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Abstract

In this paper new finite difference (FD) and Runge–Kutta schemes for Compu-

tational Aero Acoustics (CAA) that minimize the total dispersion and dissipation

errors arising in the spatial and temporal discretization process are derived. The

available parameters in the spatial discretization as well as in the time marching

Runge–Kutta scheme are selected so that they minimize a measure of the total

dispersion and dissipation errors for linear wave propagations. These schemes are

fourth-order accurate in space with finite differences and a resolution with number

of points greater or equal to nine together with fourth-order six-stage low stor-

age Runge–Kutta methods for the time integration. The new schemes are tested

on a one dimensional convection equation involving long-range sound propagation,

and on one-dimensional Euler problems. The numerical results obtained with these

test problems indicate an important improvement in accuracy and in numerical effi-

ciency when they are compared with other low dispersive and low dissipative explicit

schemes recently published.
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1 Introduction

In the field of Computational Aero-Acoustics (CAA) the prediction of sound far from

its source implies the need of accurate and stable numerical algorithms. As it has been

widely recognized [3, 19, 21] stable and high order convergent schemes do not guarantee
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a good behavior in the numerical approximation of aero acoustics problems. The main

reason is that acoustic waves are non-dispersive and non-dissipative in their propagation

and can travel long distances in all directions. Consequently, the numerical schemes must

be designed by minimizing the dispersion and dissipation errors in long-time integrations.

Note that in standard computational fluid dynamics (CFD) codes a dissipation (in many

cases artificial) is included to stabilize the schemes and therefore such schemes are not

suitable for CAA problems. In addition, to minimize the dispersion and dissipation errors

for the required range of frequencies, large stability limits of the time advancing scheme

are also necessary to control the error propagation and also low storage algorithms to

improve the efficiency of high dimensional problems must be taken into account.

The construction of optimized time advancing Runge–Kutta (RK) schemes have been

considered by several authors [1, 4, 5, 6, 10, 12, 13, 20] which propose a number of low

dispersive and low dissipative RK algorithms in standard or in low storage form.

Concerning the spatial discretization, standard schemes have at least second or fourth-

order of accuracy and for symmetric stencils they pay special attention to dispersion error.

So, in a number of papers [10, 16, 17, 18, 22] Pade or compact type, finite volume (FV) and

finite difference (FD) schemes have been proposed by choosing the available parameters

so that they minimize the dispersion error. Recently, Bogey and Bailly [3] have optimized

central FD schemes with a number of points greater or equal to nine for spatial derivation

by minimizing their dispersion and dissipation errors in a range of wavenumbers. Such

optimal schemes have algebraic order four and permit calculate linear waves with about

four points per wavelength for an accuracy limit, and they are shown to be more accurate

and efficient than the standard FD schemes of high order. These authors also have

optimized RK algorithms with five and six-stages for time advancing by minimizing their

dispersion and dissipation errors for the same range of wavenumbers. These optimized

RK algorithms have algebraic order two, and they are shown to be more efficient than the

standard fourth-order RK method. Next, Berland et al. [2] have optimized a fourth-order

six-stage low storage RK algorithm that has similar properties to RK algorithms given

in [3] for linear operators, and in addition it is more adequate for nonlinear problems

because of its high algebraic order.

All optimal time advancing RK schemes given in [2, 3, 4, 5, 12] have in common that

they are derived by minimizing some measures of the dispersion and dissipation errors

introduced by the temporal discretization with some additional stability bounds. Clearly

these schemes make sense when applied to very accurate space discretizations. However,

the dispersive and dissipative behavior of a discretization scheme depends on the total

dispersion and dissipation errors introduced by the spatial and temporal discretizations.

This fact led to Ramboer et al. [19] to consider the errors of both discretizations and to
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derive some six-stage RK time advancing schemes by selecting the free parameters of the

time advancing scheme such that minimize the total dispersion and dissipation errors for

two specific spatial discretizations: fourth-order FV (finite volume) compact central and

third-order FV upwind discretizations.

In this paper, new six-stage RK time advancing schemes coupled with new symmet-

ric FD spatial discretizations are derived taking into account the total dispersion and

dissipation errors introduced by both discretizations. Hence, the spatial and temporal

discretizations are optimized simultaneously in contrast with the optimization carried out

by other authors [2, 3, 12]. The main difference with the optimization carried out in [19] is

that we select also the free parameters of the spatial discretization so that they minimize

the total dispersion and dissipation errors. The motivation is to provide explicit numeri-

cal schemes according to accuracy and stability requirements usually demanded in CAA.

The paper is organized as follows: In section 2 we analyze the dispersion and dissipation

errors for schemes constituted by finite differences for the spatial derivation and Runge–

Kutta algorithms for the time integration (FD-RK schemes). In section 3 we present the

optimization process and we derive optimized FD-RK schemes by minimizing their total

dispersion and dissipation errors. These schemes are fourth-order central FD with a num-

ber of points greater or equal to nine and fourth-order six-stage RK algorithms. In section

4 we construct the fourth-order six-stage RK algorithms in low storage form. In section

5 some numerical experiments are presented comparing the accuracy and the efficiency of

the new optimized FD-RK schemes with other low dispersive and low dissipative explicit

schemes given in [2] and [3]. The final section is devoted to conclusions.

2 Dispersion and dissipation for FD-RK schemes

In this section we review briefly some results on the Fourier analysis of FD-RK schemes

when applied to the linear scalar wave test equation for u = u(t, x)

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ R, t ≥ 0, (1)

with a given initial condition u(0, x) = Φ(x) where c > 0 is the velocity of the wave.

For the spatial discretization we will consider central finite difference schemes δx with

a (2N + 1)-point stencil of type

δxu(t, xℓ) =
1

∆x

N∑

j=−N

aj uℓ+j, uk = u(t, xk), (2)

where ∆x is the mesh spacing and xj = j∆x. Usually, the real coefficients aj are taken

such that the approximation (2) is of order p, i. e.

∂xu(t, xℓ)− δxu(t, xℓ) = O (∆xp) , p ≥ 1, (3)
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and therefore the coefficients aj must satisfy the following linear conditions:

N∑

j=−N

jsaj = δ1,s, s = 0, 1, . . . , p, (4)

where δp,q is the Kronecker delta defined by δ1,s = 0, s 6= 1 and 1 otherwise. It can be

easily seen that the maximum attainable order by a symmetric (2N +1)-point stencil FD

is (N + 1) for N even and N otherwise.

By using the spatial discretization (2), the semidiscretization of the convective equa-

tion (1) is

∂tuj +
c

∆x

N∑

ℓ=−N

aℓ uj+ℓ = 0, j = 0,±1, . . . (5)

First, we present the results of some numerical experiments. So, we display in Figure

1 the numerical solution obtained by solving exactly the semidiscretization of the wave

equation (1) given by 



∂uj + cδxuj = 0, t ∈ [0, 400],

uj(0) = Φ(xj),
(6)

for the maximum order (2N + 1)-point symmetric schemes (2) for N = 3, 4, 5 with c = 1,

and the Gaussian initial condition Φ(x) = Φ1(x) = 0.5 exp(−x2/9), ∆x = 1, xj = j,

j = −50, . . . , 450 at the time instant t = 400 together with the exact solution of the wave

equation. Note that the exact solution is a Gaussian type wave that moves from left to

right with constant velocity c = 1 preserving its shape, so that u(x, t) = Φ1(x− t).
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Figure 1: Numerical solution of the linear wave test equation semidiscretized with (2N +

1)-point central symmetric schemes for N = 2, 3, 4.
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Figure 2: Numerical solution of the wave test equation, Sine-Gaussian initial condition,

semidiscretized with (2N + 1)-point schemes for N = 4, 5.

From Figure 1, it follows that for in the case of the fourth-order discretization, the

spatial dispersion errors introduce strong changes in the shape of the wave and that these

changes are smaller when the order increases, but in any case they are not negligible.

In Figure 2 we present the solutions obtained taking a Sine-Gaussian initial condition

given by Φ(x) = Φ2(x) = sin(πx/2) exp (−x2/9) for ∆x = 1, xj = −50, . . . , 250, where
the time interval is [0, 200]. Now, since the problem is more difficult due to the spectral

contents of Φ2(x), we have taken the higher order spatial symmetric discretizations of

orders 8 and 10 corresponding to 9 and 11 points respectively. Now even with the high

order spatial discretizations the profile of the wave is destroyed.

In order to explain the behavior of the spatial difference schemes, we apply to (1) and

(5) the spatial Fourier transforms given in the continuous and discrete case respectively

by

û(k, t) =

∫
∞

−∞

e−ikx u(x, t) dx, û(k, t) = ∆x

j=+∞∑

j=−∞

e−ikxj u(xj, t),

obtaining

∂tū(k, t) + ick ū(k, t) = 0, ∂tû(k, t) + ick∗ û(k, t) = 0,

k ∈ R, k ∈ [−π/∆x, π/∆x],

where k∗ represents the numerical (complex) wavenumber of the FD scheme (i.e., an

approximation to the the exact wavenumber k) which is given by

k∗ = − i

∆x

N∑

ℓ=−N

aℓ e
i(ℓ k∆x). (7)
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For a given N , the quantity k∗∆x is usually called the effective or numerical wavenum-

ber and as follows from (7) is a function of the exact wavenumber k∆x. Further, for a

discretization with order p, exact and effective wavenumbers agree up to order (∆x)p+1

and (k∗∆x)/(k∆x) → 1 as ∆x → 0+. However when k∆x ≤ π separates from 0, the

dispersion error may become very large. In Figure 3 we show the behavior of (k∗∆x) as

a function of (k∆x) for 2N + 1 = 5, 7, 9, 11 when k∆x ∈ [0, π]. In all cases (k∗∆x) has a

unique maximum kmax∆x in this interval and this implies that clearly those waves with

k ≥ kmax will be badly represented by the spatial discretization. In other words, for the

(2N+1)-point stencil finite difference scheme of maximum order, the spectral components

of the initial condition Φ(x) with wavenumbers k ≥ kmax are not suitably represented by

the discretization (2).
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Figure 3: Numerical scaled wavenumbers versus actual scaled wavenumbers.

In addition to this, it has been remarked by several authors [22] that the requirement

k ≤ kmax is not enough to ensure a good dispersion behavior of the spatial discretization

because even for k . kmax the error in the numerical wavenumber can be large. Then,

Tam et al. [22] introduced the additional condition

k ≤ kc = max {k ≥ 0, |k − k∗| ≤ ε}, (8)

where ε is a small quantity that in some practical calculations has been taken empiricallly

as ε = 10−3 because it leads to a reasonable dispersion error. In Table 1 we present the

values of kmax and kc for the high order symmetric FD (2N + 1)-points schemes with

N = 2, 3, 4, 5.
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Table 1: Dispersion values, kmax and kc, for (2N + 1)-points schemes with N = 2, 3, 4, 5

2N + 1 order kmax kc

5 4 1.37 0.69

7 6 1.59 0.97

9 8 1.73 1.16

11 10 1.84 1.32

Taking into account the values in Table 1 it is possible to explain the numerical results

of the above examples. In the first example, since the spectral contents of Φ1(x) is the right

half of a Gaussian type function centered at k = 0, the methods with 11 points are able to

deal accurately most of the relevant spectral contents of Φ1(x) (see Figure 4). Nevertheless

in the second example, since the Fourier contents is a Gaussian type function centered

around π/2 all the considered methods cannot include the relevant spectral contents of

Φ2(x) and then it is not a suitable discretization for this function. To cope with problems

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
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2.5
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k

u(
k)

Initial condition 1
Initial condition 2

Figure 4: Spectral contents of Φi(x).

where the spectral contents of the solution is not close to the origin, several authors have

proposed discretizations (2) with order smaller than the maximum order attainable and

using the available parameters to get larger values of kmax and kc. This idea was used

by Tam and Webb [22] to derive two 7- and 9-point stencil discretizations called DRP

(dispersion relation preserving methods) and more recently Bogey and Bailly [3] have

constructed other 9-, 11- and 13-points discretizations. In Table 2 we collect the dispersion

properties of these methods together with the standard symmetric finite difference ones.

Next, Figures 5 and 6 show the profiles of the semidiscrete and exact solutions at the

final time in the above two examples for several optimized schemes. It must be noticed
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Table 2: Dispersion values, kmax and kc, for some standard and optimized difference

schemes.

method 2N + 1 order kmax kc

Symmetric FD 5 4 1.37 0.69

Symmetric FD 7 6 1.59 0.97

Symmetric FD 9 8 1.73 1.16

Symmetric FD 11 10 1.84 1.32

Tam-Webb 7 4 1.73 1.45

Tam-Webb 9 6 1.77 1.28

Bogey-Bailly 9 4 1.10 1.50

Bogey-Bailly 11 4 1.98 1.66

Bogey-Bailly 13 4 2.14 1.92

that in the second example, the 13-point discretization preserves quite accurately the

shape of the wave.

2.1 Dispersion and dissipation of the spatial FD scheme

Comparing the exact solution of the linear wave equation (1) with the initial condition

u(x, 0) = eikx given by

uex(x, t) = eik(x−ct), (9)

and the corresponding to the semidiscretization (5)

usd(xj , t) = ei(kxj−k∗ct), j = 0,±1, . . . , (10)

the dispersion and dissipation errors introduced by the spatial discretization are

usd(xj , t)

uex(xj , t)
= ei(k−k∗)ct = eIm(k∗)ct

︸ ︷︷ ︸
dissipation

ei(k−Re(k∗))ct
︸ ︷︷ ︸
dispersion

. (11)

If we denote

φs(z) := k∆x− Re(k∗∆x) = z −
N∑

j=1

(aj − a−j) sin(jz), (12)

ds(z) := Im(k∗∆x) = −a0 −
N∑

j=1

(aj + a−j) cos(jz), (13)

equation (11) can be expressed as

usd(xj , t)

uex(xj , t)
=
[
eds(z) eiφs(z))

] ct
∆x . (14)
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Figure 5: Numerical solution of the wave test equation, Gaussian initial condition, with

optimized schemes with N = 3, 4.

Thus, the spatial dispersion error is: φs(z), the spatial dissipation error is: 1− eds(z), and

the central FD scheme is dispersive of order q and dissipative of order r if

φs(z) = O
(
zq+1

)
, ds(z) = O

(
zr+1

)
, z → 0. (15)

If we consider symmetric FD schemes, then the coefficients satisfy

a0 = 0, aj = −a−j , j = 1, . . . , N, (16)

and in this case it follows from (7) that k∗ is real and the schemes are zero-dissipative,

i. e.

ds(z) = 0, φs(z) = z − 2

N∑

j=1

aj sin(jz). (17)

2.2 Dispersion and dissipation of the time advancing RK scheme

To advance the solution U(t) = (uj(t)) of a general differential system in ODE’s

∂tU = F (t, U), (18)

from the time level tn to the next time level tn+1 = tn + ∆t we will use explicit s-stage

RK schemes [9] defined by the Butcher tableau
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Figure 6: Numerical solution of the wave test equation, Sine-Gaussian initial condition,

with optimized schemes with N = 5, 6.

c A

bT
=

0 0
c2 a21 0
...

...
. . .

. . .
cs as,1 · · · as,s−1 0

b1 · · · bs−1 bs

(19)

with c = Ae, e = (1, . . . , 1)T ,b ∈ R
s. These coefficients bj , cj, and ajk are real constants

that define the method. The step from Un at the time level tn to Un+1 at the time level

tn+1 can be written as

Un+1 = Un +∆t

s∑

i=1

bi Fi,

Fi = F (tn + ci ∆t, Un +∆t
i−1∑

j=1

ai j Fj), i = 1, . . . , s.

(20)

For autonomous equations F (t, U) = ΛU with a linear operator Λ, the algorithm (20)

becomes

Un+1 = R(∆tΛ)Un, (21)

where R(ζ) is the so called amplification function of (19) given by

R(ζ) = 1 + ζbT (I − ζA)−1e, ζ ∈ C. (22)
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For explicit s-stage RK schemes the amplification function is a polynomial of degree ≤ s

given by

R(ζ) = 1 +
s∑

ℓ=1

γℓ ζ
ℓ, (23)

with γℓ = bT Aℓ−1 e, and it satisfies

|R(−ix)| = |R(ix)|, argR(−ix) = − argR(ix), ∀x ∈ R. (24)

Note that if the RK scheme (19) has linear order p then γℓ = 1/ℓ!, ℓ = 1, . . . , p, and

(23) is an approximation to the exponential function eζ at the origin at least of the same

order.

In order to illustrate the behavior of standard RK time integrators, we start considering

the application of the classical four-stage fourth-order RK4 method with a fixed step size

to the semidiscretization (6) with initial condition Φ(x) = Φ1(x). Concerning the choice

of the step size recall that when a scalar linear problem y′ = λy is integrated by a one

step method, the solution satisfies y(tn +∆t) = eλ∆ty(tn) whereas the numerical solution

satisfies yn+1 = R(λ∆t)yn, where R(z) is given by (23). Note that all eigenvalues of the

semidiscretization (6) are pure imaginary simple ±iw and then to satisfy the stability

requirement we should have |R(iw∆t)| ≤ 1 for all w ∈ [0, ckmax]. On the other hand it is

well known that the (imaginary) stability interval of the fourth-order RK is [−2
√
2, 2
√
2],

thus if we take the DRP spatial discretization of Tam and Webb [22] with 9-points and

order 6, according to Table 2, 1.77∆t ≤ 2
√
2 which implies ∆t ≤ 1.597. Figure 7 shows the

profiles of the numerical and exact solution with ∆t = 1.597 at the final time level. This

example shows large phase and amplitude errors in the numerical solution. In addition,

similar experiments with ∆t = 1 show smaller but not negligible errors and to get accurate

solutions, time steps of ∆t ≃ 0.5 are necessary. These experiments imply that in the

standard RK4 stepsizes much smaller than the stability limit are necessary to preserve

the dissipation and dispersion properties of this wave type solutions.

Now observe that as remarked above for all wavenumber k the discrete function (eikxj)

is an eigenfunction of the linear operator Λ defined by (5) corresponding to the eigenvalue

−ick∗. Hence the Fourier wave uj(t) = βk(t) e
ikxj , j = 0,±1, . . . will be a solution of (5)

iff

∂tβk(t) = −ick∗βk(t), (25)

and the exact solution of (5) with Un = (eikxj) is

Un+1
ex = e−ick∗∆t Un. (26)

By linearity, the corresponding solution (numerical solution) of the RK scheme will be

Un+1
RK = R(−ick∗∆t)Un. (27)
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Figure 7: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth-order spatial discretization and classical fourth-order RK for time discretiza-

tion.

As a consequence of (26) and (27) the dispersion and dissipation errors introduced by

the temporal discretization at the wavenumber k are defined by

Un+1
RK

Un+1
ex

=
R(−ick∗∆t)

e−ick∗∆t
= |R(−iθ)|e− Im(θ)

︸ ︷︷ ︸
dissipation

ei(Re(θ)+argR(−iθ))
︸ ︷︷ ︸

dispersion

, (28)

where θ = ck∗∆t, and they are given, respectively, by

φt(θ) = Re(θ) + argR(−iθ), dt(θ) = 1− |R(−iθ)|e− Im(θ). (29)

For the case of symmetric FD schemes, θ is real (Im(k∗) = 0) and equations (28)–(29)

reduce to

Un+1
RK

Un+1
ex

=
R(−ick∗∆t)

e−ick∗∆t
= |R(iθ)|︸ ︷︷ ︸

dissipation

ei(θ−argR(iθ))
︸ ︷︷ ︸
dispersion

, (30)

φt(θ) = θ − argR(iθ), dt(θ) = 1− |R(iθ)|. (31)

This analysis has led in the last decade to the construction of special RK time ad-

vancing schemes taking into account instead of the usual order-stability properties the

following ones:

C1) Stability: |R(iw∆t)| ≤ 1 for all w ∈ [0, ckmax].
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C2) Dissipation error: |1− R(iw∆t)| small for all w ∈ [0, ckc].

C3) Dispersion error: | argR(iw∆t)− w∆t| small for all w ∈ [0, ckc].

C4) Maximum linear and non linear order. In the linear case defined by the maximum p

such that R(z)− ez = O(zp+1), and in the non linear case by Butcher’s conditions.

C5) Low storage implementation.

The last requirement C5) has been introduced because in practical calculations (typi-

cally 2D and 3D-dimensional problems of CAA) the number of spatial grid points and

consequently the dimensionality of the system can be very high.

Therefore, as remarked by several authors (see e.g. [5], [7], [8], [20], [23], [14], [15]),

effective integrators for practical problems must use the minimum number of registers.

Advancing a step Un → Un+1 with a s-stage RK method in a problem of dimension m

requires, in general, the storage of s + 1 vectors of dimension m and there are problems

which arise in the semi discretization of some PDEs in which m is very large. This

fact implies that the efficiency of the Runge–Kutta method depends strongly on the

number of registers used in the computation and therefore methods with minimum storage

requirements are preferred. Thus, for a given number of stages s, we want to consider

minimum storage methods, i.e. that can be implemented with two m-registers, having

the best stability and accuracy properties.

The simplest minimum storage one-step method is Euler’s method (Un+1 = Un +

∆tf(tn, U
n), n = 0, 1, . . .) that requires only twom-registers and consequently the simplest

s-stage minimum storage method results of a repeated application of Euler’s method with

step sizes cj∆t, j = 1, . . . , s with
∑s

j=1 cj = 1, however their accuracy is not enough in

many applications. Within the minimum storage schemes (two registers of size m), the

(W )-schemes of Williamson [23] have been very popular in Computational Aero Acoustics

(CAA) problems in the last years. These (W )-schemes can be defined by the algorithm:

Data: V 1 = 0, U1 = yn

Result: yn+1 = Us+1

for j = 1 to s do

V j+1 = αj V
j + f(tn + cj∆t, U j)

U j+1 = U j +∆t βj+1 V
j+1

end
Algorithm 1: Williamson scheme
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U1 ← yn

U2 ← U1 + b1V
2

...

Us ← Us−1 + bs−1V
s

Un+1 = Us + bsV
s+1

−→

−→

...

−→

V 2 ← ∆tf(tn, U
1)

V 3 ← ∆tf(tn +∆c2, U
2 + α2V

2)

...

V s+1 ← ∆tf(tn +∆cs, U
s + αsV

s)

Here, αj , βj+1, j = 1, . . . , s are the 2s free parameters, but noting that V 1 = 0, then

α1 is redundant and it is usual to choose α1 = 0.

Thus Stanescu and Habashi [20] have derived several (W )-schemes with amplification

functions obtained by Hu et al. [12] that minimize the dissipation and dispersion errors

for the linear wave test equation (1). Other fourth-order (non linear) (W )-schemes with

minimum local error were derived by Carpenter and Kennedy [8]. More recently, (W )-

storage schemes addressed to problems in the field of CAA have been proposed in [1], [2].

The advantage of Williamson schemes over Euler’s compositions is that s-stageWilliamson

methods have 2s − 1 free parameters and then allow us to obtain better accuracy and

stability properties than in s-stage Euler’s compositions.

Alternative families of minimum storage schemes, proposed by van der Houwen ([11],

Eq. 2.2.4’) and referred to as (vdH)-schemes, have been considered also to derive different

low storage methods. They have been extensively studied by Kennedy, Carpenter and

Lewis [13] to obtain optimal schemes of several orders having in mind the semidiscretiza-

tion of Navier-Stokes equations including also local error control by embedded pairs (of

course with additional storage requirements). Also Calvo et al. [4], [5] have obtained

some optimal (vdH)-methods for acoustic problems. The next algorithm shows this class

of schemes:

Data: V 1 = 0, U1 = yn

Result: yn+1 = Us+1

for j = 1 to s do

V j+1 = f(tn + cj∆t, U j +∆t γj V
j)

U j+1 = U j +∆t bj V
j+1

end
Algorithm 2: van der Houwen scheme
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U1 ← yn

U2 ← U1 + b1V
2

...

Us ← Us−1 + bs−1V
s

Un+1 = Us + bsV
s+1

−→

−→

...

−→

V 2 ← ∆tf(tn, U1)

V 3 ← ∆tf(tn + c2∆t, U2 + γ2V
2)

...

V s+1 ← ∆tf(tn + cs∆t, Us + γs−1V
s)

It must be noticed that the s-stage (vdH)-schemes have also 2s − 1 free parameters

(γ1 = 0) and therefore have the same flexibility than the Williamson methods, although

it can be seen that the (vdH)- and (W )-families do not contain the same RK methods.

Recently, by using the Shu-Osher form, two new general families of low storage explicit

Runge–Kutta methods have been given by Ketcheson [14], [15], and Calvo et al. [7].

Algorithm 2 expressed in Butcher’s notation is defined by the tableau of coefficients

(19) with

aj,j−1 = bj−1 + γj−1, j = 2, . . . , s,

ajℓ = bℓ, j − 1 ≤ ℓ ≤ s− 2.
(32)

Since the requirements C1)–C3) depend only on the amplification function R(z) = 1+
∑s

j=1 γjz
j , of the considered RK method, many authors have derived “optimal” methods

for several values of the number of stages s. Thus Hu et al. [12] obtained optimal methods

for s = 4, 5, 6. Also Bogey and Bailly [3] have derived optimal methods combined with

spatial stencils with 9-, 10- and 11-points. In the same line Calvo et al. [4], [5] have

derived optimal methods for s = 5, 6.

To measure the quality of a method defined by R(z) = 1 +
∑s

j=1 γjz
j , it has been

usual to compare the following quantities

S = max{z > 0, |R(iz)| ≤ 1},
Ld = max{z > 0, ||R(iz)| − 1| ≤ 10−3},
Lϕ = max{z > 0, | arg(R(iz))− z| ≤ 10−3}.

(33)

In Table 3 the values of these parameters corresponding to several methods are presented.

In Figure 8 we display the profiles of the exact and numerical solutions of example 1

for the six-stages fourth-order RK method of Calvo et al. given in [4] at the final time

level. As can be seen, the shape of the wave is reproduced properly even with a large

time stepsize ∆t = 1.0

To end this section let us note that in the frame of implicit RK schemes there are

methods such as Gauss ones that possess the best properties of stability and dissipation
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Table 3: Values of S, Ld and Lϕ parameters for several RK methods

method order order (lin.) stages S Ld Lϕ

Classic 3 3 3 1.73 0.40 0.49

Classic 4 4 4 2.83 0.73 0.68

Hu et al. 2 2 4 2.85 0.85 0.86

Hu et al. 2 2 5 3.54 1.72 1.35

Hu et al. 3 4 6 1.75 1.41 1.27

Calvo et al. 3 3 5 3.48 0.91 1.09

Calvo et al. 4 4 5 3.48 1.25 0.91

Calvo et al. 4 4 6 3.82 2.00 1.14

Allampalli 3 4 7 5.67 1.28 1.07

Gauss 2 2 1 ∞ ∞ 0.23

Gauss 4 4 2 ∞ ∞ 0.95

(S = Ld = ∞) although they have a non zero dispersion error that depends on s. For

example, the fourth-order Gauss method has Lϕ = 0.95.

In Figure 9 we display the profiles of the exact and numerical solutions of example

1 for the two-stage Gauss method with order four at the final time level. Now, if the

spatial discretization has good dissipation and dispersion properties, the time integrator

reproduces quite accurately the shape of the solution with the step size ∆t = 1. However

the main drawback of Gauss methods for CAA problems is its implicitness that entails a

very high computational cost.

2.3 Dispersion and dissipation of the FD-RK scheme

The total dispersion and dissipation errors introduced by the FD-RK scheme are obtained

by comparing the numerical solution of the semidiscretization (5) at the time level tn+1

and un
j = eik(xj−c tn)

un+1
j = R(−ick∗∆t) eik(xj−c tn), j = 0,±1, . . . , (34)

with the exact solution of (1) with u(x, 0) = eikx

uex(xj , t
n+1) = e−ick∆t eik(xj−c tn), j = 0,±1, . . . , (35)

and writing the total errors as the product of the spatial errors with the temporal errors
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Figure 8: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth order spatial discretization and Calvo et al. [4] optimized six stages, fourth-

order RK for time discretization.

un+1
j

uex(xj , tn+1)
=

R(−ick∗∆t)

e−ick∆t
=

R(−ick∗∆t)

e−ick∗∆t︸ ︷︷ ︸
temporal errors

e−ick∗∆t

e−ick∆t︸ ︷︷ ︸
spatial errors

. (36)

Using the notation: α =
c∆t

∆x
for the CFL number and z∗ = k∗∆x, (36) can be written

as

un+1
j

uex(xj , tn+1)
= |R(−iαz∗)|︸ ︷︷ ︸

total dissipation

ei[αz+argR(−iαz∗)]
︸ ︷︷ ︸
total dispersion

, (37)

where

z∗ =
N∑

j=1

(aj − a−j) sin(jz)− i

(
a0 +

N∑

j=1

(aj + a−j) cos(jz)

)
, (38)

and the total dispersion and dissipation errors are given, respectively, by

φTot(α, z) = αz + argR(−iαz∗), dTot(α, z) = 1− |R(−iαz∗)|. (39)

Again, for symmetric FD schemes z∗ = z − φs(z) is real and equations (37) and (39)

reduce to
un+1
j

uex(xj, tn+1)
= |R(iαz∗)|︸ ︷︷ ︸

total dissipation

ei[φt(αz∗)+αφs(z)]︸ ︷︷ ︸
total dispersion

, (40)
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Figure 9: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth-order spatial discretization and fourth-order Gauss RK for time discretization.

and we define

φTot(α, z) = φt(αz
∗) + α φs(z), dTot(α, z) = 1− |R(iαz∗)|. (41)

Next we illustrate the spatial, temporal and total errors for two FD-RK schemes. First

of all we combine the standard eigth-order nine-points symmetric FD scheme (SFD9) with

the classical four-stage fourth-order RK time advancing algorithm (RK4). In this case

there is no dissipation error in the spatial discretization and the total dissipation error is

due to the time advancing algorithm. For the dispersion error, we display in Figure 10

the (scaled) spatial, temporal and total errors for z = k∆x ∈ [0, π/2] and α = 1. It can

be seen that for z = k∆x ≤ 0.75 the effect of the spatial error φs(z) on the total error

φTot(1, z) is negligible but for z = k∆x > 0.75 the spatial error is comparable or even

greater than the temporal error and taking into account that both have the same sign

both errors have a cumulative effect on the total error.

As a second scheme we combine the same spatial discretization with the six-stage

low-dissipation and low-dispersion RK scheme (RKHu6) given by Hu et al. [12]. By the

symmetry of the spatial scheme only the temporal dissipation is responsible for the total

dissipation error and we focus on the dispersion errors. In Figure 11 we display the spatial,

temporal and total errors for z = k∆x ∈ [0, π/2] and α = 1. In this case a smaller total

error φTot than in the previous case is obtained but the small temporal error φt achieved

in the optimization of the time advancing scheme RKHu6 is compensated by the large

spatial error φs. However, the computational cost of the scheme RK4 is reduced by a
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factor of 2/3 with respect to computational cost of the scheme RKHu6. In Figure 12 we

show the spatial, temporal and total errors for the scheme SFD9-RK4 at a CFL number

α = 2/3 so that both schemes have the same computational cost, and it can be seen that

both schemes have a comparable total error φTot.

These examples show that in the linear error analysis it is crucial to consider the total

errors to achieve optimal schemes.
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Figure 10: Dispersion errors (scaled by 1/π) for SFD9-RK4 at α = 1.

3 Optimization of the FD-RK schemes

In this section new FD-RK schemes are derived by minimizing the total dispersion and

dissipation errors.

For the spatial discretization we will consider symmetric FD schemes (16) using 2N+1

grid points with N = 4, 5, 6, and accuracy order four. In view of (4), the available

coefficients aj satisfy the conditions

a0 = 0,

N∑

j=1

jaj =
1

2
,

N∑

j=1

j3aj = 0. (42)

and the coefficients a1 and a2 can be expressed in terms of aj , j = 3, . . . , N which will

be used as free parameters in the optimization process.
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Figure 11: Dispersion errors (scaled by 1/π) for SFD9-RKHu6 at α = 1.
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Figure 12: Dispersion errors (scaled by 1/π) for SFD9-RK4 at α = 2/3.
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For time advancing we will use low storage six-stage explicit RK methods with order

four. In the application to linear differential equations they are characterized by the

amplification function

R(ζ) = 1 + ζ +
1

2!
ζ2 +

1

3!
ζ3 +

1

4!
ζ4 + β5 ζ

5 + β6 ζ
6, (43)

with the free parameters β5 and β6.

Now the resulting schemes, denoted by SFD2N+1-RK6 with N = 4, 5, 6, depend on

the free parameters a3, . . . , aN , β5 and β6 which will be determined by minimizing the

following error measure

∫∫

D

[(
φTot(α, z)

π

)2

+ d2Tot(α, z)

]
dα dz, (44)

where the integration region is defined by D = {(α, z) | α ∈ (0, 1], z ∈ [zmin, zmax]} for

some given zmin and zmax. Further we impose the stability condition

|R(iαz∗)| < 1, α ∈ (0, 1], z ∈ (0, zmax], (45)

with z∗ given by (38).

We notice that the main difference of (44) with error measures considered by other

authors (for example [2, 3, 12, 19]) is the use of the total dispersion and dissipation

errors on a two-dimensional region associated to spatial and temporal discretizations. The

constraint (45) was imposed in order to obtain optimized schemes which are stable on the

range of wavenumbers in which the dispersion and dissipation behavior is acceptable in

terms of accuracy.

Here we chose the wavenumbers limits zmin = π/16 and zmax = π/2 which amounts

to consider waves between 32 points per wavelength and 4 points per wavelength, respec-

tively, and for the scheme with N = 6 we also use zmax = 3π/5 as in [3]. The coefficients

β5, β6 and aj obtained for the optimized FD-RK schemes are given in Tables 4 and 5.

To compare the dispersive and dissipative behavior of the new optimized schemes we

consider some FD-RK schemes recently published in the scientific literature [2, 3] which

have been optimized independently in space and in time. The optimized spatial FD

schemes derived in [3] together with the fourth-order six-stage RK algorithm derived in

[2], and they will be referred as FDo9p-RKB6, FDo11p-RKB6 and FDo13p-RKB6. Fig-

ures 13–18 show the total dispersion and dissipation errors: φTot(α, z)/π and dTot(α, z)

depicted as a function of z = k∆x (0 ≤ z ≤ zmax) at a CFL number α = 1. These

figures show that the new optimized schemes have generally a better dispersive and dis-

sipative behavior than those optimized independently in space and in time, in particular

for wavenumbers near to z = π/2.
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Next a quantitative comparison of schemes by taking dispersion and dissipation error

bounds: |φTot(α, z)/π| ≤ 10−3 and |dTot(α, z)| ≤ 10−4 is given. These limits indicate

the maximum wavenumbers z = k∆x properly calculated which can also be expressed in

terms of the number of points per wavelength Np = 2π/k∆x with respect to the grid-size

∆x. They are reported in Table 6 for the schemes considered in the comparison at a CFL

number α = 1. For the same (2N + 1)-points stencil, the new optimized schemes have

generally better accuracy limits in phase than the schemes optimized independently in

space and in time. In addition, waves with four points per wavelength at α = 1 are taken

into account only by the schemes SFD11-RK6(a) and SFD13-RK6(a).

Table 4: Coefficients of the optimized SFD2N+1-RK6(a) schemes with zmax = π/2

N = 4 N = 5 N = 6

β5 = 0.00785313645903 β5 = 0.00785780000000 β5 = 0.00785812800000

β6 = 0.00092656241553 β6 = 0.00094507900000 β6 = 0.00094851200000

a1 = 0.84332103556666 a1 = 0.88131666666666 a1 = 0.90280686066667

a2 = −0.24646064685333 a2 = −0.29651333333333 a2 = −0.32759725333333
a3 = 0.06024952338000 a3 = 0.09657000000000 a3 = 0.12294034000000

a4 = −0.00778707800000 a4 = −0.02315000000000 a4 = −0.03812260000000
a5 = 0.00292000000000 a5 = 0.00835681000000

a6 = −0.00095450400000

Table 5: Coefficients of the optimized SFD13-RK6(b) scheme with zmax = 3π/5

β5 = 0.00784952503800

β6 = 0.00099024688453

a1 = 0.91934276215510

a2 = −0.35241708459276
a3 = 0.14520000000000

a4 = −0.05177590000000
a5 = 0.01379215888197

a6 = −0.00199429789657
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Table 6: Dispersion and dissipation limits in wavenumbers z = k∆x and in points per

wavelength Np = 2π/k∆x with respect to the grid-size ∆x at α = 1.

Dispersion |φTot/π| ≤ 10−3 Dissipation |dTot| ≤ 10−4

k∆x 2π/k∆x k∆x 2π/k∆x

FDo9p-RKB6 1.43 4.39 1.88 3.34

FDo11p-RKB6 1.44 4.38 1.82 3.45

FDo13p-RKB6 1.40 4.49 1.80 3.49

SFD9-RK6(a) 1.46 4.31 1.65 3.81

SFD11-RK6(a) 1.63 3.85 1.74 3.61

SFD13-RK6(a) 1.74 3.61 1.75 3.56

SFD13-RK6(b) 1.89 3.32 1.51 4.16

4 Construction of the low storage RK methods

In this section we analyze the low-storage explicit RK methods with s = 6 stages and

non linear algebraic order 4 given in the previous section. These schemes satisfy the order

conditions

bTe = 1, bT c = 1/2, bT c2 = 1/3, bTAc = 1/6,

bTc3 = 1/4, bT (c ·Ac) = 1/8, bTAc2 = 1/12, bTA2c = 1/24.
(46)

In addition to the equations given by (46), the coefficients of (32) also satisfy the two

additional conditions

bTA3c = β5, bTA4c = β6, (47)

obtained in the optimization process of the previous section.

Since we have a set of ten nonlinear equations (46)–(47) for the eleven coefficients

(b1, . . . , b6, γ1, . . . , γ5), one parameter is free, and therefore some additional requirements

can be imposed for its determination. Here, we use this degree of freedom to solve

numerically the nonlinear system (46)–(47) by taking into account standard requirements

in the derivation of practical RK methods:

• The weights satisfy |bi| ≤ 2, i = 1, . . . , 6.

• The nodes satisfy ci 6= cj, ∀ i 6= j and 0 ≤ ci ≤ 1, i = 1, . . . , 6.

• Minimize the Euclidean norm of the leading term of the local error of the advanc-

ing approximation, i.e. ‖τ (5)‖2 =
∑∣∣∣C(5)

j

∣∣∣
2

, where C
(5)
j are the coefficients of the
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elementary differentials of order five in the local error expansion in powers of the

step size ∆t.

We have taken a fine grid in the free parameter and we have tested the first two

requirements at each point. From the avalilable points, we have started a minimization

process of the third condition and finally the coefficients obtained for the low-storage RK

algorithms associated to the optimized schemes of the previous section are given in Tables

7–10.

Table 7: Coefficients of the low-storage RK algorithm for the SFD9-RK6(a) scheme

c1 = 0 b1 = 0.11542410418395 γ1 = 0.18457589581605

c2 = 0.30000000000000 b2 = 0.14337328928437 γ2 = 0.12830567193128

c3 = 0.38710306539960 b3 = 0.34923156739002 γ3 = 0.10871574089416

c4 = 0.71674470175250 b4 = −0.52556842961887 γ4 = 0.60238704717262

c5 = 0.68484757841209 b5 = 0.49748516677020 γ5 = 0.27184007546667

c6 = 0.85178577347634 b6 = 0.42005430199034

Table 8: Coefficients of the low-storage RK algorithm for the SFD11-RK6(a) scheme

c1 = 0 b1 = 0.10974285720869 γ1 = 0.18025714279131

c2 = 0.29000000000000 b2 = 0.13448959704914 γ2 = 0.13857764418235

c3 = 0.38281009844018 b3 = 0.38294944978031 γ3 = 0.08426505141729

c4 = 0.71144695545543 b4 = −0.60216813067103 γ4 = 0.66860432485845

c5 = 0.69361809822556 b5 = 0.49945631650501 γ5 = 0.30908387736075

c6 = 0.83355396723287 b6 = 0.47552991012788

Table 9: Coefficients of the low-storage RK algorithm for the SFD13-RK6(a) scheme

c1 = 0 b1 = 0.11287033711698 γ1 = 0.19025714279131

c2 = 0.30000000000000 b2 = 0.14141097168321 γ2 = 0.13989004259688

c3 = 0.38412249685471 b3 = 0.36534072934351 γ3 = 0.08964556109275

c4 = 0.71682746513089 b4 = −0.54871438354286 γ4 = 0.66668799693474

c5 = 0.69170177030185 b5 = 0.47533937806862 γ5 = 0.31691629028663

c6 = 0.84138638015875 b6 = 0.45375296733053
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Figure 13: Total dispersion errors at α = 1.
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Figure 14: Total dissipation errors at α = 1.
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Figure 15: Total dispersion errors at α = 1.
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Figure 16: Total dissipation errors at α = 1.
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Figure 17: Total dispersion errors at α = 1.
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Figure 18: Total dissipation errors at α = 1.
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Table 10: Coefficients of the low-storage RK algorithm for the SFD13-RK6(b) scheme

c1 = 0 b1 = 0.11542109063167 γ1 = 0.20457890936833

c2 = 0.32000000000000 b2 = 0.14461329419966 γ2 = 0.12109473781601

c3 = 0.38112912264734 b3 = 0.36393100640076 γ3 = 0.11419683938110

c4 = 0.73816223061319 b4 = −0.43062100269419 γ4 = 0.50989197038198

c5 = 0.70323635891988 b5 = 0.33271255388848 γ5 = 0.31562989999482

c6 = 0.84168684242120 b6 = 0.47394305757361

5 Numerical experiments

In order to test the effectiveness of the optimized low storage RK schemes derived in

the above section, we use several model problems with linear and nonlinear wave prop-

agation. In particular, we have considered a one dimensional convection equation in-

volving long-range sound propagation, and two Euler model problems. The new opti-

mized schemes have been compared with the schemes FDo9p-RKB6, FDo11p-RKB6

and FDo13p-RKB6 developed in [2, 3].

5.1 One dimensional convection equation

In our first numerical experiments we have considered the two basic problems studied by

Bogey and Bailly in [3]. The aim is to check the long-range propagation of two initial

disturbances by the one-dimensional convective wave equation (1) with c = 1 given by

u(x, 0) = sin

(
2πx

a∆x

)
exp

(
− log(2)

( x

b∆x

)2)
,

where the parameters a and b are a = 8 and b = 3 for the case I and a = 4 and b = 9 for

the case II.

As remarked in [3] these choices of a and b have been made for the spectral contents

of u(x, 0). Thus in case I the spectral content of u(x, 0) is a Gaussian function centered

around k∆x = π/4 with wavenumbers k∆x ∈ (0, π/2) whereas in case II the Gaussian

function is centered around k∆x = π/2.

For the case I the initial disturbance is propagated over 800∆x which corresponds to

100 times the dominant wavelength. Figures 19–24 show the results obtained with the

schemes of 9, 11 and 13 points, respectively, for a CFL number α = 1. Figures 19, 21 and

23 show the solution computed with the numerical schemes whereas Figures 20, 22 and

24 show the total errors given by |uex−unum|. The solution obtained with the schemes of

9 points (Figure 19) shows dispersion of the initial disturbance for both schemes. In this

case the total errors (Figure 20) of the scheme FDo9p-RKB6 are slightly smaller than the
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total errors of the scheme SFD9-RK6(a). On the other hand, the results obtained with

the 11 and 13-points schemes are different (Figures 21–24). Now the solutions obtained by

using the schemes developed in [2, 3] are clearly distorted, whereas the solutions obtained

by using the new optimized schemes superpose fairly on the exact solution. It is worth to

remark that the total errors presented by the new optimized schemes are at least 2.5 times

smaller than the total errors presented by the schemes developed in [2, 3]. These results

are in agreement with the better dispersive properties of the new optimized schemes as

analyzed in section 3. It should also be noted that the scheme SFD13-RK6(a) is more

accurate than the scheme SFD13-RK6(b) for this problem.

Case II is a test model to investigate if wavenumbers z = k∆x ≃ π/2 are properly

calculated with about four points per wavelength. As remarked in [3] these waves often

appear in Large Eddy Simulation (LES) procedures. Now the initial disturbance is prop-

agated over a distance of 200∆x which corresponds to 50 times the wavelength. Figures

25–28 show the results obtained with the schemes of 11 and 13 points for a CFL number

α = 1. The schemes of 9 points do not result accurate enough to solve this problem. The

Figures 25 and 27 show the solution computed with the numerical schemes and the Fig-

ures 26 and 28 show the total errors (|uex−unum|), as in the case I. The solutions obtained

with the schemes developed in [2, 3] are clearly dispersed and dissipated. The solution

obtained with the SFD11-RK6(a) scheme is also dispersed and dissipated though its total

errors are approximately two times lower than the total errors presented by the FDo11p-

RKB6 scheme. In this problem, the solution is only properly calculated by using the new

SFD13-RK6(a, b) schemes. The solution computed by the SFD13-RK6(a) scheme is in

phase with the exact one and it results slightly dissipated, whereas the solution computed

by the SFD13-RK6(b) scheme is the most accurate for this problem.
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Figure 19: Solution at α = 1 for the schemes SFD9-RK6(a) and FDo9p-RKB6.
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Figure 20: Errors at α = 1 for the schemes SFD9-RK6(a) and FDo9p-RKB6.
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Figure 21: Solution at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 22: Errors at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 23: Solution at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 24: Errors at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 25: Solution at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 26: Errors at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 27: Solution at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.

5.2 One dimensional Euler model problems

In our second test problem we consider the one-dimensional linearized Euler equations

(around u0, ρ0, p0)




ρt

ut

pt


 +




u0 ρ0 0

0 u0
1

ρ0
0 γp0 u0







ρx

ux

px


 = 0. (48)

Here ρ is the density, u the velocity and p the pressure. Using the transformation

(ρ, u, p)→ (r, v, w) given by

ρ =
r + w

c2
+ v, u =

w − r

c ρ0
, p = r + w, (49)

the PDE system (48) can be written in the diagonal form




rt

vt

wt


 +




u0 − c 0 0

0 u0 0

0 0 u0 + c







rx

vx

wx


 = 0, (50)

where c =
√

γp0
ρ0

is the speed of sound, and therefore exact solutions can easily be com-

puted for numerical comparison. We consider the case of subsonic regime, 0 < u0 < c,

for the computations carried out with the FD-RK schemes. The computation domain is
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Figure 28: Errors at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.

taken large enough, −250 ≤ x ≤ 250, so that boundary conditions do not need to be

implemented. The system (48) is solved with ∆x = 1, α = 1, and the time step size is

determined from the CFL number as ∆t = α∆x/(u0 + c). The values of the coefficients

are given by u0 = c/10, γ = 1.4, p0 = 1, ρ0 = 1, and the initial perturbation used is





ρ(x, 0) = 1

u(x, 0) = 0

p(x, 0) = e−(x/4)2 sin (2πx/5)

(51)

The results shown below are obtained after 200 time steps so that tend = 200∆t =

153.66. Figures 29 and 31 show the density and Figures 30 and 32 show the errors on the

density corresponding to the right travelling acoustic wave (it travels at a speed of u0+ c)

for the schemes of 11 and 13 points. Here the 9-points schemes do not give accurate

solutions in this time interval. As it can be observed in these figures, the FDo11p-RKB6

and FDo13p-RKB6 schemes present important oscillations behind the acoustic wave.

This is due to their total dispersion errors (see Figures 15 and 17). In general, the new

optimized schemes show a better dispersive and dissipative behavior than the schemes

proposed in [2, 3]. In addition, the errors of the acoustic wave for the new optimizations

are smaller in amplitude than those of the schemes proposed in [2, 3]. In particular, the

schemes of 13 points present lower trailing oscillations behind the acoustic wave than the

schemes of 11 points. In addition, the most accurate results for this problem are given by
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the SFD13-RK6(b) scheme.

Finally we consider a nonlinear test problem, the one-dimensional Euler equations




ρt

ut

pt


 +




u ρ 0

0 u
1

ρ

0 γp u







ρx

ux

px


 = 0. (52)

The initial perturbation used is a Gaussian pressure pulse at the center of the domain

given by





ρ(x, 0) = 1

u(x, 0) = 0

p(x, 0) =
1

γ
+∆p e−βx2

(53)

where γ = 1.4, β = 0.05 and ∆p = 0.035. The computation domain is taken large

enough, −400 ≤ x ≤ 400, so that boundary conditions do not need to be implemented.

The system (52) is solved in dimensionless form with α = 1, c = 1, and the time step is

determined from the CFL number as c∆t = α∆x. The time integration is propagated

up to tend = 150 for several values of the grid-size ∆x. For numerical comparison we

have computed a reference solution by using thirtieth-order thirty-one-point standard

finite differences for spatial derivation and the six-stage RK algorithm RKB6 with the

CFL number α = 0.01 for time integration as in [2]. The initial perturbation and the

computed reference solution for the pressure are shown in Figures 33 and 34, respectively.

The error is evaluated as

error =
N∑

i=1

|pref(xi)− pnum(xi)|, (54)

where N is the number of mesh points and pref the reference solution.

Figures 35 and 36 show the errors as a function of the grid-size ∆x (in logarithmic

scale) for the schemes of 9, 11 and 13 points. As it can be observed, for a grid-size ∆x

lower than 0.5, the order of accuracy defines the slope of the error curve. In this case all

the schemes considered here present accuracy of fourth-order. On the other hand, when

∆x is greater than 0.5, the slope of the error curve appears influenced by the dispersion

and dissipation errors. Finally, we have observed that for this problem the most accurate

results are given by the schemes SFD13-RK6(a) and FDo11p-RKB6.

6 Conclusions

A class of optimized explicit methods constituted by symmetric FD schemes for spatial

derivation and low storage RK algorithms for time integration is proposed. The methods
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Figure 29: Density for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 30: Errors on the density for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 31: Density for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 32: Errors on the density for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 33: Initial pressure for the 1D Euler equations.
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Figure 34: Reference pressure computed at t = 150 for the 1D Euler equations.
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Figure 35: Propagation error as a function of ∆x for the schemes of [2, 3].
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Figure 36: Propagation error as a function of ∆x for the new schemes.
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are characterized by the minimization of an error measure which takes into account the

total dispersion and dissipation errors associated to spatial and temporal discretizations.

This new approach allows to optimize the spatial scheme and the time advancement

method simultaneously, in opposition to approaches followed by other authors. Opti-

mizations were done on fourth-order symmetric FD schemes with 9, 11 and 13 points in

combination with six-stage fourth-order explicit RK algorithms. Analysis of total dis-

persion and dissipation errors and evaluation of accuracy limits demonstrate the better

dispersive properties of the new optimized methods when they are compared with the

optimized schemes of [2, 3]. The numerical experiments carried out with 1D convec-

tion equations and 1D Euler model problems confirm the improvements in accuracy and

efficiency of the new optimizations.

7 Future work

In the case of explicit RK methods we will investigate low-storage schemes when they

are applied to solve differential problems related with the property of Total Variation

Diminishing (TVD). When a RK method is used to solve an IVP:

U ′(t) = F (U(t)), U(t0) = U0 (55)

resulting from an application of the method of lines to a Cauchy problem for a PDE, it

yields approximations Un = (Un,1, . . . , Un,N)
T to the exact solution U(n∆t) at tn = n∆t,

where ∆t > 0 denotes the temporal step-size.

The property of TVD is

‖Un+1‖TV ≤ ‖Un‖TV (56)

where ‖ · ‖TV is the seminorm defined by

‖Un‖TV =
∑

j

|Un,j+1 − Un,j |. (57)

The main goal is the construction of high-order TVD Runge–Kutta schemes with the

property of low-storage while preserving the TVD property.

Other research related with low-storage Runge–Kutta schemes is the analysis and

study of new embedded pairs. It is well known that using a fixed step size policy is usually

less efficient than allowing the step size to vary each step. Modern explicit Runge–Kutta

methods have an error estimator that makes it possible to determine suitable step sizes

to adjust dynamically the length of the step size in terms of the behavior of the local

solution.
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