);

we obtain the solutions (1, 2, 2) and (1, 3, 5) and, as before, we see these are the
required solutions.

d) Now d0 = 1 and g0 = 0. In this case m divides

2(n− 1) = (n− 2)(n3 − 1) + n(n3 − 2n2 + 1).

Since n < 4m we need to solve (equation (1))

(n2 −m2d)(4m− n) = 4m− 1,

where 2(n− 1) = mk, for k = 1, . . . , 7. We get (1, 3, 6) is the unique solution. The
result follows form [Ka87] in this case. �

3. Associated Cremona transformations and main results

In this section we classify all Cremona transformations which are either a special
link of type II or may be factorized as χ−1

2 χ1, where χi : P3 //___ X is a special
link of type II onto a smooth 3-fold X 6' P3 (i = 1, 2). Since X must be a Fano
3-fold, by Theorem 7 we already know χi is necessarily as in examples (L.1), (L.2),
(L.3) or (L.4).
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In order to establish the kind of transformation we deal with we need first to
understand the geometry of links involved in Theorem 7. This is the subject of the
following paragraph.

3.1. Geometric description of links.

3.1.1. Cases (L.1), (L.3) and (L.5). The links of type II as in case (L.1) are de-
scribed in [AGSP08, § 4]. Analogously, the links of type II as in cases (L.3) and
(L.5) are well known (the former case is very classical and easy to describe, and for
the latter see [Ka87] or [SR, Chap. viii, § 4]). For the convenience of the reader
we include here a slight description of the situation for these three cases:

Case (L.1): The Fano 3-fold X is a complete intersection of two hyperquadrics in
P5. There is a dimension 2 family of lines on X where two such lines may intersect
themselves or not. If L ⊂ X is a line on X, we have:

(a) there are two possibilities for the normal bundle NLX of L in X: it is
isomorphic to either OP1 ⊕OP1 or OP1(1)⊕OP1(−1).

(b) a general projection πL : X //___ P3 from X with center L is a birational
map which defines a special link of type II connecting X to P3; this link is obtained
by blowing up L and then contracting the strict transform of lines on X passing
through a point of L; the set of these lines contract onto a smooth quintic curve of
genus 2 which is contained in a unique quadric: it is smooth or not, depending on
the two possibilities for NLX described above, respectively. Moreover, the inverse
map χ := π−1

L : P3 //___ X ⊂ P5 is as in the first part of Examples 3.

Case (L.3): HereX is a smooth hyperquadric in P4. The projection πx : X //___ P3

from X with center a point x ∈ X is a birational map which defines a special link.
This link is obtained by blowing up x and then contracting the strict transform of
lines on X passing through x; these lines contract onto a smooth conic. Moreover,
the inverse map χ := π−1

x : P3 //___ X ⊂ P4 is as in the third part of Examples 3.

Case (L.5): The link in this case is exactly the one of the last part of Examples 3.
This is obtained by blowing up a smooth sextic curve of genus 3, say Γ, which is
not contained into a quadric, and then contracting the 3-secant lines to Γ onto a
curve projectively equivalent to Γ.

3.1.2. Case (L.2). Let Γ ⊂ P3 be a smooth rational quartic curve. We first note
that through a point y ∈ Γ there passes a unique trisecant line to Γ: in fact, by
projecting Γ from y to a general plane we get a (rational) singular cubic curve.
Then the unique smooth quadric Q containing Γ (Remark 4) is none other than
the trisecant variety Sec3(Γ); moreover, Q is the exceptional set of the extremal
contraction q : Z → X = X5 ⊂ P6 (we keep notations from § 2) and the numerical
equivalence class of the strict transform of a trisecant line to Γ generates the corre-
sponding (negative) extremal ray. Therefore the center of q : Z → X is necessarily
a smooth rational curve, say C ([Mo82, Thm. 3.3 and Cor. 3.4]); moreover, C is a
conic in this case, because the image q(Q) spans a dimension 2 linear space in P6.

Take a general plane Π ⊂ P3; all trisecant lines to Γ intersect Π at a point
and Π ∩ Q is a smooth conic C ′. The strict transform p−1

∗ (Π) of Π by p : Z →

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



CREMONA TRANSFORMATIONS OF P3 47

P3 is an abstract del Pezzo surface S of degree 5. Since p−1
∗ (Π) = p∗(Π) and

(3H − E)2 · p∗(Π) = 5 we deduce that q(S) is a (isomorphic to S) hyperplane
section of X and q(C ′) = C. We conclude that the inverse link χ−1 : X //___ P3

is the restriction to X of a (linear) projection of P6 from the plane containing C.
Moreover, let ` ⊂ P3 be a general line; we may suppose ` to be contained in the

general plane Π considered above. Then, the strict transform γ := χ∗(`) of ` is a
twisted cubic which is 2-secant to C.

Conversely, we show that all conics on X are as above. Let C ∈ C2 be a (smooth)
conic and denote by P ⊂ P6 the plane containing it. We know X does not contain
planes ([Is78, Prop. 5.3]), so P 6⊂ X. Since X is cut out by hyperquadrics ([Is77,
Thm. 4.2]) we infer X ∩ P = C and that the points of P(NCP ) corresponding to
normal directions of C in P do not correspond to normal directions of C in X. If
σ : Z → X is the blow-up of X along C and π : X //___ P3 is the restriction to
X of a general projection of P6 from P , then we deduce a commutative diagram

Z
τ

~~~~
~~

~~
~

σ

��@
@@

@@
@@

@

P3 X
πoo_ _ _ _ _ _ _

(7)

where τ is a morphism. Then, a general hyperplane section S of X containing C is
smooth, that is, it is a del Pezzo surface of degree 5. So we may realize S via the
blow-up f : S → P2 of P2 at points p1, p2, p3, p4. We conclude that C is realized as
the strict transform of (see Lemma 8):

(a) a line passing through only one of p1, p2, p3, p4, or
(b) a conic passing through p1, p2, p3, p4.

Let HZ be the pullback by σ of a general hyperplane and set F := σ−1(C). A
straightforward computation as in the beginning of § 2 shows (HZ −F )3 = 1 from
which it follows that τ , and then π, is birational. Moreover, π contracts all lines in
X intersecting C. We may realize such a line, say L ⊂ S ⊂ X, as follows:

(a′) If C is as in (a), then L is either f−1(pi) or the strict transform of a line
passing through pj , pk, i 6∈ {j, k}.

(b′) If C is as in (b), then L is f−1(pj) for a j 6∈ {1, 2, 3, 4}.
In both cases above we deduce that π contracts four (−1)-curves on each general

surface S containing C; these lines are the unique ones intersecting C. Furthermore,
we have

KZ · σ−1
∗ (L) = (σ∗KX + F ) · σ−1

∗ (L) = −2

from which we conclude that τ is an extraction and τ ◦ σ−1 is a link of type II
inverse of that in Examples 3, part (L.2); in other words, τ = p and σ = q relatively
to notations therein.

Now we describe the family C2 = C2(X) of all irreducible conics on X, the centers
of all possible contractions q = σ : Z → X as above. As we saw before, a general
hyperplane section of X containing a fixed conic C ∈ C2 is a (smooth) del Pezzo
surface of degree 4 relative to that hyperplane.
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Lemma 8. The family C2 is a pure dimension 4 quasi-projective variety such that
NCX ' OP1(1)⊕OP1(1) for all C ∈ C2. Moreover, if S ⊂ X is a smooth hyperplane
section containing a conic C ∈ C2, f : S → P2 the blow-up of four points, then
f(C) is as in (a) or (b) above.

Proof. The quasi-projective structure on C2 follows from the general theory on
Hilbert schemes. The assertion about the dimension of C2 follows from the second
part of the Lemma.

Write C ∼ aL −
∑4
i=1 biEi, bi ≥ 0, as a divisor class in Pic(S), where L is

the pullback of a general line in P2 and Ei’s the exceptional divisors; hence i 6= j
implies bi + bj ≤ a.

On the other hand, since KS ·S C = −2, by the adjunction formula on S we get
C ·S C = 0, where the subindex “S” in the dot means that the intersection number
is taken on S. We deduce

3a−
4∑
i=1

bi = 2, a2 −
4∑
i=1

b2i = 0.

Hence a ≤ 2, from which it follows that f(C) is as in (a) or (b).
Finally, let us prove the assertion about the normal bundle of C in X. By

relating normal bundles on C, S and X we obtain an exact sequence of bundles on
C:

0 // NCS // NCX // NSX|C // 0 . (8)

Since NCS ' OP1 and NSX|C = OX(1) ⊗OC ' OP1(2), we deduce that NCX '
OP1(r)⊕OP1(s) for integer numbers r, s such that r+s = 2, r ≤ s. From the coho-
mology long sequence associated to (8) it follows that (r, s) ∈ {(−1, 3), (1, 1), (0, 2)}.

On the other hand, the contraction p = τ : Z → P3 induces a birational mor-
phism from the exceptional divisor F of q onto a smooth quadric (Remark 4). Since
(r, s) = (−1, 3) or (r, s) = (0, 2) imply that F is a Nagata-Hirzebruch surface F2,
in which case that morphism cannot exist, we conclude that (r, s) = (1, 1). �

Finally, we have

Lemma 9. Let C,C ′ ∈ C2 be two distinct conics. Then C and C ′ are not coplanar,
intersect transversally and |C ∩ C ′| ∈ {0, 1}. Moreover, the two possibilities for
|C ∩ C ′| occur.

Proof. Let P and P ′ be the planes where C and C ′ lie. We know P ∩ X = C,
P ′ ∩X = C ′. Hence

P ∩ C ′ = P ′ ∩ C = C ∩ C ′,
and |C ∩ C ′| ≤ 2.

Suppose C and C ′ intersect at two points (counting multiplicities) and consider
σ : Z → X, the blow-up of X along C, F := σ−1(C), and let HZ be the pullback
of a general hyperplane section of X; τ : Z → P3 is the related extraction which is
the blow-up of a rational quartic curve Γ ⊂ P3; as usual E := τ−1(Γ). If D denotes
the strict transform of C ′ by σ, then

KZ ·D = −2, (HZ − F ) ·D = 0.
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The second equality implies τ contracts D and the first one implies D ≡ 2Ey,
where Ey = τ−1(y) for a point y ∈ Γ. This is not possible because τ |E : E → Γ is
a projective fibration and D is irreducible. Then |C ∩ C ′| ≤ 1.

Finally, on a (degree 5) del Pezzo surface S ⊂ P5 there are pairs of disjoint
conics and pairs of conics that intersect each other. �

3.1.3. Case (L.4). Here X is also a smooth hyperquadric in P4. We keep notations
as in Examples 3. As we saw C5 := q(F ) is a smooth quintic curve of genus 1, not
contained in a dimension 3 linear space, and F ∈ |5H − 2E|. By construction, the
link χ : P3 //___ X maps a general plane Π ⊂ P3 onto the blow-up of Π along
the set of five points Π∩Γ = {p1, . . . , p5}, which is a del Pezzo surface of degree 4.
Therefore C5 is the image of a quintic curve in Π with double points at p1, . . . , p5,
that is C5 = χ∗(p(F ) ∩ Π), and the inverse link χ−1 : X //___ P3 is defined by
the linear system |2HX −C5| := q∗|2HZ −F |, a linear system of del Pezzo quartic
surfaces containing C5. Notice that for a general line ` ⊂ P3, the strict transform
χ∗(`), which one may suppose to be contained in Π, is a twisted cubic 5-secant
to C5.

Consider a degree 4 del Pezzo surface S ⊂ P4, let f : S → P2 be the blow-up of
P2 at p1, . . . , p5, and let C ⊂ S be a nondegenerate elliptic quintic curve; denote
by Ei := f−1(pi) ⊂ S the corresponding exceptional divisors, i = 1, . . . , 5.

Suppose for a moment C ·S E1 ≥ 3. By projecting X from the line E1 to P3 we
obtain that C is birationally equivalent to a conic: impossible. Then Ei ·S C ≤ 2
for all i. Write C ∼ aL −

∑5
i=1 biEi, bi ≥ 0, as a divisor class in Pic(S), where L

is the pullback of a general line in P2; hence bi ≤ 2.
On the other hand, since KS ·S C = −5, by the adjunction formula on S we get

C ·S C = 5. We deduce

3a−
5∑
i=1

bi = 5, a2 −
5∑
i=1

b2i = 5.

Since C is not rational (then a ≥ 3) we conclude that 3 ≤ a ≤ 5, and C is the
strict transform, under f , of one of the following:

(a) a quintic curve with double points at p1, . . . , p5;
(b) a quartic curve with double points at pi, pj and passing through all pk with

k 6= i, j;
(c) a smooth cubic curve passing through four of the points p1, . . . , p5.
A first consequence of the description above is that every elliptic quintic curve

C in X ⊂ P4 which is not contained in a 3-space admits (five) chords: indeed,
in the case (a) these chords are the (−1)-curves f−1(pi)’s; in the case (b) these
are f−1(pi), f

−1(pj) and the strict transform of lines passing through two of the
remaining points, etc.

Second, such a quintic curve is the base locus scheme of a special link, inverse to
a link as in case (L.4): indeed, denote by φ : X //___ Ps the rational map defined
by the linear system |2HX −C|, and by σ : Z → X the blow-up of X along C. By
restricting φ to a general dimension 3 linear space intersecting C transversely, we
deduce that s = 3 and τ := φ◦σ is a morphism (the linear system of quadrics in P3
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passing through five points in general position has dimension 4, contains smooth
members and its indeterminacy may be resolved by blowing up these points). In
particular, a general member in |2HX − C| is smooth.

Let L ⊂ X be a chord of C. Its strict transform σ−1
∗ (L) is contracted by τ and

satisfies

KZ · σ−1
∗ (L) = (−3HX + F ) · σ−1

∗ (L) = −1;

that is, τ is an extraction. By Theorem 7 it suffices to show that the center of τ is
a curve.

Let E be the exceptional divisor of τ (recall that τ is the blow-up of its center).
By writingKZ = τ∗KP3+aE = −4H+aE, for a > 0, we deduce thatH·a2E2 = −5,
from which it follows that a = 1 and the center of τ is a quintic curve.

Now we describe the family C5 = C5(X) of genus 1 smooth quintic curves on X
which are not contained in a three dimensional linear space.

Lemma 10. The family C5 is a pure dimension 15 quasi-projective variety such
that NCX is indecomposable, extension of a bundle of degree 5 by a bundle of degree
10, for all C ∈ C5. Moreover, if S ⊂ X is a degree 4 del Pezzo surface containing
C, f : S → P2 the blow-up of five points, then f(C) is as in (a), (b) or (c) above.

Proof. As before, the quasi-projective structure on C5 follows from the general
theory on Hilbert schemes. Notice that all linear system of curves as in (a), (b) or
(c) above has dimension 5.

Fix C ∈ C5. The set of hyperquadric sections of X is a linear system of dimension
13 on X, whose elements containing C define a linear subsystem of dimension 3.
We deduce the assertion relative to the dimension.

On the other hand, consider the exact sequence of bundles on C:

0 // NCS // NCX // NSX|C // 0 .

Since deg(NCS) = C ·S C = 5 and KS ·S C = −5, then deg(NSX|C) = 10.
Moreover, since S is a complete intersection, the sequence above splits if and only
if C is the complete intersection of S with a hypersurface V ⊂ P4 ([HaHu]): this is
not possible because C is not degenerated in P4 and deg(C) = 5. We deduce that
NCX is indecomposable, which completes the proof. �

Corollary 11. Let C ∈ C5. There are no 3-secant lines to C and X contains a
dimension 1 family of 2-secant lines to C.

Proof. By projecting C from one of its points we get a quartic curve with geometric
genus 1, then a smooth quartic. Hence C does not admit 3-secant lines. On the
other hand, by using that f(C) satisfies (a), (b) or (c), we conclude that there are
(−1) curves in S which are 2-secant to C. �

Finally, we have:

Corollary 12. Let C,C ′ ∈ C5 be two genus 1 quintic curves in X. Then C and
C ′ may be contained or not in the same hyperquadric section of X. Moreover, we
have:
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(i) in the first case, |C ∩ C ′| ≤ 7 and it may take the values 5, 6 and 7.
(ii) in the second case, |C ∩C ′| ≤ 10 and it may take all values between 0 and 5.

Proof. The first assertion follows directly from Lemma 10 and its proof.
To prove (i) we only need to consider the different possibilities to intersect curves

as in (a), (b) or (c).
To prove (ii), suppose C is contained in a (degree 4) del Pezzo surface S and let

Q ⊂ P4 be a hyperquadric such that S′ := Q ∩ X is a del Pezzo surface distinct
from S. We distinguish two cases:

(1) S′ does not contain C. A linear system on S′ constituted by strict transform
of curves as in (a), (b) or (c) defines an immersion η : S′ → P5. Since S′ intersects
C in at most 10 points, then η(C ∩ S′) consists of at most 10 points, being the
maximum if and only if S′ is transversal to C. It suffices to chose a hyperplane in
P5 passing through 0, 1, 2, 3, 4 or 5 of these points, we obtain a curve C ′ as required.

(2) S′ contains C. Then S′∩S is a degree 8 curve in X ⊂ P4, one of its components
is C. Then S′ ∩ S = C ∪D, where D is a curve of degree 3 (taking into account
multiplicities) and arithmetic genus 0. As in the beginning of § 3.1.3 we deduce
that D intersects C along a zero scheme of length 5; in particular, a quintic C ′ ⊂ S′,
different from C, may intersect C in at most 5 points. �

3.2. Pure special type II Cremona transformations. A Cremona transfor-
mation of P3 is a birational map ϕ : P3 //___ P3. When ϕ and its inverse are
defined by homogeneous polynomials of degrees d and e, respectively, we say ϕ
has bidegree (d, e). In this case, if S, S′ are general surfaces of degree d in the
linear system defining ϕ, then S ∩ S′ = Γ1 ∪ C, where Γ1 contains the base locus
scheme Base(ϕ) of ϕ and C is a rational irreducible curve of degree e. Note that
the theoretical-scheme structure of Γ1 depends on S and S′, but deg Γ1 = d2 − e,
then Γ1 defines a unique class in the Chow group of P3.

We introduce the 1-cycle class associated to a Cremona transformation φ :
P3 //___ P3 as the class of 1-cycles defined as above; we denote it by Cyc(φ).

A transformation with bidegree (d, e) ∈ {(2, 2), (3, 3)} is said to be general if
its base locus scheme is smooth (we could have called it “special”, but the base
locus may be disconnected, which disagrees with what one finds in the literature).
Finally, on one side, a bidegree (3, 3) transformation ϕ is said to be de Jonquières
if, up to linear change of coordinates in the domain and the target, we may write

ϕ = (g : kx : ky : kz), g, k ∈ C[w, x, y, z] homogeneous, (9)

where g is irreducible and vanishes at (1 : 0 : 0 : 0) with order 2, and k(1 : 0 : 0 :
0) = 0; in particular (1 : 0 : 0 : 0) is an embedded point in Base(ϕ) and the strict
transform of a general line, under ϕ, is a plane cubic curve. On the other side, ϕ is
said to be determinantal if it is defined by the maximal minors of a 4× 3 matrix of
linear forms; of course, a general bidegree (3, 3) transformation is determinantal.

Remark 13. When ϕ is as in (9), for general lines ` ⊂ P3, the plane curve ϕ−1
∗ (`)

spans a general plane passing through (1 : 0 : 0 : 0).
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We say a link as in case (L.i) (see Examples 3) is a link in the class (L.i),
i = 1, 2, 3, 4, 5.

Theorem 14. Let ϕ : P3 //___ P3 be a Cremona transformation not defined
somewhere which is a product of ` special links of type II, with ` ≤ 2. Then, exactly
one of the following assertions holds:

(a) ` = 1 and ϕ is a general Cremona transformation of bidegree (3, 3).
(b) ` = 2 and ϕ is a product χ−1

2 ◦χ1, where χ1, χ2 are links of type II in the class
(L.i), with i = 1, 2, 3, 4, 5.

(c) ` = 2 and ϕ is a product χ−1
2 ◦ χ1, where χ1 and χ2 are links of type II either

in classes (L.3) and (L.4), respectively, or conversely.

Proof. If ` = 1, we know ϕ is a general cubo-cubic transformation by Theorem 7.
In the sequel we assume ` = 2.

By hypothesis ϕ = χ−1
2 ◦ χ1, where χi : P3 //___ X is a special link of type

II onto a smooth 3-fold X, i = 1, 2. As we know by Remark 2 each χi is not
defined along an irreducible curve, say Γi ⊂ P3, and then χi = qi ◦ p−1

i , where
pi : Zi → P3 is the blow-up of Γi. By construction χi is not trivial, that is, it is
not an isomorphism. Theorem 7 implies the result. �

For simplicity, a Cremona transformation as in Theorem 14 is said to be pure
special type II.

Corollary 15. There exist eight classes of pure special type II Cremona transfor-
mations with ` ≤ 2.

In the theorems below we do not include an explicit description of pure special
type II Cremona transformations containing links in the class (L.5), where the
situation should be clear but describing it may be too long and not very interesting.
Nevertheless, we note that such a Cremona transformation always has bidegree
(9, 9); the reason is that for a link χ in class (L.5) and a general line ` ⊂ P3, the
curve (χ−1)∗(`) is a twisted cubic curve which intersects Base(χ) at (eight) variable
points.

Theorem 16. Let ϕ = χ−1
2 ◦ χ1 : P3 //___ P3 be a pure special type II Cremona

transformation not defined somewhere. Suppose χ1, χ2 are both in the same class
(L.i), i = 1, . . . , 4. Then, exactly one of the following assertions holds:

(a) In the class (L.1) case ϕ is a bidegree (3, 3) transformation whose base locus
scheme contains a smooth genus 2 quintic curve Γ and it holds one of the
following:

(i) Base(ϕ) = Γ ∪ L, where L is a 2-secant line to Γ, if and only if
Base(χ−1

1 ) ∩ Base(χ−1
2 ) = ∅; in this case ϕ is determinantal.

(ii) Base(ϕ) = Γ ∪ L with an embedded point where L is a trisecant line
to Γ, if and only if Base(χ−1

1 ) ∩ Base(χ−1
2 ) 6= ∅; in this case ϕ is de

Jonquières.
(b) In the class (L.2) case ϕ is a bidegree (3, 3) transformation whose base locus

scheme contains a smooth rational quartic curve Γ and it holds one of the
following:
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(i) Base(ϕ) = Γ ∪D2, where D2 is a rank 1 or 3 conic which is 4-secant
to Γ, if and only if Base(χ−1

1 ) ∩ Base(χ−1
2 ) = ∅; in this case ϕ is

determinantal.
(ii) Base(ϕ) = Γ∪D2, where D2 = L∪L′ is a rank 2 conic which is 4-secant

to Γ, with L being 3-secant, if and only if Base(χ−1
1 )∩Base(χ−1

2 ) 6= ∅;
in this case ϕ is determinantal.

(c) In the class (L.3) case ϕ is a general bidegree (2, 2) transformation whose
base locus scheme is the union of a smooth conic and a point not lying on
its plane.

(d) In the class (L.4) case ϕ is a bidegree (6, 6) Cremona transformation whose
base locus scheme contains an elliptic quintic curve Γ and another curve D
such that Cyc(ϕ) = nΓ +D, with n ≥ 4, and it holds one of the following:
(i) the curves Base(χ−1

1 ) and Base(χ−1
2 ) intersect at m (taking into ac-

count multiplicities) points, with 0 ≤ m ≤ 10, and D is supported on
the union of an irreducible curve C10−m of degree 10 − m, which is
birationally equivalent to Base(χ−1

2 ), and m lines 3-secant to Γ; in this
case n = 4, C10−m is smooth in P3\Γ and it is (25− 3m)-secant to Γ.

(ii) the curves Base(χ−1
1 ) and Base(χ−1

2 ) intersect at m (taking into ac-
count multiplicities) points, with m ∈ {0, 5}, and D is supported on
the union of m lines 3-secant to Γ; in this case n = m = 5 or n = 6
and m = 0.

Proof. Since ϕ is not defined somewhere, then Base(χ−1
1 ) 6= Base(χ−1

2 ). The case
(a) follows from [AGSP08] and the case (c) is essentially trivial. Let us consider
the cases (b) and (d).

Case (b). We recall and keep all notations from § 3.1.2, χ1 = q ◦ p−1 and Γ :=
Base(χ1). Then, for each i = 1, 2, the birational map χ−1

i = πi : X //___ P3

is the restriction to X of a general projection from a plane, Base(π1) = C ∈ C2,
Base(π2) = C ′ ∈ C2.

The strict transform S ⊂ X of a general plane by π2 is a del Pezzo surface of
degree 5 containing the conic C ′ = Base(π2). As we saw S is a hyperplane section
of X from which we deduce it intersects C = Base(π1) at two points. Therefore
the strict transform (χ1)−1

∗ (S) = (π1)∗(S) is a cubic surface. By symmetry we get
ϕ has bidegree (3, 3).

Furthermore, let ` ⊂ P3 be a general line. The strict transform γ := (π−1
2 )∗(`) of

` is a twisted cubic 2-secant to C ′. By construction γ ∪C ′ is a hyperplane section
of X, general among those containing the plane P ′ ⊃ C ′.

Suppose C ∩C ′ = ∅. By genericity on `, we may suppose that the linear 3-space
〈γ〉 spanned by γ does not intersect the plane P of C. We deduce π1 restricts
isomorphically on γ and then π1(γ) is a twisted cubic curve in P3.

Take irreducible cubic surfaces, say W,W ′ ⊂ P3, such that W ∩ W ′ = Γ ∪
D2 ∪ π1(γ), where D2 := π1(C ′) is a conic which has rank 3 (i.e. it is smooth) if
P ∩P ′ = ∅ and has rank 1 otherwise. Since a twisted cubic curve is arithmetically
Cohen-Macaulay of genus 0, by liaison Γ∪D2 is an arithmetically Cohen-Macaulay
curve of degree 6 and arithmetic genus 3, whose ideal is generated by 4 independent
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cubic forms which are the maximal minors of a 4×3 matrix of linear forms ([PS74,
§ 3]). Hence ϕ is determinantal. By adjunction on S, we have that arithmetic
genus 3 for Γ ∪D2 implies that D2 is 4-secant to Γ.

Now suppose C ∩ C ′ consists of a unique point, say x ∈ X; by Lemma 9 there
is no other possibility. Then P ∩P ′ = {x}, from which it follows that P ′ contracts
(via π1) to a line L′. We deduce this line is a chord of ϕ−1

∗ (`) = (π1)∗(γ) and
this curve is a twisted curve, which as before implies that ϕ is determinantal: in
fact, otherwise it would be de Jonquières and ϕ−1

∗ (`) contradicts what we said in
Remark 13.

Furthermore, π2 ◦ q is not defined along the line (fiber) = q−1(x), which corre-
sponds via p to a line intersecting L. Note that Fx is 3-secant to Γ; indeed, since
H = HZ − F and HZ = 3H − E ∈ |q∗OX(1)|, we obtain E = 2HZ − 3F , hence
E · Fx = 3.

If D2 = L ∪ L′, then D2 is 4-secant to Γ, as before, which completes the proof
of statement (b).

Case (d). Now C,C ′ ∈ C5 are elliptic quintic curves on the hyperquadric X ⊂ P4.
The reduced structure on Base(ϕ) is then Γ∪ p(q−1(C ′)), where q ◦ p−1 = χ1. The
(classes of) exceptional divisors E and F of p and q, respectively, satisfy

HZ := q∗(HX) = 3H − E,F = 5H − 2E, (10)

or equivalently

H = 2HZ − F,E = 5HZ − 3F. (11)

Then ϕ is defined by a linear subsystem of p∗q
∗(|2HX |) = p∗(|6H − 2E|), which

consists of degree 6 surfaces passing through Γ with multiplicity at least 2; in
particular, Cyc(ϕ) = nΓ +D with n ≥ 4 and, by symmetry, bideg(ϕ) = (6, 6).

On the other hand, m = q−1
∗ (C ′) · F by definition.

Suppose C ′ is not contained in q(E), that is q−1
∗ (C ′) 6⊂ E. The restriction

of p to q−1
∗ (C ′) induces a birational morphism which is injective on Z\E. Then

C10−m := p(q−1
∗ (C ′)) is a curve of degree 10−m, smooth on P3\Γ, which intersects

Γ at a zero scheme of length s = q−1
∗ (C ′) · E. We deduce that

s = q−1
∗ (C ′) · (5HZ − 3F ) = 25− 3m.

Take general elements S, S′ in the linear system defining ϕ. The scheme theoretical
intersection S ∩ S′ defines a 1-cycle of degree 36 supported on

Γ ∪ p(q−1
∗ (C ′)) ∪ p(q−1(C ∩ C ′).

By taking into account multiplicities, the last part in the union above consists of
m lines 3-secant to Γ. By computing degrees we deduce that Cyc(ϕ) has degree

36− 6 = ndeg Γ + 10,

that is, n = 4.
Now suppose C ′ ⊂ q(E). Since E is a projective lines bundle over Γ we deduce

p(q−1
∗ (C ′)) = Γ, then n > 4. The last assertions follow easily. �

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)



CREMONA TRANSFORMATIONS OF P3 55

Remark 17. (1) Transformations as in (a)(i) correspond to type T
(3)
33 in table [SR,

p. 185]. Analogously, transformations as in (b)(i) correspond to type T
(4)
33 in [SR,

p. 185] together with degenerations of this type.
(2) We do not know if the case (ii) in part (d) of the theorem above may effec-

tively occur.

Theorem 18. Let ϕ = χ−1
2 ◦ χ1 : P3 //___ P3 be a pure special type II Cremona

transformation. Suppose χ1 and χ2 are links of type II either in classes (L.3) and
(L.4), respectively, or conversely. Then, exactly one of the following assertions
holds:

(a) In the first case the base locus scheme of ϕ contains a smooth conic Γ and
it holds one of the following:

(i) Base(ϕ)red = Γ ∪D5, where D5 is a genus 1 quintic curve, with at most a
double point, which is 5-secant to Γ if and only if Base(χ−1

1 )∩Base(χ−1
2 ) =

∅; in this case bideg(ϕ) = (4, 3) and Cyc(ϕ) = 4Γ +D5.
(ii) Base(ϕ)red = Γ∪D4, where D4 is an elliptic quartic curve 3-secant to Γ if

and only if Base(χ−1
1 ) ∩ Base(χ−1

2 ) 6= ∅; in this case bideg(ϕ) = (3, 3) and
Cyc(ϕ) = Γ +D4.

(b) In the second case the base locus scheme of ϕ contains an elliptic quintic
curve Γ and it holds one of the following:

(i) Base(ϕ) = Γ∪{o′}, where o′ is either an infinitely near point or an isolated
point, if and only if Base(χ−1

1 ) ∩ Base(χ−1
2 ) = ∅; in this case bideg(ϕ) =

(3, 4) and Cyc(ϕ) = Γ.
(ii) Base(ϕ) = Γ∪L, where L is a line 3-secant to Γ, if and only if Base(χ−1

1 )∩
Base(χ−1

2 ) 6= ∅; in this case bideg(ϕ) = (3, 3) and Cyc(ϕ) = Γ + L.

Proof. Recall the description given in § 3.1.3. The linear system defining a special
link of class (L.4) consists of hyperquadric sections of X containing a quintic elliptic
curve C5 ∈ C5; we denote by |2HX −C5| such a linear system. On the other hand,
a special link of class (L.3) is the projection of X ⊂ P4 from a point o ∈ X.

We keep notations as in the previous theorem. The divisors E,F,H,HZ always
refer to the morphisms p and q where χ1 = q ◦ p−1.

(a) In this case we have

H = HZ − F, HZ = 2H − E,
where q(F ) = {o} and p(E) = Γ.

First suppose o 6∈ C5. Then C5 projects birationally to a quintic curve D5.
Notice that D5 has at most one double point, and this occurs only when o belongs
to a 2-secant line to C5 (see Corollary 11). This curve intersects Γ in a 0-scheme
of length s := q−1

∗ (C5) ·E. Since E = HZ − 2F and F ∩ q−1
∗ (C5) = ∅, we get s = 5.

Moreover, p∗q
∗|2HX − C5| ⊂ p∗|2HZ | = |4H − 2E|, from which we deduce that ϕ

is defined by a linear system of quartic surfaces containing Γ with multiplicity ≥ 2;
in particular deg(ϕ) = 4 and Cyc(ϕ) = nΓ +D5 with n ≥ 4.

On the other hand, since a twisted cubic on X which does not pass through o
projects to a cubic curve we obtain deg(ϕ−1) = 3, hence bideg(ϕ) = (4, 3).
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Finally, the 1-cycle above has degree 16−3 = 2n+5, then n = 4, which completes
the proof of (i).

Now suppose o ∈ C5; in this case C5 projects to an elliptic quartic curve D4.
Hence F · q−1

∗ (C5) = 1 and q−1(C5) = q−1
∗ (C5)∪F . So D4 ·E=D4 · (HZ −2F ) = 4.

We deduce that D4 is an elliptic quartic curve 3-secant to Γ. The rest of the
statement (ii) follows by arguing as before.

(b) The assertion relative to bidegrees follows from (a).
To prove the remaining part, first suppose o 6∈ C5. If o ∈ q(E), then o′ :=

q−1(o) ∈ E and p(o′) ∈ Γ. For a general line ` ⊂ P3, the strict transform (χ−1
2 ◦

q)−1
∗ (`) is a curve passing through o′, then ϕ ◦ p in not defined at o′; we deduce

that o′ is an infinitely near point lying over Γ.
If o 6∈ q(E), then o′ := p(q−1(o)) 6∈ Γ defines an isolated point of Base(ϕ).
Finally, we suppose o ∈ C5. In this case the fiber Fo := q−1(o) ⊂ F is a smooth

rational curve. From (11) we get

H · Fo = 1, E · Fo = 3.

Then p(Fo) is a line 3-secant to Γ. �

Remark 19. With a small additional effort we may prove that the bidegree (3, 3)
Cremona transformations appearing in Theorem 18 are determinantal. In fact, in
cases (a)(ii) and (b)(ii), the base locus Base(ϕ) is a sextic curve of arithmetic ge-
nus 3 and one may prove that such a curve is arithmetically Cohen-Macaulay (or
use [Pa97]). The birational maps in (a)(ii) and (b)(ii) correspond, respectively, to

the cases T
(6)
33 and T

(2)
33 in table [SR, p. 185].

From the theorems above it follows (compare with Remarks 17 and 19):

Corollary 20. The Cremona transformations of types T
(1)
33 , T

(5)
33 , T

(7)
33 and T

(8)
33

in table [SR, p. 185] are not pure special type II.
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