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Abstract

We focus on the interaction of several complex invariants of cohomological type

and metric properties of compact complex manifolds, as well as their behaviour

under holomorphic deformations of the complex structure. Recent results on the

complex geometry of nilmanifolds concerning such properties are reviewed. We

show that the complex geometry of the 6-dimensional manifold N × N given by

the product of two copies of the Heisenberg nilmanifold N allows to construct a

holomorphic deformation with interesting properties in its central limit.

1 Introduction

In this paper we consider compact complex manifolds (M, J) with special Hermitian

metrics, mainly balanced and strongly Gauduchon metrics. We focus on the interaction

of the existence properties of such metrics and several complex invariants of cohomological

type which are related to the ∂∂̄-lemma condition. An important problem is the study of

the deformation limits of these properties under holomorphic deformations of the complex

structure. We show that the class of complex nilmanifolds provides a very rich source of

explicit examples of analytic families of compact complex manifolds with interesting and

unusual behaviours in their central fibres.

In Section 2.1 we first recall the definition and the main properties of some complex

invariants of cohomological type on a compact complex manifold (M, J) of complex di-

mension n which are related to the ∂∂̄-lemma condition, namely fk(M, J) for 0 ≤ k ≤ n
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and kr(M, J) for r ≥ 1. Such complex invariants have been introduced in [7, 26, 41]

and they are defined by means of the Bott-Chern cohomology Hp,q
BC(M, J), the Aeppli

cohomology Hp,q
A (M, J) and the terms in the Frölicher spectral sequence {Er(M, J)}r≥1

(see below for details). In Section 2.2 we consider some special Hermitian metrics on

compact complex manifolds. It is well known that the existence of a Kähler metric im-

poses strong topological conditions on the manifold, in particular, (M, J) must satisfy the

∂∂̄-lemma [16], which in addition implies the degeneration of the Frölicher sequence at

E1 and the formality of the manifold. On the other hand, Gauduchon proved in [21] that

in the conformal class of any Hermitian metric on (M, J) there always exists a Hermitian

metric F satisfying ∂∂̄F n−1 = 0. Between the Kähler class and the Gauduchon class,

other interesting classes of special Hermitian metrics have been considered in relation to

several problems in differential and algebraic geometry. A metric F is called balanced if

dF n−1 = 0, and a characterization of the existence of balanced metrics in terms of cur-

rents was given in [28]. More recently, Popovici has introduced a new class of Hermitian

metrics [32], namely the class of strongly Gauduchon (sG for short) metrics, in relation to

the study of central limits of analytic families of projective manifolds [33]. Such metrics

are defined by the condition that ∂F n−1 is ∂̄-exact. Section 2.3 is devoted to the class of

sGG manifolds introduced and investigated in [36], which are defined as those compact

complex manifolds whose sG cone coincides with the Gauduchon cone. There are several

characterizations of the sGG manifolds, for instance, as those compact complex manifolds

(M, J) for which every Gauduchon metric is sG, as well as those (M, J) satisfying the

following special case of the ∂∂̄-lemma: if Ω is a d-closed (n, n − 1)-form that is ∂-exact,

then Ω is also ∂̄-exact. Moreover, in [36] two numerical characterizations of the sGG man-

ifolds are obtained, which involve the Bott-Chern number h0,1
BC(M, J), the Hodge number

h0,1

∂̄
(M, J) and the first Betti number b1(M) of the manifold (see Proposition 2.5).

In Section 3 we address the problems of openness and closedness of the proper-

ties considered in the previous sections under holomorphic deformations of the com-

plex structure. For each k such that 0 ≤ k ≤ n, we say that a compact complex

manifold (M, J) has the property Fk if the Angella-Tomassini invariant fk(M, J) =
∑

p+q=k (hp,q
BC(M, J) + hp,q

A (M, J)) − 2bk(M) vanishes. By [7], a compact complex man-

ifold (M, J) satisfies the ∂∂̄-lemma if and only if it has the property Fk for every k.

Similarly, we say that (M, J) has the property K if the Schweitzer invariant k1(M, J) =

h1,1
BC(M, J)+2h0,2

∂̄
(M, J)− b2(M) vanishes. Compact complex manifolds (M, J) satisfying

the ∂∂̄-lemma necessarily have the property K. The properties Fk and K are open, i.e.

they are stable under holomorphic deformations of the complex structure. Other prop-

erties which are open are the degeneration of the Frölicher spectral sequence at E1 [24],

the sG property [32] and the sGG property [36]. However, the balanced property is not

open [2].
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It is now known that the closedness of all these properties under holomorphic defor-

mations fails. In [17] it was proved that the property of the Frölicher spectral sequence

degenerating at E1 is not closed under holomorphic deformations. The first example of

an analytic family of compact complex manifolds (Xt)t∈∆, ∆ being an open disc around

the origin in C, such that the complex invariants k1(Xt) = f2(Xt) = 0 for any t 6= 0, but

k1(X0) 6= 0 and f2(X0) 6= 0 (i.e. the properties K and Fk for k = 2 are not closed) was con-

structed in [26]. We will denote here this concrete analytic family by X , i.e. X = (Xt)t∈∆.

Its construction was based on an appropriate deformation of an invariant complex struc-

ture on a 6-dimensional nilmanifold. The family X suggested that the ∂∂̄-lemma might

be a non-closed property, as it has later been confirmed by Angella and Kasuya in [6]

(see also [19]) by constructing certain holomorphic deformation of the Nakamura solv-

manifold. Moreover, the Frölicher spectral sequence of any compact complex manifold in

the analytic family X degenerates at E1 except for the central fibre [10]. This analytic

family X also allows to show that the sGG property is not closed under holomorphic

deformations [36]. Furthermore, the fibres Xt have balanced metric for any t ∈ ∆\{0},

but the central fibre X0 does not admit any sG metric, so the balanced property and the

sG property are not closed [10].

Since the compact complex manifolds Xt in the analytic family X are given by com-

plex nilmanifolds (M, Jt) where Jt is invariant, in Section 4 we focus on the class of

6-dimensional nilmanifolds M endowed with invariant complex structures J ; that is,

M = Γ\G is a compact quotient of a 6-dimensional simply-connected nilpotent Lie group

G by a lattice Γ of maximal rank in G, and J stems naturally from a “complex” structure

J on the Lie algebra g of G. Such nilmanifolds are classified through their underlying Lie

algebras [40] (see Theorem 4.2). A crucial result in the theory of nilmanifolds is Nomizu’s

theorem [31] which asserts that the de Rham cohomology of M is canonically isomor-

phic to the cohomology of its underlying Lie algebra g. Many efforts have been made to

achieve a Nomizu’s type result for the Dolbeault cohomology and other complex invariants

of cohomological type on (M, J), and several advances under additional conditions on the

invariant complex structure J can be found in [4, 11, 12, 14, 15, 27, 37, 38, 39]. Such

results, together with the classification of invariant complex structures J in dimension 6

obtained in [10], allow to compute the Bott-Chern cohomology groups Hp,q
BC(M, J) [5, 26].

The Bott-Chern numbers are given in Tables 1–3 below for any invariant complex struc-

ture J (up to isomorphism). On the other hand, we collect in Theorems 4.4, 4.5 and 4.8,

and Propositions 4.6 and 4.7, the general results about the Frölicher spectral sequence,

the existence of balanced and sG metrics, as well as the sGG condition for nilmanifolds in

dimension 6 obtained in [10, 36, 44, 46]. These results allow to conclude that, apart from

the obvious implications, most of the previous properties of compact complex manifolds

are unrelated.
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The real nilmanifold in the analytic family of compact complex manifolds X mentioned

above, is not a product since the Lie algebra underlying the nilmanifold is irreducible. In

Section 5 we consider the complex geometry of the product N × N of two copies of the

(3-dimensional) Heisenberg nilmanifold N . This geometry turns out to be surprisingly

rich as it allows to construct a new holomorphic family of compact complex manifolds

(N × N, Jt) satisfying similar properties to those of the family X (see Theorem 5.2 for

details). To our knowledge this is the first example of a holomorphic deformation having

such properties, constructed on a 6-dimensional product manifold.

2 Complex invariants and Hermitian geometry

In this section we recall the definitions and main properties of some complex invariants

of cohomological type on a compact complex manifold (M, J) which are related to the

∂∂̄-lemma condition. Some important classes of special Hermitian metrics on (M, J) are

also considered, as well as several relations among them.

2.1 Complex invariants related to the ∂∂̄-lemma

Let (M, J) be a compact complex manifold of complex dimension n and consider

Ωp,q(M) the space of forms of bidegree (p, q) with respect to the complex structure J , i.e.

Ωk
C
(M) = ⊕p+q=kΩ

p,q(M) for 0 ≤ k ≤ 2n.

It is well known that the Dolbeault cohomology groups Hp,q

∂̄
(M, J) of (M, J) are

defined by

Hp,q

∂̄
(M, J) =

ker{∂̄ : Ωp,q(M) −→ Ωp,q+1(M)}

im {∂̄ : Ωp,q−1(M) −→ Ωp,q(M)}
.

These groups are complex invariants of the manifold. The Frölicher spectral sequence

{Er(M, J)}r≥1 of a complex manifold (M, J) is the spectral sequence associated to the

double complex (Ωp,q(M), ∂, ∂̄), where ∂ + ∂̄ = d is the decomposition, with respect to

J , of the exterior differential d [20]. The first term E1(M, J) in the sequence is pre-

cisely the Dolbeault cohomology of (M, J), that is, Ep,q
1 (M, J) ∼= Hp,q

∂̄
(M, J), and after

a finite number of steps this sequence converges to the de Rham cohomology of M , i.e.

Hk
dR(M, C) ∼= ⊕p+q=kE

p,q
∞ (M, J), which is a topological invariant of M . More concretely,

for each r ≥ 1 there is a sequence of homomorphisms dr

· · · −→ Ep−r,q+r−1
r (M, J)

dr−→ Ep,q
r (M, J)

dr−→ Ep+r,q−r+1
r (M, J) −→ · · ·

such that dr ◦dr = 0 and Ep,q
r+1(M, J) = ker dr/im dr. The homomorphisms dr are induced

by ∂. When r = 1 the homomorphism d1 : Hp,q

∂̄
(M, J) −→ Hp+1,q

∂̄
(M, J) is given by

d1([αp,q]) = [∂αp,q], for [αp,q] ∈ Hp,q

∂̄
(M, J). For r = 2 we have

Ep,q
2 (M, J) =

{αp,q ∈ Ωp,q(M) | ∂̄αp,q = 0, ∂αp,q = −∂̄αp+1,q−1}

{∂̄βp,q−1 + ∂γp−1,q | ∂̄γp−1,q = 0}
,
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and the homomorphism d2 : Ep,q
2 (M, J) −→ Ep+2,q−1

2 (M, J) is given by d2([αp,q]) =

[∂αp+1,q−1], for [αp,q] ∈ Ep,q
2 (M, J). We will focus on compact complex manifolds (M, J)

of complex dimension 3, so it is sufficient to describe the spectral sequence up to the third

step E3 because in general Er(M, J) ∼= E∞(M, J) for any r ≥ dimC(M, J) (for general

descriptions of dr and Ep,q
r see for example [13]).

In addition to the Dolbeault cohomology groups Hp,q

∂̄
(M, J) and the Frölicher terms

Ep,q
r (M, J), the Bott-Chern and Aeppli cohomologies [1, 8] define additional complex

invariants of (M, J) given, respectively, by

Hp,q
BC(M, J) =

ker{d : Ωp,q(M) −→ Ωp+q+1
C

(M)}

im {∂∂̄ : Ωp−1,q−1(M) −→ Ωp,q(M)}
,

and

Hp,q
A (M, J) =

ker{∂∂̄ : Ωp,q(M) −→ Ωp+1,q+1(M)}

im {∂ : Ωp−1,q(M) −→ Ωp,q(M)} + im {∂̄ : Ωp,q−1(M) −→ Ωp,q(M)}
.

By the Hodge theory developed by Schweitzer in [41], all these complex invariants are

finite dimensional and one has the isomorphisms Hp,q
A (M, J) ∼= Hn−q,n−p

BC (M, J). Notice

that Hq,p
BC(M, J) ∼= Hp,q

BC(M, J) by complex conjugation.

From now on we shall denote by hp,q
BC(M, J) the dimension of the cohomology group

Hp,q
BC(M, J). The Hodge numbers will be denoted simply by hp,q

∂̄
(M, J) and the Betti

numbers by bk(M).

For any r ≥ 1 and for any p, q, there are well-defined natural maps

Hp,q
BC(M, J) −→ Ep,q

r (M, J) and Ep,q
r (M, J) −→ Hp,q

A (M, J).

In general these maps are neither injective nor surjective. However, all the maps are

isomorphisms if and only if (M, J) satisfies the ∂∂̄-lemma [16], that is, for any d-closed

form α of pure type on (M, J) the following exactness properties are equivalent:

α is d-exact ⇐⇒ α is ∂-exact ⇐⇒ α is ∂̄-exact ⇐⇒ α is ∂∂̄-exact.

Therefore, if the ∂∂̄-lemma is satisfied then the previous invariants coincide and in partic-

ular one has the Hodge decomposition Hk
dR(M, C) ∼= ⊕p+q=kH

p,q

∂̄
(M, J) for any k, where

in addition Hp,q

∂̄
(M, J) ∼= Hq,p

∂̄
(M, J).

Recently, Angella and Tomassini have introduced in [7] new complex invariants that

measure how far the compact complex manifold (M, J) is from satisfying the ∂∂̄-lemma

condition.

Theorem 2.1. [7] On any compact complex manifold (M, J) of complex dimension n the

following inequalities are satisfied:

∑

p+q=k

(

hp,q
BC(M, J) + hn−p,n−q

BC (M, J)
)

≥ 2bk(M), 0 ≤ k ≤ 2n.

Moreover, all these inequalities are equalities if and only if (M, J) satisfies the ∂∂̄-lemma.
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Let us denote by fk(M, J) the non-negative integer given by

fk(M, J) =
∑

p+q=k

(

hp,q
BC(M, J) + hn−p,n−q

BC (M, J)
)

− 2bk(M).

By the dualities in the Bott-Chern and de Rham cohomologies, it is clear that

f2n−k(M, J) = fk(M, J). Now, for each 0 ≤ k ≤ n, we consider the property

Fk = {the compact complex manifold (M, J) satisfies fk(M, J) = 0}.

Hence, by Theorem 2.1 a compact complex manifold (M, J) satisfies the ∂∂̄-lemma if and

only if it has the property Fk for every k ≤ n.

On the other hand, for any compact complex manifold (M, J) Schweitzer proved in [41,

Lemma 3.3] that

h1,1
BC(M, J) + 2 h0,2

∂̄
(M, J) ≥ b2(M),

and moreover, if (M, J) satisfies the ∂∂̄-lemma then the equality holds. More generally,

one has

Proposition 2.2. [26] If (M, J) is a compact complex manifold then for any r ≥ 1

h1,1
BC(M, J) + 2 dim E0,2

r (M, J) ≥ b2(M),

where E0,2
r (M, J) denotes the r-step (0, 2)-term of the Frölicher spectral sequence. Fur-

thermore, if (M, J) satisfies the ∂∂̄-lemma then the above inequalities are all equalities.

From now on, we will denote by kr(M, J), r ≥ 1, the non-negative integer given by

kr(M, J) = h1,1
BC(M, J) + 2 dim E0,2

r (M, J) − b2(M).

Therefore, kr(M, J) are complex invariants which vanish if the manifold (M, J) satisfies

the ∂∂̄-lemma. Notice that k1(M, J) ≥ k2(M, J) ≥ k3(M, J) = kr(M, J) ≥ 0 for any

r ≥ 4.

In general k1(M, J), k2(M, J) and k3(M, J) do not coincide [26], but the vanishing of

k1(M, J) implies the vanishing of any other kr(M, J). This fact justifies to consider the

following property:

K = {the compact complex manifold (M, J) satisfies k1(M, J) = 0}.

Obviously, any compact complex manifold satisfying the ∂∂̄-lemma has the property K.

2.2 Special Hermitian metrics

Let (M, J) be a compact complex manifold of complex dimension n. A Hermitian

metric g on (M, J) can be described by means of a positive definite smooth form F on
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M of bidegree (1, 1) with respect to J . In what follows, we will refer to F as a Hermitian

structure or as a Hermitian metric without distinction.

A Hermitian structure is Kähler if the form F is closed, that is, F is a symplectic

form compatible with the complex structure. It is well known that the existence of a

Kähler metric imposes strong topological conditions on the manifold. In particular, (M, J)

satisfies the ∂∂̄-lemma [16], which in addition implies the formality of the manifold.

On the other hand, Gauduchon proved [21] that in the conformal class of any Hermitian

metric there exists a Hermitian metric F satisfying ∂∂̄F n−1 = 0. We will refer to a metric

satisfying this condition as a Gauduchon metric.

Between the Kähler class and the Gauduchon class, other interesting classes of special

Hermitian metrics have been considered in relation to several problems in differential

and algebraic geometry. A metric F is balanced if dF n−1 = 0, and the existence of

balanced metrics in terms of currents was investigated in [28]. More recently, Popovici

has introduced a new class of Hermitian metrics in relation to the study of the central

limit of analytic families of projective manifolds: a metric F is called strongly Gauduchon

(sG for short) if ∂F n−1 is ∂̄-exact [32, 33].

By the definitions, any Kähler metric is balanced, any balanced metric is sG, and any

sG metric is a Gauduchon metric, that is:

Kähler =⇒ balanced =⇒ sG =⇒ Gauduchon.

The converses to these implications are not true: for instance, one can find examples in

the class of nilmanifolds (see Section 4 for details). However, as it is pointed out in [26],

if a compact complex manifold (M, J) satisfies that the natural map

(1) ζ : Hn,n−1

∂̄
(M, J) −→ Hn,n−1

A (M, J), ζ([Ω]∂̄) := [Ω]A

is injective (in particular, if the ∂∂̄-lemma is satisfied or if hn,n−1

∂̄
(M, J) = 0) then any

Gauduchon metric is an sG metric: in fact, if ∂∂̄F n−1 = 0 then ∂F n−1 defines a class

in the Dolbeault cohomology group Hn,n−1

∂̄
(M, J) such that the Aeppli cohomology class

[∂F n−1]A = 0 in Hn,n−1
A (M, J), so the injectivity of ζ implies the existence of a com-

plex form α of bidegree (n, n − 2) such that ∂F n−1 = ∂̄α. Therefore, if ζ is injective

then by Gauduchon’s result there exists an sG metric in the conformal class of any Her-

mitian metric. Notice that by Serre duality and by the dualities between Aeppli and

Bott-Chern cohomologies, the injectivity of ζ implies h0,1

∂̄
(M, J) = dim Hn,n−1

∂̄
(M, J) ≤

dim Hn,n−1
A (M, J) = h0,1

BC(M, J).

In the next section we consider in more detail the compact complex manifolds for which

any Gauduchon metric is sG, showing that the latter property is actually equivalent to

the injectivity of the map (1).
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2.3 The strongly Gauduchon cone

Let (M, J) be a compact complex manifold of complex dimension n. The Gauduchon

cone of (M, J) is defined in [35] as the open convex cone

CG(M, J) ⊂ Hn−1, n−1
A (M, J)

consisting of the (real) Aeppli cohomology classes [F n−1]A which are (n − 1)-powers of

Gauduchon metrics F on (M, J).

Let us consider the map T , induced by ∂ in cohomology, given by

(2) T : Hn−1, n−1
A (M, J) −→ Hn, n−1

∂̄
(M, J), T ([Ω]A) := [∂Ω]∂̄

for any [Ω]A ∈ Hn−1, n−1
A (M, J). The strongly Gauduchon cone (sG cone, for short) was

defined in [35] as the intersection of the Gauduchon cone with the kernel of the linear

map T , i.e.

CsG(M, J) = CG(M, J) ∩ ker T ⊂ CG(M, J) ⊂ Hn−1, n−1
A (M, J).

Notice that, either all the Gauduchon metrics F for which F n−1 belongs to a given Aeppli-

Gauduchon class [F n−1]A ∈ CG(M, J) are sG, or none of them is; that is to say, the sG

property is cohomological.

The following class is introduced in [36]: a compact complex manifold (M, J) is said

to be an sGG manifold if the sG cone of (M, J) coincides with the Gauduchon cone

of (M, J), i.e. CsG(M, J) = CG(M, J). Since the kernel of T is a vector subspace of

Hn−1,n−1
A (M, J), its intersection with CG(M, J) leaves the latter unchanged if and only if

T vanishes identically.

It is clear that any sGG manifold (M, J) is an sG manifold because every Gauduchon

metric F on (M, J) is sG. Also any compact complex manifold satisfying the ∂∂̄-lemma

is sGG because the map ζ given by (1) is injective. Therefore:

∂∂̄-manifold =⇒ sGG manifold =⇒ sG manifold.

The converses to these implications do not hold in general, and again one can find examples

in the class of nilmanifolds (see Section 4).

In [36] two numerical characterizations of the sGG manifolds are obtained. The

first one is given in terms of the Bott-Chern number h0,1
BC(M, J) and the Hodge num-

ber h0,1

∂̄
(M, J).

Theorem 2.3. [36] On any compact complex manifold (M, J) we have h0,1
BC(M, J) ≤

h0,1

∂̄
(M, J). Moreover, (M, J) is an sGG manifold if and only if h0,1

BC(M, J) = h0,1

∂̄
(M, J).

The second numerical characterization of sGG manifolds involves the first Betti num-

ber b1(M) and the Hodge number h0,1

∂̄
(M, J).
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Theorem 2.4. [36] On any compact complex manifold (M, J) we have b1(M) ≤

2 h0,1

∂̄
(M, J). Moreover, (M, J) is an sGG manifold if and only if b1(M) = 2 h0,1

∂̄
(M, J).

It is well known that a compact complex surface is Kähler if and only if its first Betti

number is even (a proof of this fact follows from Kodaira’s classification of surfaces, [29]

and [42]; see [9] and [25] for a direct proof). Hence, Theorem 2.4 makes the sGG manifolds

reminiscent of the compact Kähler surfaces. It is clear that in complex dimension 2, the

Kähler and the sGG conditions are equivalent. However, in dimension ≥ 3 the sGG

property is much weaker than the Kähler one.

In the proof of Theorem 2.3 (see [36, Theorem 2.1]) it is shown that the map ζ given

by (1) is always surjective, and that it is injective if and only if the manifold is sGG. In

the following result we sum up the equivalent descriptions of the sGG property discussed

above:

Proposition 2.5. For a compact complex manifold (M, J), the following statements are

equivalent:

(i) (M, J) is an sGG manifold;

(ii) every Gauduchon metric F on (M, J) is strongly Gauduchon;

(iii) the map ζ given by (1) is injective;

(iv) the map T given by (2) vanishes identically;

(v) the following special case of the ∂∂̄-lemma holds: for every d-closed (n, n− 1)-form

Ω on (M, J), if Ω is ∂-exact, then Ω is also ∂̄-exact;

(vi) h0,1
BC(M, J) = h0,1

∂̄
(M, J);

(vii) b1(M) = 2 h0,1

∂̄
(M, J).

3 Holomorphic deformations

In this section we address some problems about the behaviour of the properties considered

in the previous section under holomorphic deformations of the complex structure.

Let ∆ denote an open disc around the origin in C. Following [34, Definition 1.12], a

given property P of a compact complex manifold is said to be open under holomorphic

deformations if for every holomorphic family of compact complex manifolds (M, Jt)t∈∆

and for every t0 ∈ ∆ the following implication holds:

(M, Jt0) has the property P =⇒ (M, Jt) has the property P for all t ∈ ∆ sufficiently

close to t0.

15



A given property P of a compact complex manifold is said to be closed under holo-

morphic deformations if for every holomorphic family of compact complex manifolds

(M, Jt)t∈∆ and for every t0 ∈ ∆ the following implication holds:

(M, Jt) has the property P for all t ∈ ∆\{t0} =⇒ (M, Jt0) has the property P.

Let us first consider the case when the property P = K or Fk for some fixed k such that

0 ≤ k ≤ n. Using the upper-semicontinuity of the Hodge numbers hp,q

∂̄
(M, Jt) and that

of the Bott-Chern numbers hp,q
BC(M, Jt) as t varies in ∆ (proved in [24, Theorem 4] and

[41], respectively), it is easy to conclude that such properties are open under holomorphic

deformations. In fact, for instance, for P = K, if (M, Jt)t∈∆ is such that (M, Jt0) has the

property K, then

b2(M) = h1,1
BC(M, Jt0) + 2 h0,2

∂̄
(M, Jt0) ≥ h1,1

BC(M, Jt) + 2 h0,2

∂̄
(M, Jt) ≥ b2(M),

for all t sufficiently close to t0. Therefore, k1(M, Jt) = 0 and (M, Jt) also has the property

K.

However, the property K is not closed because, as proved in [26], there exists a holomor-

phic family of compact complex manifolds X = (M, Jt)t∈∆ such that k1(M, J0) 6= 0 but

k1(M, Jt) = 0 for all t ∈ ∆\{0}. The analytic family X is constructed on a 6-dimensional

nilmanifold and the construction also suggests that one cannot expect a single property

Fk to be closed. More concretely:

Theorem 3.1. [26] The properties K and Fk for k = 2 are not closed.

Concerning the ∂∂̄-lemma, a similar argument as above proves that it is an open

property [7]. However, recently Angella and Kasuya have shown in [6] that it is not closed

(see Remark 5.4 below). The upper-semicontinuity of the Hodge numbers also implies that

the degeneration of the Frölicher spectral sequence at E1 is an open property. Eastwood

and Singer proved in [17] that this property is not closed by constructing a holomorphic

family where all the fibres are twistor spaces. The analytic family X mentioned above

provides another example, based on the complex geometry of nilmanifolds, showing the

non-closedness of the property of degeneration of the Frölicher sequence at E1 (see [10]).

The situation about openness and closedness of metric properties is as follows. Kodaira

and Spencer [24] proved that the Kähler property is open, and Hironaka showed in [23]

that in complex dimension ≥ 3 the Kähler property is not closed. Notice that, since a

compact complex surface is Kähler if and only if its first Betti number is even, the Kähler

property is closed in complex dimension 2.

Alessandrini and Bassanelli proved in [2] that the balanced property is not open. In

contrast to the balanced case, Popovici has shown in [32] that the sG property is always

open under holomorphic deformations, and conjectured in [34, Conjectures 1.21 and 1.23]
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that both the sG and the balanced properties are closed under holomorphic deformation.

However, the family X = (M, Jt)t∈∆ satisfies that (M, Jt) has a balanced metric for all

t ∈ ∆\{0}, but (M, J0) does not admit any sG metric. In particular:

Theorem 3.2. [10] The balanced and the sG properties are not closed.

It follows from Theorem 2.4 and the upper-semicontinuity of the Hodge number h0,1

∂̄

that the sGG property is open. Nevertheless, the analytic family X allows to show that

the sGG property is not closed. Hence:

Theorem 3.3. [36] The sGG property is open, but not closed.

On the other hand, the existence of an sG metric in the central limit of a holomorphic

deformation is guaranteed under the strong condition of the ∂∂̄-lemma. Concretely:

Proposition 3.4. [34] Let (M, Jt)t∈∆ be an analytic family of compact complex manifolds.

If the ∂∂̄-lemma holds on (M, Jt) for every t ∈ ∆\{0}, then the central limit (M, J0) has

an sG metric.

An interesting problem is if the conclusion in the previous proposition holds under

weaker conditions than the ∂∂̄-lemma. The following result, which is a direct consequence

of the properties of the family X mentioned above, shows that it is not true under the

weaker property K or Fk for some particular k. Moreover:

Proposition 3.5. There exists a holomorphic family of compact complex manifolds X =

(M, Jt)t∈∆ of complex dimension 3, such that (M, Jt) satisfies the properties F2 and K,

admits balanced metric, is sGG and has degenerate Frölicher sequence for each t ∈ ∆\{0},

but (M, J0) does not admit sG metrics.

The result by Alessandrini and Bassanelli mentioned above about the non-openness of

the balanced property is based on a holomorphic deformation of the Iwasawa manifold,

which is a particular example of a complex manifold belonging to the class of 6-dimensional

nilmanifolds endowed with an invariant complex structure. The analytic family X proving

Theorems 3.1 and 3.2, the non-closedness of the sGG property in Theorem 3.3, and

Proposition 3.5 is constructed by deforming appropriately an abelian complex structure

J0 on a 6-dimensional nilmanifold. In the next section we review the main results on the

invariant complex geometry of 6-dimensional nilmanifolds.

4 Complex geometry of nilmanifolds

In this section we focus on the complex geometry of nilmanifolds and their interesting

properties in relation to the problems considered in Sections 2 and 3. Notice that the
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problems addressed in those sections are nontrivial only for n ≥ 3; in fact, for compact

complex manifolds of complex dimension 2 the Frölicher spectral sequence always degen-

erate at E1, the balanced condition is the same as the Kähler condition, and the existence

of a Kähler metric is equivalent to the first Betti number be even. Therefore, we will

mainly focus on complex nilmanifolds of (real) dimension 6.

In what follows, M will denote a nilmanifold of (real) dimension 2n and J an invariant

complex structure on M , i.e. M = Γ\G is a compact quotient of a simply-connected

nilpotent Lie group G by a lattice Γ of maximal rank in G, and J stems naturally from

a “complex” structure J on the Lie algebra g of G.

A crucial result in the theory of nilmanifolds is Nomizu’s theorem [31] which asserts

that the de Rham cohomology of M is canonically isomorphic to the cohomology of its

underlying Lie algebra g, i.e. Hk
dR(M) ∼= Hk

dR(g). Using this result, Hasegawa [22] proved

that the Chevalley-Eilenberg complex (
∧

∗(g∗), d) of g provides a minimal model of M and

that it is formal if and only if the Lie algebra is abelian, that is to say, the nilmanifold M

is a torus. Therefore, by [16] a complex nilmanifold never satisfies the ∂∂̄-lemma, unless

it is a complex torus.

Concerning a Nomizu type result for the Dolbeault cohomology of (M, J), several ad-

vances have been obtained under additional conditions on the invariant complex structure

J . First, we recall that Salamon gave in [40] a characterization of the invariant complex

structures as those endomorphisms J : g −→ g such that J2 = −Id for which there exists

a basis {ωj}n
j=1 of the i-eigenspace g1,0 of the extension of J to g∗

C
= g∗ ⊗R C satisfying

dω1 = 0, dωj ∈ I(ω1, . . . , ωj−1), for j = 2, . . . , n,

where I(ω1, . . . , ωj−1) is the ideal in
∧

∗ g∗
C

generated by {ω1, . . . , ωj−1}.

A generic invariant complex structure J satisfies d(g1,0) ⊂
∧2,0(g∗) ⊕

∧1,1(g∗) with

respect to the bigraduation induced by J on the exterior algebra
∧

∗ g∗
C
. When J is

abelian [3] the Lie algebra differential d satisfies d(g1,0) ⊂
∧1,1(g∗), a condition which is

equivalent to the complex subalgebra g1,0 = (g1,0)∗ being abelian. On the other hand,

the complex structures associated to complex Lie algebras satisfy d(g1,0) ⊂
∧2,0(g∗) and

we will refer to them as complex-parallelizable structures. Both abelian and complex-

parallelizable structures are particular classes of nilpotent complex structures, introduced

and studied in [15], for which there is a basis {ωj}n
j=1 for g1,0 satisfying

dω1 = 0, dωj ∈
∧

2 〈ω1, . . . , ωj−1, ω1, . . . , ωj−1〉, for j = 2, . . . , n,

where ωi stands for ωi.

When J is complex-parallelizable, Sakane proved in [39] that the natural inclusion

(3)
(

∧

p,q(g∗), ∂̄
)

→֒ (Ωp,q(M), ∂̄)
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induces an isomorphism

(4) ι : Hp,q

∂̄
(g, J) −→ Hp,q

∂̄
(M, J)

between the Lie-algebra Dolbeault cohomology of (g, J) and the Dolbeault cohomology of

(M, J). More general conditions under which the inclusion (3) induces an isomorphism (4)

can be found in [11, 15, 38]; in particular, it is always true for abelian complex structures

on nilmanifolds. We will discuss below the 6-dimensional case in detail.

Concerning the calculation of the Bott-Chern cohomology and the Frölicher spectral

sequence of nilmanifolds with invariant complex structure, one has the following Nomizu

type result. The first part is proved by Angella in [4, Theorem 2.8] and the second part

follows from an inductive argument given in [14, Theorem 4.2].

Theorem 4.1. If the natural inclusion (3) induces an isomorphism (4) between the Lie-

algebra Dolbeault cohomology of (g, J) and the Dolbeault cohomology of the complex nil-

manifold (M, J), then:

(i) the natural map

ι : Hp,q
BC(g, J) −→ Hp,q

BC(M, J)

between the Lie-algebra Bott-Chern cohomology of (g, J) and the Bott-Chern coho-

mology of (M, J) is also an isomorphism for any 0 ≤ p, q ≤ n;

(ii) the natural map

ι : Ep,q
r (g, J) −→ Ep,q

r (M, J)

between the term in the Lie-algebra Frölicher sequence of (g, J) and the term in the

Frölicher spectral sequence of (M, J) is also an isomorphism for any 0 ≤ p, q ≤ n.

The only 4-dimensional nilmanifolds having invariant complex structures are the torus

T4 and the Kodaira-Thurston manifold [43]. The latter was the first known example

of a compact symplectic manifold not admitting Kähler metric. In six dimensions, the

nilmanifolds admitting invariant complex structures are classified through their underlying

Lie algebras. The following result provides a classification of such nilmanifolds in terms

of the different types of complex structures that they admit.

Theorem 4.2. [40, 44] A nilmanifold M of (real) dimension 6 has an invariant complex

structure if and only if its underlying Lie algebra is isomorphic to one in the following
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list:

h1 = (0, 0, 0, 0, 0, 0),

h2 = (0, 0, 0, 0, 12, 34),

h3 = (0, 0, 0, 0, 0, 12 + 34),

h4 = (0, 0, 0, 0, 12, 14 + 23),

h5 = (0, 0, 0, 0, 13 + 42, 14 + 23),

h6 = (0, 0, 0, 0, 12, 13),

h7 = (0, 0, 0, 12, 13, 23),

h8 = (0, 0, 0, 0, 0, 12),

h9 = (0, 0, 0, 0, 12, 14 + 25),

h10 = (0, 0, 0, 12, 13, 14),

h11 = (0, 0, 0, 12, 13, 14 + 23),

h12 = (0, 0, 0, 12, 13, 24),

h13 = (0, 0, 0, 12, 13 + 14, 24),

h14 = (0, 0, 0, 12, 14, 13 + 42),

h15 = (0, 0, 0, 12, 13 + 42, 14 + 23),

h16 = (0, 0, 0, 12, 14, 24),

h−
19 = (0, 0, 0, 12, 23, 14− 35),

h+
26 = (0, 0, 12, 13, 23, 14 + 25).

Moreover:

(a) For h−
19 and h+

26, any complex structure is non-nilpotent;

(b) For hk, 1 ≤ k ≤ 16, any complex structure is nilpotent;

(c) For h1, h3, h8 and h9, any complex structure is abelian;

(d) For h2, h4, h5 and h15, there exist both abelian and non-abelian nilpotent complex

structures;

(e) For h6, h7, h10, h11, h12, h13, h14 and h16, any complex structure is not abelian.

Here, for instance, the notation h2 = (0, 0, 0, 0, 12, 34) means that there exists a basis

{ei}6
i=1 of the dual of the Lie algebra (or equivalently, a basis of invariant real 1-forms

on the nilmanifold) such that de1 = de2 = de3 = de4 = 0, de5 = e1 ∧ e2 and de6 =

e3 ∧ e4. Notice that h2 is isomorphic to the product of two copies of the 3-dimensional

real Heisenberg algebra (0, 0, 12) (see Section 5 for more details).

By Theorem 4.2, if a 6-dimensional nilmanifold M admits invariant complex structures

then all of them are either nilpotent or non-nilpotent. This special property does not hold

in higher dimensions [15].

An interesting problem is to obtain a description of the moduli space of invariant

complex structures on each nilmanifold. Andrada, Barberis and Dotti classified in [3]

the abelian complex structures in dimension 6, whereas the classification of the non-

nilpotent complex structures was given in [45] and the general classification was obtained

recently in [10]. Let J and J ′ be two invariant complex structures on a nilmanifold M

with underlying Lie algebra g. Recall that J and J ′ are said to be equivalent if there

is an automorphism F : g −→ g of the Lie algebra such that J ′ = F−1 ◦ J ◦ F . Now,

if g
1,0
J and g

1,0
J ′ denote the (1, 0)-subspaces of g∗

C
associated to J and J ′, respectively,

then the complex structures J and J ′ are equivalent if and only if there exists a C-linear

isomorphism F ∗ : g
1,0
J −→ g

1,0
J ′ such that d ◦ F ∗ = F ∗ ◦ d.
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It is well known that, up to equivalence, there are only two complex-parallelizable

structures, which are defined by the complex equations

dω1 = dω2 = 0, dω3 = ρ ω12,

where ρ = 0 or 1. The corresponding Lie algebras are h1 when ρ = 0, and hence the com-

plex nilmanifold is a complex torus T
3
C
, and h5 when ρ = 1, and the complex nilmanifold

is the Iwasawa manifold given by a quotient of the complex Heisenberg group.

According to [10], the remaining complex structures in dimension 6 can be

parametrized by the following three families of complex equations:

Family I: dω1 = dω2 = 0, dω3 = ρ ω12 + ω11̄ + λ ω12̄ + D ω22̄,

where ρ ∈ {0, 1}, λ ∈ R≥0 and D ∈ C with Im D ≥ 0. The complex structure is abelian

if and only if ρ = 0. The Lie algebras admitting complex structures in this family are

h2, . . . , h6 and h8.

Family II: dω1 = 0, dω2 = ω11̄, dω3 = ρ ω12 + B ω12̄ + c ω21̄,

where ρ ∈ {0, 1}, B ∈ C and c ∈ R
≥0, with (ρ, B, c) 6= (0, 0, 0). The complex structure

is abelian if and only if ρ = 0, and the Lie algebras admitting complex structures in this

family are h7 and h9, . . . , h16.

Family III: dω1 = 0, dω2 = ω13 + ω13̄, dω3 = ε i ω11̄ ± i(ω12̄ − ω21̄),

where ε = 0 or 1. The complex structures are non-nilpotent, and the Lie algebras are h−
19

(for ε = 0) and h+
26 (for ε = 1).

Tables 1, 2 and 3 below contain the general classification of invariant complex struc-

tures on 6-dimensional nilmanifolds in terms of its underlying Lie algebra and the values

of the coefficients (ρ, λ, D = x + iy) for Family I, (ρ, B, c) for Family II, and ε for Family

III. Different values of the parameters in Table 1, resp. Tables 2 and 3, correspond to

non-equivalent complex structures in Family I, resp. Families II and III (see [10] for more

details).

Theorem 4.1 above asserts that if the natural isomorphism (4) holds then, in addition

to the Dolbeault cohomology of (M = Γ\G, J), we also know other complex invariants as

the Bott-Chern cohomology and the terms in the Frölicher spectral sequence. And more-

over, such complex invariants can be obtained directly from the underlying Lie algebra g

together with the structure J .

In dimension 4 the natural isomorphism (4) holds for any invariant complex structure

J . In dimension 6, Rollenske proved in [38, Section 4.2] that if g 6∼= h7 then the natural

inclusion (3) induces an isomorphism (4) between the Lie-algebra Dolbeault cohomology

of (g, J) and the Dolbeault cohomology of M .
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Remark 4.3. Let (M = Γ\G, J) be a 6-dimensional nilmanifold endowed with an invari-

ant complex structure J such that g = h7. In [38, Theorem 4.4] it is proved that there

is a dense subset of the space of all invariant complex structures for which the complex

nilmanifold has the structure of a principal holomorphic bundle of elliptic curves over a

Kodaira surface, but this does not hold for all complex structures. In fact, the invariant

complex structure J may not be compatible with the lattice Γ, as [38, Example 1.14]

shows, and hence, one cannot ensure the existence of the natural isomorphism (4) for any

invariant complex structure on the nilmanifold.

Concerning the Bott-Chern cohomology of nilmanifolds, in [41] Schweitzer computed

it for the Iwasawa manifold and in [4] Angella calculated the Bott-Chern cohomology

groups of its small deformations. Notice that by [37, Theorem 2.6], if such deforma-

tions are sufficiently small then they are again invariant complex structures. Thus, the

Bott-Chern cohomology determined in [5] and [26] for any pair (g, J) covers that of any

invariant complex structure and its sufficiently small deformations on any 6-dimensional

nilmanifold with underlying Lie algebra not isomorphic to h7, accordingly to Remark 4.3

and Theorem 4.1 (i).

In Tables 1, 2 and 3 we include the Bott-Chern numbers hp,q
BC(g, J) for any J in

the Families I, II and III above (see [26] for an explicit description of the generators of

the Bott-Chern cohomology groups in terms of the complex equations in Families I, II

and III). Therefore, the tables cover all the invariant complex geometry of 6-dimensional

nilmanifolds, except for the complex torus and the Iwasawa manifold, which are well

known and already given in [41] as we reminded above.

It is clear that in all cases H3,0
BC = 〈[ω123]〉 and H3,3

BC = 〈[ω1231̄2̄3̄]〉, so h3,0
BC = h3,3

BC = 1.

Notice that by the duality in the Bott-Chern cohomology it suffices to show the dimensions

hp,q
BC for (p, q) = (1, 0), (2, 0), (1, 1), (2, 1), (2, 2), (3, 1) and (3, 2). In fact, the dimension of

any other Bott-Chern cohomology group is obtained by hq,p
BC = hp,q

BC.

22



Family I Bott-Chern numbers

g ρ λ D = x + iy h
1,0
BC

h
2,0
BC

h
1,1
BC

h
2,1
BC

h
3,1
BC

h
2,2
BC

h
3,2
BC

h2

0 0 y = 1
x = 0

2 1 4 6 3
7

3
x 6= 0 6

1 1 y > 0

x = −1 ±
p

1 − y2

2 1

5

6 2
6

3
x 6= −1 ±

p

1 − y2

4x 6= 1

x = 1 7

h3 0 0 ±1 2 1 4 6 3 7 3

h4

0 1 1

4
2 1 4 6 3 6 3

1 1

−2

2 1

5

6 2
6

3D ∈ R − {−2, 0, 1}
4

1 7

h5

0 1
0

2
2 6

6 3 6 3
D ∈

“

0, 1

4

”

1 4

1

0

y = 0

x = 0 2 7

x = 1

2

1

8

x 6= 0, 1

2
, x > − 1

4
7

0 < y2 < 3

4
x = 1

2

y > 0 x 6= 1

2
, x > y2 − 1

4

6

0 < λ2 < 1

2
x = 0

y = 0 2

0 < y < λ2

2
2 1 4 6 2 3

1

2
≤ λ2 < 1 x = 0

y = 0 2

0 < y <
1−λ2

2
1

1 < λ2 ≤ 5 x = 0
y = 0 2

0 < y <
λ2

−1

2
1

λ2 > 5 x = 0

y = 0 2

0 < y <
λ2

−1

2
, y 6=

p

λ2 − 1
1

0 < y <
λ2

−1

2
, y =

p

λ2 − 1 5

h6 1 1 0 2 2 5 6 2 6 3

h8 0 0 0 2 2 6 7 3 8 3

Table 1.— Classification of complex structures in Family I and dimensions of their

Bott-Chern cohomology groups.
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Family II Bott-Chern numbers

g ρ B c h
1,0
BC

h
2,0
BC

h
1,1
BC

h
2,1
BC

h
3,1
BC

h
2,2
BC

h
3,2
BC

h7 1 1 0 1 2 5 6 2 5 3

h9 0 1 1 1 1 4 5 3 6 3

h10 1 0 1 1 1 4 5 2 5 3

h11 1
B ∈ R − {0, 1

2
, 1} |B − 1|

1 1 4 5 2
5

3
1

2

1

2
6

h12 1
ReB 6= 1

2
, ImB 6= 0

|B − 1| 1 1 4 5 2
5

3
ReB = 1

2
, ImB 6= 0 6

h13 1

1
0 < c < 2, c 6= 1

1 1

5

5 2

5

3

1 6

B 6= 1, c 6= |B|, |B − 1|,

4

5(c, |B|) 6= (0, 1),

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 < 0

B 6= 1, c = |B| > 1

2
,

6
|B| 6= |B − 1|

h14 1

1 2

1 1

5

5 2

5

3

|B| = 1

2

1

2

4

6

c 6= |B − 1|,

5(c, |B|) 6= (0, 1), ( 1

2
, 1

2
), (2, 1),

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 = 0

h15

0

0 1

1
1

5

5 3 5 3
1

c 6= 0, 1
4

0 2

1

0 0

1

2 4

5 2

7

3

|B| 6= 0, 1 0
5

1 c > 2

1

5

|B| = c 0 < c < 1

2

4

6

c 6= 0, |B − 1|,

5B 6= 1, |B| 6= c,

c4 − 2(|B|2 + 1)c2 + (|B|2 − 1)2 > 0

h16 1 |B| = 1, B 6= 1 0 1 2 4 5 2 5 3

Table 2.— Classification of complex structures in Family II and dimensions of their

Bott-Chern cohomology groups.

The next result was proved in [10] and shows the general behaviour of the Frölicher

spectral sequence in dimension 6. For that we applied Theorem 4.1 (ii) to ensure that

Ep,q
r (M, J) ∼= Ep,q

r (g, J) for any p, q and any r ≥ 1, whenever g 6∼= h7.

Theorem 4.4. [10] Let M = Γ\G be a 6-dimensional nilmanifold endowed with an invari-

ant complex structure J such that the underlying Lie algebra g 6∼= h7. Then the Frölicher

spectral sequence {Er(M, J)}r≥1 behaves as follows:

(a) If g ∼= h1, h3, h6, h8, h9, h10, h11, h12 or h−
19, then E1(M, J) ∼= E∞(M, J) for any J .

(b) If g ∼= h2 or h4, then E1(M, J) ∼= E∞(M, J) if and only if J is non-abelian; more-

over, any abelian complex structure satisfies E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J).

(c) If g ∼= h5, then:
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Family III Bott-Chern numbers

g ε h
1,0

BC
h

2,0

BC
h

1,1

BC
h

2,1

BC
h

3,1

BC
h

2,2

BC
h

3,2

BC

h−19 0 1 1 2 3 2 4 2

h+
26 1 1 1 2 3 2 3 2

Table 3.— Classification of complex structures in Family III and dimensions of their

Bott-Chern cohomology groups.

(c.1) E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) for the complex-parallelizable structure J ;

(c.2) E1(M, J) ∼= E∞(M, J) if and only if J is not complex-parallelizable and ρD 6= 0

in Table 1; moreover, E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) when ρD = 0.

(d) If g ∼= h16 or h+
26, then E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J) for any J .

(e) If g ∼= h13 or h14, then E1(M, J) ∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J) for any J .

(f) If g ∼= h15 and J is a complex structure on h15 given in Table 2, then:

(f.1) E1(M, J) 6∼= E2(M, J) ∼= E∞(M, J), when c = 0 and |B − ρ| 6= 0;

(f.2) E1(M, J) ∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J), when ρ = 1 and |B − 1| 6=

c 6= 0;

(f.3) E1(M, J) 6∼= E2(M, J) 6∼= E3(M, J) ∼= E∞(M, J), when ρ = 0 and |B| 6= c 6= 0.

According to Remark 4.3, we cannot ensure the existence of a canonical isomorphism

between Ep,q
r (g, J) and Ep,q

r (M, J) for any invariant complex structure J on a nilmanifold

M with underlying Lie algebra g ∼= h7. However, it is worth noticing that up to equivalence

there is only one complex structure J on h7 whose sequence degenerates at the first step,

that is, E1(h7, J) ∼= E∞(h7, J).

Concerning the existence of balanced or sG metrics, if (M = Γ\G, J) is a nilmanifold

endowed with an invariant complex structure, then it admits a balanced metric if and

only if it has an invariant one. Thus, the existence of such a metric can be detected

at the level of the underlying Lie algebra. This fact was proved in [18] and uses the so

called symmetrization process. Moreover, in [10] it is proved that this process can also be

applied to the existence of sG metrics on nilmanifolds, that is to say, (M = Γ\G, J) has

an sG metric if and only if it has an invariant one. In dimension 6 we have:

Theorem 4.5. [10, 44] Let M = Γ\G be a 6-dimensional nilmanifold admitting invariant

complex structures J , and let g be the underlying Lie algebra. Then:
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(i) There exists J having balanced or sG metrics if and only if g is isomorphic to

h1, . . . , h6 or h−
19.

(ii) If the complex structure J is abelian, then an invariant Hermitian metric is sG if

and only if it is balanced.

(iii) For g ∼= h2, h4, h5 or h6, if the complex structure J is non-abelian then any invariant

Hermitian metric is sG.

The following result implies that abelian complex structures on nilmanifolds with

underlying Lie algebra isomorphic to h2 or h4 do not admit sG metrics.

Proposition 4.6. [46] Let M = Γ\G be a 6-dimensional nilmanifold with an abelian com-

plex structure J admitting an sG metric. Then the underlying Lie algebra g is isomorphic

to h3 or h5.

There exist compact complex manifolds having sG metrics but not admitting any

balanced metric [34, Theorem 1.8]. The general situation for nilmanifolds in dimension 6

is as follows:

Proposition 4.7. [10] Let M = Γ\G be a 6-dimensional nilmanifold with an invariant

complex structure J such that (M = Γ\G, J) does not admit balanced metrics. If (M =

Γ\G, J) has sG metric, then J is non-abelian nilpotent and g is isomorphic to h2, h4 or

h5. Moreover, according to the classification in Table 1, such a J is given by ρ = 1 and:

λ = 1, x + y2 ≥ 1
4

on h2; λ = 1, x ≥ 1
4

on h4; and λ = 0, y 6= 0 or λ = y = 0, x ≥ 0 on h5.

Although by Theorem 4.5 (i) the underlying Lie algebras are the same both in the

balanced and the sG case, Proposition 4.7 shows that the complex structures admitting

such metrics differ.

We finish this section by considering those complex nilmanifolds (M = Γ\G, J) having

the sGG property, that is, any Gauduchon metric is sG. By Theorem 2.4 the sGG condition

is equivalent to b1(M) = 2 h0, 1

∂̄
(M, J). For instance, let us consider an invariant complex

structure J in the Family I. If J is abelian then ρ = 0 and

H0, 1

∂̄
(M, J) = 〈[ω1̄], [ω2̄], [ω3̄]〉,

whereas for a non-abelian J , i.e. ρ = 1, we have

H0, 1

∂̄
(M, J) = 〈[ω1̄], [ω2̄]〉.

If M is not a torus then its first Betti number satisfies b1(M) ≤ 5, which implies that

(M = Γ\G, J) in Family I cannot be sGG when J is abelian.

From a more detailed analysis of the non-abelian complex structures in Family I,

together with the study of complex nilmanifolds in Families II and III, it follows:
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Theorem 4.8. [36] Let M = Γ\G be a 6-dimensional nilmanifold, not a torus, endowed

with an invariant complex structure J . Then, (M, J) is sGG if and only if the Lie algebra

underlying M is isomorphic to h2, h4, h5 or h6, and the complex structure J is not abelian.

The complex geometry of 6-dimensional nilmanifolds allows to conclude that, apart

from the obvious implications, there are no relations among the different properties of

compact complex manifolds introduced in Section 2 (see [10] and [36] for more details):

- there exist sG manifolds that are not balanced;

- there are sG manifolds that are not sGG;

- the balanced property and the sGG property are unrelated;

- the degeneration of the Frölicher spectral sequence at E1 and the sGG property are

also unrelated.

In particular, the sGG class introduced and studied in [36] is a new class of compact

complex manifolds.

5 On the complex geometry of the product of two Heisenberg manifolds

In this section we consider the product of two (3-dimensional real) Heisenberg

(nil)manifolds, and we show that, despite the simplicity of this 6-dimensional nilmani-

fold, its complex geometry is surprisingly rich in relation to the deformation problems

considered in Section 3.

Let us recall that the Heisenberg group H is the nilpotent Lie group constituted by

all the matrices of the form

(5) H =























1 x z

0 1 y

0 0 1









| x, y, z ∈ R















.

Since {α1 = dx, α2 = dy, α3 = xdy − dz} is a basis of left-invariant 1-forms on H , the

structure equations are given by dα1 = dα2 = 0, dα3 = α12, thus the Lie algebra of H

is h = (0, 0, 12). Let us consider the lattice Γ given by the matrices in (5) with (x, y, z)-

entries lying in Z. Hence, Γ is a lattice of maximal rank in H . From now on, we will

denote by N the 3-dimensional nilmanifold N = Γ\H and we will refer to N as the

Heisenberg nilmanifold.

Let us take another copy of N with basis of 1-forms {β1, β2, β3} satisfying dβ1 =

dβ2 = 0 and dβ3 = β12. Then, the Lie algebra underlying the 6-dimensional nilmanifold

N × N is isomorphic to h ⊕ h, i.e. to the Lie algebra h2 = (0, 0, 0, 0, 12, 34). On the

product manifold N × N we consider the almost-complex structure J0 defined by

(6) J0(α
1) = −α2, J0(β

1) = −β2, J0(α
3) = −β3.
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It is easy to check that J0 is integrable, i.e. its Nijehuis tensor vanishes identically, and

abelian. Therefore, J0 defines an invariant abelian complex structure on N × N . The

aim of this section is to show that the holomorphic deformations of this simple complex

structure have very interesting properties in relation to the existence problem of sG metric,

the invariants f2,k1 related to the ∂∂̄-lemma condition, the Frölicher spectral sequence

and also with respect to the sGG condition.

In order to fit the complex structure (6) in the general frame of Table 1, we will express

J0 in terms of the basis of 1-forms {e1, e2, e3, e4, e5, e6} given by

(7) e1 = α1, e2 = α2, e3 = β1, e4 = β2, e5 = α3, e6 = β3,

which satisfies the equations

(8) de1 = de2 = de3 = de4 = 0, de5 = e12, de6 = e34.

Using (6) and (7) we have that the complex forms

(9)

ω1
0 = e1 − iJ0e

1 = e1 + i e2, ω2
0 = e3 − iJ0e

3 = e3 + i e4, ω3
0 = 2e6−2iJ0e

6 = 2e6 −2i e5,

constitute a basis of forms of bidegree (1, 0) with respect to the abelian complex structure

J0. Now, it follows from (8) that the complex structure equations for (N × N, J0) in the

basis {ω1
0, ω

2
0, ω

3
0} are

(10) dω1
0 = dω2

0 = 0, dω3
0 = ω11̄

0 + i ω22̄
0 .

Notice that these equations correspond to take ρ = λ = 0 and D = i for h2 in Table 1.

The compact complex manifold (N×N, J0) can be described as follows. The Lie group

H × H endowed with the complex structure J0 can be realized by the complex matrices

of the form

(H × H, J0) =





























1 −z1 −iz2 z3

0 1 0 z̄1

0 0 1 z̄2

0 0 0 1











| z1, z2, z3 ∈ C



















.

In terms of the complex coordinates (z1, z2, z3), the left translation by an element

(a1, a2, a3) of (H × H, J0) is given by

L∗
(a1,a2,a3)(z1, z2, z3) = (z1 + a1, z2 + a2, z3 − a1z̄1 − ia2z̄2 + a3).

The basis {ω1
0, ω

2
0, ω

3
0} of left-invariant complex (1,0)-forms on (H × H, J0) is expressed

in these complex coordinates as

ω1
0 = dz1, ω2

0 = dz2, ω3
0 = dz3 + z1dz̄1 + iz2dz̄2.
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Now, the complex nilmanifold (N ×N, J0) can be realized as the quotient of (H ×H, J0)

by the lattice defined by taking (z1, z2, z3) as Gaussian integers.

As we reminded in Section 4, the Dolbeault cohomology of the compact complex

manifold (N × N, J0) can be computed explicitly from the pair (h2, J0), i.e. Hp,q

∂̄
(N ×

N, J0) ∼= Hp,q

∂̄
(h2, J0) for any 0 ≤ p, q ≤ 3. In order to perform an appropriate holomorphic

deformation of J0 we first compute the particular Dolbeault cohomology group

H0,1

∂̄
(N × N, J0) ∼= H0,1

∂̄
(h2, J0) = 〈[ω1̄

0], [ω
2̄
0], [ω

3̄
0]〉.

We consider the small deformation Jt given by

t
∂

∂z2
⊗ ω1̄

0 + it
∂

∂z1
⊗ ω2̄

0 ∈ H0, 1(X0, T 1,0X0),

where X0 denotes the complex manifold (N × N, J0). This deformation is defined for

any t ∈ ∆ = {t ∈ C | |t| < 1} and the analytic family of compact complex manifolds

(N × N, Jt) has a complex basis {ω1
t , ω

2
t , ω

3
t } of type (1,0) with respect to Jt given by

(11) Jt : ω1
t = ω1

0 + it ω2̄
0, ω2

t = ω2
0 + t ω1̄

0, ω3
t = ω3

0.

We can express the complex structures Jt in terms of the real basis of 1-forms

{e1, . . . , e6} given by (7) as follows. Let us denote by t1 the real part of t and by t2

its imaginary part, i.e. t = t1 + i t2. From (9) and (11) we get

ω1
t = e1−t2e

3+t1e
4+i(e2+t1e

3+t2e
4), ω2

t = e3+t1e
1+t2e

2+i(e4+t2e
1−t1e

2), ω3
t = 2e6−2i e5.

Since the complex form ωk
t , 1 ≤ k ≤ 3, is declared to be of bidegree (1,0) with respect to

the complex structure Jt, necessarily

e2+t1e
3+t2e

4 = −Jt(e
1−t2e

3+t1e
4), e4+t2e

1−t1e
2 = −Jt(e

3+t1e
1+t2e

2), e5 = Jt(e
6),

and we have that the complex structure Jt in the basis {e1, . . . , e6} is given by

Jt =
−1

1 + |t|4

























2|t|2 |t|4 − 1 2(t2 − t1|t|
2) −2(t1 + t2|t|

2) 0 0

1 − |t|4 2|t|2 −2(t1 + t2|t|
2) −2(t2 − t1|t|

2) 0 0

2(t1 − t2|t|
2) 2(t2 + t1|t|

2) −2|t|2 |t|4 − 1 0 0

2(t2 + t1|t|
2) −2(t1 − t2|t|

2) 1 − |t|4 −2|t|2 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

























,

for each t ∈ ∆.

In the following result we find complex structure equations for every Jt, except for the

central limit t = 0, that fit in the classification given in Table 1.
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Proposition 5.1. Let (N × N, Jt) be the product of two copies of the 3-dimensional

Heisenberg nilmanifold N endowed with the complex structure Jt given by (11). For each

t ∈ ∆\{0}, there is a (global) basis {η1
t , η

2
t , η

3
t } of complex forms of bidegree (1, 0) with

respect to Jt satisfying

(12) dη1
t = dη2

t = 0, dη3
t = η12

t + η11̄
t + η12̄

t + i
1 + |t|4

4|t|2
η22̄

t .

Proof. By a direct calculation using (10), we get that the (1,0)-basis {ω1
t , ω

2
t , ω

3
t } given in

(11) satisfies dω1
t = dω2

t = 0 and

dω3
t =

2it̄

1 + |t|4
ω12

t +
1 − i|t|2

1 + |t|4
ω11̄

t +
i − |t|2

1 + |t|4
ω22̄

t .

For each t ∈ ∆\{0}, let us consider the new (1,0)-basis {τ 1
t = ω1

t , τ
2
t = 2it̄

1−i|t|2
ω2

t , τ
3
t =

1+|t|4

1−i|t|2
ω3

t }. Hence, the complex structure equations for Jt, t 6= 0, in this basis are expressed

as

dτ 1
t = dτ 2

t = 0, dτ 3
t = τ 12

t + τ 11̄
t + D′ τ 22̄

t , 0 < |t| < 1,

where D′ = −1
2

+ i1−|t|4

4|t|2
.

Now, we consider another basis {η1
t , η

2
t , η

3
t } of bidegree (1, 0) with respect to Jt given

by

τ 1
t = η1

t − D′σ̄ η2
t , τ 2

t = σ η1
t + η2

t , τ 3
t = (1 + D′|σ|2)η3

t ,

where σ = 2(1 + |t|2i)/(1 + |t|4). By a long but direct calculation we arrive at

dη1
t = dη2

t = 0, dη3
t = η12

t + η11̄
t + η12̄

t + D′′ η22̄
t ,

where D′′ = −i 1+|t|4

4|t|2
. Finally, by [10, Proposition 2.4] there exists a (1,0)-basis with

respect to which we can take the complex conjugate of D′′ as the coefficient of η22̄
t , that

is, we arrive at the equations (12), and the proof is complete.

The analytic family X mentioned in Section 3 was the first example of an analytic

family of compact complex manifolds (Xt)t∈∆ such that the complex invariants f2(Xt) =

k1(Xt) = 0 for any t 6= 0, but f2(X0) 6= 0 and k1(X0) 6= 0 (Theorem 3.1), and its

construction was based on an appropriate deformation of the abelian complex structure

on the nilmanifold with underlying Lie algebra h4 [10, 26]. Moreover, the Frölicher spectral

sequence of any Xt degenerates at E1 except for t = 0 [10]. The family X also allows to

show that the sGG property is not closed under holomorphic deformations (Theorem 3.3)

and, furthermore, the fibres Xt have balanced metric for any t ∈ ∆\{0}, but the central

limit X0 does not admit any strongly Gauduchon metric (Theorem 3.2).

The real nilmanifold underlying the compact complex manifolds Xt is not a product

since the Lie algebra h4 is irreducible. The following result is a bit of a surprise because

it provides an example of a product manifold with a holomorphic family of complex

structures satisfying similar properties to those of the analytic family X .
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Theorem 5.2. Let (N×N, Jt)t∈∆ be the analytic family given by the product of two copies

of the 3-dimensional Heisenberg nilmanifold N endowed with the complex structures Jt

given by (11). Then:

(i) The invariants f2(N ×N, Jt) and k1(N ×N, Jt) vanish for each t ∈ ∆\{0}, however

f2(N × N, J0) = 3 and k1(N × N, J0) = 2.

(ii) The Frölicher spectral sequence of (N ×N, Jt) degenerates at the first step for each

t ∈ ∆\{0}, however the central limit satisfies E1(N × N, J0) 6∼= E2(N × N, J0) ∼=

E∞(N × N, J0).

(iii) The complex manifold (N ×N, Jt) is sGG for each t ∈ ∆\{0}, but (N ×N, J0) does

not admit strongly Gauduchon metrics.

Proof. We will apply the general result on nilmanifolds given in Section 4 to the complex

structures Jt on N ×N given by (11). For the proof of (i) we first notice that the second

Betti number of N ×N is equal to 8. From Table 1 we have that h1,1
BC(N ×N, Jt) = 4 for

any t ∈ ∆, but the Hodge number dim E0,2
1 (N ×N, Jt) = h0,2

∂̄
(N ×N, Jt) depends on the

complex structure Jt. In fact, for t 6= 0 it follows from (12) that the Dolbeault class [η1̄2̄
t ]

vanishes because η1̄2̄
t = ∂̄η3̄

t , hence H0,2

∂̄
(N ×N, Jt) = 〈[η1̄3̄

t ], [η2̄3̄
t ]〉 and h0,2

∂̄
(N ×N, Jt) = 2,

for any t 6= 0. For the central limit, by (10) we get H0,2

∂̄
(N × N, J0) = 〈[ω1̄2̄

0 ], [ω1̄3̄
0 ], [ω2̄3̄

0 ]〉,

so h0,2

∂̄
(N × N, J0) = 3. In conclusion, the complex invariant

k1(N × N, Jt) = h1,1
BC(N × N, Jt) + 2 dim E0,2

1 (N × N, Jt) − b2(N × N)

vanishes on ∆\{0}, but it equals 2 for the central limit.

For the invariant f2 we recall that

f2(N×N, Jt) = 2 h2,0
BC(N×N, Jt)+h1,1

BC(N×N, Jt)+2 h3,1
BC(N×N, Jt)+h2,2

BC(N×N, Jt)−2b2(N×N).

By Table 1 we have that h2,0
BC(N × N, Jt) is constant and equal to 1, whereas h3,1

BC(N ×

N, Jt) = 2 and h2,2
BC(N × N, Jt) = 6 for any t 6= 0, but h3,1

BC(N × N, J0) = 3 and h2,2
BC(N ×

N, J0) = 7. Hence, f2(N × N, Jt) = 0 for any t 6= 0, but f2(N × N, J0) = 3.

Property (ii) follows directly from the general study given in Theorem 4.4 (b). In

fact, the nilpotent complex structure Jt is abelian if and only if t = 0, hence the Frölicher

spectral sequence of (N×N, Jt) degenerates at the first step if and only if t 6= 0. Moreover,

the Frölicher sequence of the central limit collapses at the second step.

For the proof of (iii), since Jt is non-abelian for t 6= 0, by applying Theorem 4.8 to the

h2 case we have that (N × N, Jt) is sGG for any t 6= 0. Nevertheless the central limit is

not sG because J0 is abelian and we can apply Proposition 4.6.

31



Remark 5.3. Notice that complex manifold (N × N, Jt)t∈∆ does not admit balanced

metric for any value of t. In fact, for any invariant non-abelian complex structure J on

N × N , there exists a (1,0)-basis {ω1, ω2, ω3} satisfying

dω1 = dω2 = 0, dω3 = ω12 + ω11̄ + ω12̄ + D ω22̄,

where D = x + iy with y > 0, and by Proposition 4.7 we know that (N × N, J) admits

a balanced metric if and only if x + y2 < 1
4
. In our case, for Jt (t 6= 0) it follows from

Proposition 5.1 that x = 0 and y = 1+|t|4

4|t|2
, thus

x + y2 −
1

4
=

(

1 − |t|4

4|t|2

)2

> 0

and there is no balanced metric on (N × N, Jt).

Remark 5.4. Angella and Kasuya found in [6] a holomorphic deformation that shows

that the ∂∂̄-lemma property is not closed. More recently, in [19] it is proved the existence

of an analytic family of compact complex manifolds (Xt)t∈∆ such that Xt satisfies the ∂∂̄-

lemma and admits balanced metric for any t ∈ ∆\{0}, but the central limit X0 neither

satisfies the ∂∂̄-lemma nor admits balanced metrics. Both constructions are based on the

complex geometry of the real solvmanifold underlying the Nakamura manifold [30], which

is not diffeomorphic to a product manifold.

We finish with the following related question:

Question 5.5. Does there exist a holomorphic deformation of (N × N, J0) admitting

balanced metrics?

To answer this question, a more detailed study of the Kuranishi space of deformations

of J0 would be required.
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6-nilmanifolds: classification, Frölicher spectral sequence and special Hermitian met-

rics, to appear in J. Geom. Anal., DOI: 10.1007/s12220-014-9548-4.

[11] S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform.

Groups 6 (2001), 111–124.

[12] S. Console, A. Fino, Y.S. Poon, Stability of abelian complex structures, Int. J. Math.

17 (2006), 401–416.

[13] L.A. Cordero, M. Fernández, A. Gray, L. Ugarte, A general description of the terms
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Ann. 267 (1984), 495-518.

[22] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989),

65-71.

[23] H. Hironaka, An example of a non-Kählerian complex-analytic deformation of

Kählerian complex structures, Ann. of Math. 75 (1962), 190-208.

[24] K. Kodaira, D.C. Spencer, On deformations of complex analytic structures, III. Sta-

bility theorems for complex structures, Ann. Math. 71 (1960), 43–76.
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