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An L1-Theory of Existence and Uniqueness
of Solutions of Nonlinear Elliptic Equations

PHILIPPE BENILAN - LUCIO BOCCARDO - THIERRY GALLOUËT
RON GARIEPY - MICHEL PIERRE - JUAN LUIS VAZQUEZ

Consider for instance the model problem

where 1  p  oo, Du = denotes the gradient of u, the

expression Ap(u) means and F is a continuous function which
is nonincreasing in u and such that F(x,O) = and F(x, c) E Lloc(’1) if

c#0.
Many authors have considered this problem, specially in the case p = 2,

in the form

cf. e.g. [BBC], [BS], [BG1]. We are interested here in the case 1  p  N. The
case p &#x3E; N offers less difficulties and for bounded Q can be found in [LL].
Indeed, the solution u is bounded and the gradient Du belongs to so

that variational methods apply. This is not the case when p  N, so that we
have to use a different approach to obtain existence and uniqueness.

There are two difficulties associated with the study of equation (1.1), even
in a bounded domain, which are not solved in former works. The first is to

give a sense to the solutions of an equation of the form -Ap(u) = f E 
for p close to 1, precisely for p  po = 2 - ( 1 /N). In fact, we cannot expect
the solution to be in This can be seen by direct inspection of the
fundamental solution, i.e. the solution of (1.1) when F equals a Dirac mass,
which takes the form

Pervenuto alla Redazione il 14 Luglio 1993 e in forma definitiva il 24 Novembre 1995.
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We see that E if p &#x3E; N and also that IDUI E if

p &#x3E; po. More generally, the same conclusion holds for L1 data, see Appendix
I at the end of the paper (cf. also the remarks in [BS] or [BGV]). Therefore,
we cannot take the gradient of u appearing in the p-Laplacian operator in the
usual distribution sense. We solve this difficulty by introducing a new space

in which we can naturally give a sense to the gradient of u which in
general is not locally integrable. The idea consists in considering truncatures of
the solution u, Tk(u), and working instead of Du with the derivatives DTk(u),
which turn out to be locally integrable. Precise definitions are given in Section
2. Then the first term in equation (1.1) makes sense when IDulp-2Du E 
In order to take into account condition (1.2) we seek the solution in a proper
subspace of Of course, when u E and this happens
for the solutions of ( 1.1 ), (1.2) when p &#x3E; 2 - ( 1 /N), the new derivative concept
reduces to the usual one.

A second difficulty appears with the question of uniqueness of solutions.
We obtain existence and uniqueness of a special class of solutions of ( 1.1 )-( 1.2)
that satisfy an extra condition that we call the entropy condition (formula (3.3)
below). The use of such conditions is rather common in conservation laws, cf.
[La], [Kr], but is novel to elliptic equations.

Let us state next our precise framework. We will pose a slightly more
general equation

The following assumptions are made on Q, a and F:

(HI) Q is an open set, not necessarily bounded, in N &#x3E; 2.

(H2) The function a : Q x is a Caratheodory function (continuous in
~ for a.e. x and measurable in x for every ~) and there exist p E (1, N)
and A &#x3E; 0 such that

holds for every ~ and a.e. x. There is no restriction in assuming that A = 1.

(H3) For every ~ and q e and a.e. x E Q there holds

where (, ) y means scalar product in R~.

(H4) There exists A &#x3E; 0 such that

holds for every ~ with j E LP’(Q), p’ = pl(p - 1 ).
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(H5) F is a Caratheodory function, continuous and nonincreasing in u for fixed
x, and measurable in x for fixed u. Moreover, F(x, 0) E L 1 (S2), and if

then for every c &#x3E; 0.

Let us briefly summarize the contents of the paper: after a section devoted
to developing the necessary functional setting we introduce the concept of
entropy solution and derive the main properties of such solutions (Section 3).
In Section 4 we derive the basic a priori estimates on the measure of their
level sets. We are then ready to establish uniqueness (Section 5) and existence
(Section 6) of entropy solutions for the Dirichlet problem (1.4), (1.2). We
gather in Section 7 some properties of the solution and their relation to the
theory of accretive operators and the generation of semigroups. Extensions to
more general settings will be commented upon and partially worked out in
Section 8. We treat in particular the case where F(x, u) = f (x) - ~3(u), with f
a bounded measure and /3 a maximal monotone graph. We note that our paper
contains new results even for linear growth, i.e. p = 2, for equations of the form
- div a(x, Du) - F(x, u) posed in arbitrary domains. Finally, four appendices
contain technical results. The first one comments on the need of a new functional

setting when p  po. Appendix II gives different characterizations of the basic
space Appendix III is also related to spaces of truncated functions.

Finally, Appendix IV discusses the need of entropy conditions.
For reasons of concision and clarity of exposition we have chosen not to

include the study of the limit case p = N in the present work. The reader will
easily check that most of the theory developed below still applies though it
has some particular features which may deserve separate attention. In particular,
the uniqueness theory is unchanged and the estimates of Section 4 are easily
adapted. The supercritical case p &#x3E; N is easier since solutions turn out to be
continuous. We give some more precise details and results in Section 8.

Let us mention some parallel developments. First, the works of P.L. Lions
and F. Murat [LM] (see also [M]) on the equation div(A(x)Du + 0(u)) + Au = f
with f E Ll(E2), where 0 is locally Lipschitz-continuous with any growth at
infinity; they prove existence and uniqueness of a renormalized solution, a notion
introduced in [DL] in the study of the Boltzmann equations. The existence of
a renormalized solution for f E H-1(0) was proved in [BGDM]. Entropy
solutions and renormalized solutions are different approaches to the definition
of a suitable generalized solution which will make the problem well-posed.
Let us also mention the work of Dall’ Aglio [D] who constructed solutions
for equations of the form -OP(u) + g(x, u) - f with f E defined as
limits of variational solutions, and proved uniqueness of the limit solution thus
obtained. This notion of solution is related to the abstract development of [BC].
The works of Rakotoson [Rl], [R2] and [R3] address equations of the form
- div a(x, u, Du)+g(x, u) = it where &#x3E; is an L1 function or a bounded measure on
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Q; he also introduces a space of functions similar to our 7í~(Q) (while smaller)
and proves existence of generalized solutions; in [R3] he proves existence and
uniqueness of renormalized solutions when o E In all the aforementioned
works the open set Q is assumed bounded. Some of the difficulties below will
be related to the consideration of unbounded domains. Finally, the parabolic
equation ut = Ap(u) has been treated among others by DiBenedetto and Herrero
[DBHI,2]. For small p they also deal with truncated solutions. In concluding
we would like to point out that the basic ideas of this paper, including the
introduction of T-spaces to account for the unusual derivatives, and the a priori
estimates of the distribution function of u and Du, were announced years ago
(see [B2] and the reference [1] in [BGDM]).

2. Functional spaces

Before we discuss the concept of solution we need to go into the functional

setting in some detail. First, some notation. As usual, for 1  p  oo V(Q) and
will denote the standard Lebesgue and Sobolev spaces and is

the closure of in lip denotes the V-norm in Q. We shall
also use the local spaces and By Lo(i2) we denote the set of
measurable functions u : S2 -~ R such that the sets { ~ u ~ &#x3E; ~ } have finite measure
for every c &#x3E; 0. This expresses the fact that the functions go to 0 as Ixl --~ o0
in measure. We have Y(i2) c Lo(s2) for every 1  p  oo. For a measurable
set A c we use the notation meas (A) = IAI I to denote its measure.

We begin by introducing the truncature operator. For a given constant
k &#x3E; 0 we define the cut function Tk : Il~ ~ R as

For a function u = u(x), x E S2, we define the truncated function Tku = Tk(u)
pointwise: for every x the value of (Tku) at x is just Tk(u(x)). We now
introduce the functional spaces we will need in our theory:

i) is defined as the set of measurable functions u : such

that for every k &#x3E; 0 the truncated function Tk(u) belongs to 

ii) For p E (1, oo) we define as the subset of 7í~I(Q) consisting of
the functions u such that D(Tk(u)) E for every k &#x3E; 0. Likewise, T1,P(Q)
is the subset of consisting of the u such that moreover DTk(u) E 
for every k &#x3E; 0.

iii) Finally, 7ól’P(Q) will be the subset of consisting of the functions
that can be approximated by smooth functions with compact support in Q in
the following sense: a function u E belongs to 7ól’P(Q) if for every
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k &#x3E; 0 there exists a sequence 0, E such that

This space will play an important role in what follows. Alternative
characterizations of it are given in Appendix II at the end of the paper.

Let us now devote some space to consider the properties of these spaces.

To begin with, it is clear that for every p E [1, oo) we have the inclusions
c and c and in these cases we have

where lA denotes the characteristic function of a measurable set A C 
It is also clear that = Moreover, we can
easily convince ourselves that the inclusions are strict, i.e. the new spaces are
strict extensions. In fact, 7í~1 (Q) is not even a vector space, as the following
example in one space dimension shows: consider in Q = (-1,1) the functions
u(x) = a?sin(l/a?) and v(x) = x-2. Then v and u + v belong to 7í~I(Q), but u does
not. However, it is true for instance that if u E and v E 
then u + v E 7í~1 (Q). Let us remind the reader that in defining we did
not impose the condition Tk(u) E Of course, this condition follows

immediately when Q has finite measure (since Tk(u) is bounded), but for
unbounded Q it makes a real difference.

We want to give a sense to the derivative Du of a function u E 
generalizing the usual concept of weak derivative in cf. [GT]. The
following result paves the way in this direction.

LEMMA 2.1. For every u E there exists a unique measurable
function v : such that

Furthermore, u E and only if v E and then v - Du in the
usual weak sense.

Here unique is understood in the almost everywhere sense. The proo( ofthis result is as follows: We have seen that formula (2.2) is true for u E (Q)
with v = Du. Note also that for &#x3E; 0 we have = Tk(u). Therefore,
we get in Qk =  k } the a.e. equality = But, U SZk = Q,

k&#x3E;0
hence the assertion (2.2) follows.

We are left with the proof that u E if v E Indeed, in that
case DTk(u) --+ v in We still have to see that u E If this were
not true there would exist a closed ball Beg such that
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as l~ --; oo. Normalize Vk = Then Vk ---~ 0 1 and
- 0. This is a contradiction to the compactness of the embedding

C L 1 (B).

Thanks to this result we define the derivative Du of a function u E 7í~1 (Q)
as the unique function v which satisfies (2.2). This notation will be used

throughout in the sequel. We recall that in general the derivative of a function
u E need not be a locally integrable function, and that this
definition of derivative is not a definition in the sense of distributions.

The following straightforward result will be useful.

LEMMA 2.2. If u E and 1  p  N then DTk(u) E LP(i2) and
Tk(u) E Lp* (S2) for p* = pN/(N - p). If S2 is bounded then for every 1  p  00

we have u E if and only if Tk(u) E for every k &#x3E; 0. Finally,
for bounded E2 u c- if and only if u E and Du E LP(92).

Observe that if 1  p  N then Tol,P(Q) C Lo(i2). Indeed, since

Tk(U) E LP*(92) for 1~ &#x3E; 0, u --~ 0 in measure as Ixi - oo. This will be

used later on.
It is sometimes useful to replace the truncation Tku introduced above by

smoother truncations: in this sense, it is worth noticing the following result.

LEMMA 2.3. If u E then T(u) E for every Lipschitz-
continuous function T : I1~ satisfying

Moreover, DT (u) = P(u)Du where P is a measurable function defined a. e. by
P(u) = T’(u). Finally, if u E and T(0) = 0 then T(u) E 

The proof of this lemma is straightforward since T(u) = for

large enough k. We must notice that the sole assumptions u E and

T : R - R Lipschitz continuous (resp. Lipschitz continuous and bounded) do
not in general imply that T(u) E (resp. See Appendix III for
a counterexample.

3. Entropy solutions

DEFINITIONS. Let us consider now the concept of solution for our kind of

equations in the new functional setting. Thus, given the equation

under the assumptions (H 1 )-(H4) and with f E by a solution we will
understand a function u E such that a(Du(x» belongs to and
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the equation is satisfied in ~’(SZ), i.e.

for every test function 0 E Cow(L2). In this paper we will deal with special
solutions of the homogeneous Dirichlet problem (3.1 )-( 1.2). Thus, if in (3.2)
we allow as test function Tk(u - 0), k &#x3E; 0, we obtain

Notice that both integrals in (3.3) are well defined. The second member offers
no difficulty since f E As to the first member we observe that

where K = k + I 10 1 Since the second member in (3.4) is integrable in S2, the
integral in the first member of (3.3) is well-defined.

It must be observed at this stage that (3.3) cannot be derived in general
from (3.2). We will briefly discuss this issue in Appendix IV. We will in fact
see that we cannot even derive the inequalities

This family of inequalities is precisely the basis of our theory.
Indeed, we define an entropy solution of problem (3.1)-(1.2) as a function

u E 7ól’P(Q) satisfying the family of inequalities (3.5) for every 0 E Ð(Q) and
k &#x3E; 0. This will be referred to as the entropy condition.

As above the integrals in (3.5) are well defined. On the other hand, using
the fact that Du - Do = 0 a.e. on the set where ju - ol = k, it is clear that

replacing the integration set flu - ol  k} in the first member of (3.3) by
0  k} does not change the value of the integral, so the latter set can be

used in (3.5) instead of flu - ol  k}.
While a priori it is not clear, we will prove below that an entropy solution

is always a solution of (3.1) in the standard sense defined above. This will be
done in Section 4 after deriving convenient a priori estimates for the entropic
solutions.

PROPERTIES. We are going to derive some properties of entropy solutions.
Firstly, setting 0 = 0 we obtain an immediate consequence of the definition
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LEMMA 3.1. If u E is an entropy solution of (3.1)-(1.2) then for
every k &#x3E; 0

Hence, under hypothesis (H2) we obtain the following bound in LP(Q):

It is technically useful to extend the entropy condition to more general
truncations than Tk and more general test functions than 0 E To

begin with, we introduce the class 1 of functions T E C2 (I1~ : R) n L°°(R : R)
satisfying:

and

For T E=- 7 we write k(T) = inf {k : T(s) = I I T I Then we have

LEMMA 3.2. The entropy condition (3.5) is equivalent to the statement that

holds for every test function 0 E and every function T E F.

PROOF. Suppose that (3.8) holds and let us prove (3.5). Take a k &#x3E; 1. We

may use an approximation of the standard cut Tk by an increasing sequence of
functions ,Sn G ? chosen so that = 0 for Isl &#x3E; k, S,,(s) = 1 for s ~  k-(I /n)
and S’n  1 everywhere. Since as n --+ oo Sn(u - 0) --+ Tk(u - 0) uniformly and
S’n(u - ~) --~ Tk(u - 0) a.e., applying (3.6) with T = Sn and passing to the limit
we obtain (3.5).

Conversely, if (3.5) holds consider the case where T E 7 is just a

combination of cut functions,

In that case we apply (3.5) to the Tkj and add to obtain that (3.6) holds. In the
general case T G 3’ we approximate in C 1-norm by a sequence of functions of
that type and pass to the limit.

Next we show that the entropy condition (3.5) holds for a much wider
class of test functions. This fact will be very important below.
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LEMMA 3.3. If u is an entropy solution ~(3.!)-(!.2). Then (3.5) holds
for every E 

PROOF. By definition there exists a sequence 4&#x3E;n E such that

D~n -~ D~ in in and a.e. Replacing 4&#x3E;n by 
with R E R(s) = s for Isl  we may always assume that
the are uniformly bounded in Q. We may also assume that there exists a
function w E such that a.e. We have

and 4&#x3E;n)1  IDTK(u)1 + w, with K = k+sup It is not difficult
to see that

Assuming now the definition of entropy solution we have

We may pass to the limit in both sides; the right-hand side is clear since

, f E As for the left-hand side, observe that the integrand equals
~n)~ and a(x, DTK (u)) E V(Q).

Observe that for given a and k &#x3E; 0 the function Tk,a(s) = Ta(s - Tk(s))
takes the values

Now, if v E nL’(i2) the expression Tk,a(U - v) can be written in the
form Ta(u - w) with w = v + Tk(u - v) E nL’(i2). Applying Lemma 3.3
we get:

COROLLARY 3.4. If u is an entropy solution of (3.1 )-( 1.2) then

so that under hypothesis (H2)

This Lp-estimate for Du will play a fundamental role in the sequel.
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4. A priori estimates

As another preliminary to the existence and uniqueness theory we derive
estimates for a function u that satisfies the inequalities of previous section and
for its gradient The estimates consist of controlling the measure of the
level sets, i.e. we work in Marcinkiewicz spaces. We recall, cf. [BBC], that
for 0  q  oo the Marcinkiewicz space can be defined as the set

of measurable functions / : ~ 2013~ R such that the corresponding distribution
functions

satisfy an estimate of the form

It is immediate that C Mq(S2) c Lo(92) and that for bounded 0. we have
C .Mq(SZ) if q 2:: q. We begin with the estimate for u.

LEMMA 4.1. Let 1  p  N, let 0. be as above and let u E 1õl,P(Q) be
such that

for every k &#x3E; 0. Then u C with pi === N(p - 1) More precisely, there
N-p 

*

exists C = C(N, p) &#x3E; 0 such that

PROOF. For k &#x3E; 0 one has by Sobolev’s embedding

For 0  e  k we have flul &#x3E; e} = &#x3E; Hence

Setting e = k we obtain (4.4).

REMARK. Such estimates are not new for solutions of elliptic equations.
They have been proved by Talenti [Ta] for quasilinear equations using
rearrangement theory. However, this elementary proof is new.
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We now proceed with the derivative estimates.

LEMMA 4.2. Let 1  p  N and assume that u E 7ól’P(Q) satisfies (4.3)
for every k. Then for every h &#x3E; 0

PROOF. For k, A &#x3E; 0 set

From Lemma 4.1 we have

Using the fact that the function a H is nonincreasing we get for &#x3E; 0

Now, observe that since

we have thanks to (4.3)

Going back to (4.7) and using (4.6) and (4.8) we arrive at

Minimization of (4.9) in 1~ and setting A = hP give (4.5).

As a corollary we have:

COROLLARY 4.3. Under assumptions (H 1 )-(H4), if u is an entropy solution
of (3.1 )-( 1.2) then a(x, Du) E + L°° (SZ) and u is a solution of (3.1), i. e.

(3.2) holds for every 0 E Co’(Q).
PROOF. Using Corollary 3.4 and Lemma 4.2 we obtain (4.5). Using (H4)

and p  N it follows that
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for some C &#x3E; 0 depending on N, p, A, A Therefore, a(x, Du) E
n 

Let now 0 E Cü(Q). Applying Lemma 3.3 with test function Th(u) - 0
instead of 0 we get

and then

Choosing k &#x3E; 114&#x3E;1100 at the limit h -&#x3E; oo we have

Replacing 0 by - 0 we get the converse inequality. Hence, equality holds.

In this way we have shown that an entropy solution is indeed a solution
in the standard distribution sense. This result would follow in any case from
the existence and uniqueness of sections 6 and 5. Indeed, we will prove that
entropy solutions are unique and then we will construct a standard solution of
the problem that is also an entropy solution.

5. Uniqueness

We settle here the question of uniqueness of entropy solutions in the spirit
of Section 3.

DEFINITION OF SOLUTION. By a solution of (1.4)-(1.2) we understand a
function u E such that F(x, u(x)) E and which is a solution of

equation (3.1 ) with second member f (x) = F(x, u(x)). The definition of entropy
solution is similar to (3.5).

Our main result is:

THEOREM 5.1. Let ul and u2 be two functions in Tol,P(i2) which are entropy
solutions of the equation

under assumptions (H 1 )-(HS). Then u = U2.
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PROOF. (i) Let jz(x) = F(x, Ui(X)), i = l, 2. We are assuming that fix E 
We will write a(Du) instead of a(x, Du) for convenience. We write the entropy
inequality corresponding to solution ul with test function ThU2 and u2 with test
function Thul (use Lemma 3.3). Adding up both results we get

(ii) The conclusion Ul = U2 will be reached after passing to the limit
h -~ oo in this formula and disregarding some positive but uninteresting terms.
We proceed by splitting the integrals above into the contributions corresponding
to different integration sets. Thus, if we put

when restricted to Ao the first member of (5 .1 ) gives the following main
contribution that we will keep:

The remaining first member integral is estimated as follows. Take the first term.
On the set

we have

while on the remaining set
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we get

In the same way we estimate the second integral in the sets A’, where lUll &#x3E; h,
and A2, where lUll I  h and [u2[ &#x3E; h. All these sets and integrals depend of
course on k and h. Summing up we estimate the first member of (5.1 ) in the
form I &#x3E; Io - 13, where

Now, 13 goes to 0 as h -~ oo. Indeed, the first term can be estimated by

and this converges to 0 as h - oo for every k &#x3E; 0 thanks to Corollary 3.4 and
Lemma 4.1. Likewise the second term.

(iii) The second member of (5.1) can be worked out by the same method.
The integral on Bo = {x lUll  h, [u2  h} gives

while on the set Bl = {x E Q : lUll &#x3E; hl the integral, Ji, is estimated by

Likewise on B2 = {x IU21 2:: hl we have

Now, the measure of both sets, and B2(h, k), goes to zero as h - 00
for fixed 1~ &#x3E; 0. Hence Jl + J2 -+ 0.
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(iv) Combining the above estimates we get from (5 .1 )

where -4 0 as h - oo, k fixed. Since Ao(h, k) converges to {x E E2 :
~2!  k } we conclude that

Since this is true for all k &#x3E; 0 we conclude by (H3) that Dul = DU2 a.e. Taking
into account that ul and U2 E (use Corollary 3.4 and Lemma
4.1 ) we conclude that U 1 = U2 a.e.

6. Existence

THEOREM 6.1. Under assumptions 1  p  N and (Hl)-(H5) there exists
a unique entropy solution of equation ( 1.4) in Moreover,

where pi - 
N(p - 1) and - 

N(p - 1 ) . In case &#x3E; 2 - 1 N the solutionwhere pl 
N - p 

-ndP2= 
N - 1 

In case p &#x3E; 2 - (I IN) the solution

belongs to for every q  P2, and if 0 is bounded to 

PROOF. Step 1. Let us write the second member in the form

Then f (x) = F(x, 0) E and ~3 is monotone nondecreasing in u with

#(z, 0) = 0, so that

We recall that ~3 is continuous in u for a.e. x and measurable in x for every
u E R. Following the classical procedure, our first step consists in approximating
the second member f with a sequence of smooth functions fn E Co-(Q)., fn --+ f
in It will be also useful to ask that

for every n &#x3E; 1. We also approximate the monotone function /3 by bounded
functions ,Qn, nondecreasing in u. For instance, we take



256

In this way s)[  1/3(x, s)[ I for every s E R and x E S~. Finally, we take

Then it is well-known, see [LL], [Li], and [Bw] for unbounded domains, that
there exists un E such that

holds in the sense of distributions in Q. We also point out that un E 
Loo(03A9)

Multiplying (6.5) by convenient test functions and integrating one gets the
following uniform estimates

We recall that, for the sake of simplicity, we are fixing the ellipticity constant
À = 1.

Step 2. Convergence. Using (6.8) we see that is bounded
in for every k &#x3E; 0. With (6.6) and Lemma 4.1, we also have that
meas I lu,, &#x3E; k} is bounded uniformly in n for every k &#x3E; 0. Let us prove that

un - u locally in measure; to begin with, we observe that for t, - &#x3E; 0 we have

so that

Choosing k large enough the first two terms in the second member are less
that -. Since {DTkun}n is bounded in LP(Q) for all k &#x3E; 0 and Tkun E 
we can assume that (Tkun) is a Cauchy sequence in n BR) for any
q  p* = pN/(N - p) and any R &#x3E; 0 and
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Then

for all n, m &#x3E; no(k, t, R). This proves that {un } is a Cauchy sequence in measure
in BR, hence that locally in measure.

We now prove that Dun converges to some function v locally in measure
(and therefore, we can always assume that the convergence is a.e. after passing
to a suitable subsequence). To prove this we show that {Dun } is a Cauchy
sequence in measure in any ball BR. Let again t and ê &#x3E; 0. Then

We first choose A large enough in order to have

(this is possible by Lemma 4.2). If a is a continuous function independent of x
we argue as follows: then by (H3) there exists a &#x3E; 0 such that lçl  A, 1771  A

&#x3E; t together imply

This is a consequence of the continuity and strict monotonicity of a. Then, if
we set

we have (note that a(Dun) and a(Dum) belong to 



258

Then

if k is small enough, k  Under the general assumption (H3) the
argument is technically more delicate; it can be seen in [BG2] or [BeW].

Since A and k have been already chosen, if no large enough we have
for n, m &#x3E; no the estimate um ( &#x3E; BR )  ê, and then

4ê. This proves that {Dun}n converges locally in
measure to some function v, hence also a.e. (up to extraction of a subsequence,
if necessary). Finally, since is bounded in (for any k &#x3E; 0), it

converges weakly to D(Tku) in Then, we have u E and Du = v
a.e.

Summing up, we have established the following facts:

We also have D(Tk(u)) E and moreover u E Indeed, we can
construct 0,, E Col(O) such I /n 

We then have D(Tku) weakly in LP(Q) and Tku strongly in
for q  p*. From On we can construct 1/;n (convex combinations of the

On’S, using Mazur’s lemma) so as to have strong convergence of derivatives.
We conclude that u E See also Appendix II.

Furthermore, using the convergence of un to u and Dun to Du, we can
prove for u the inequalities stated in Lemmas 4.1 and 4.2.

Step 3. In order to complete the proof of the existence of a solution we
still have to show

i) that a(Du) E 

ii) that ~3(x, u(x)) E L 1 (SZ), and finally that

iii) - div (a(Du)) +,Q(x, u) = f in D’(SZ), ,

and also that the entropy inequality holds. We first remark that the sequence
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with j E c and, according to Lemma 4.2, is bounded in

c (recall that this simply means that meas a(x, DUn)1 &#x3E;
). On the other hand, according to Nemitskii’s theorem [K] the

convergence of Dun to Du in measure implies that a(x,Du,,) converges in
measure to a(x, Du). It follows that a(x, Du) E MNI(N- 1)(0) c for all

q E ( 1, N/(N - 1)). We now use a convergence result whose easy proof is left
to the reader.

LEMMA 6.1. Let vn be a sequence of measurable functions on a measurable
space Q with finite measure. Assume that the sequence converges in measure to
a function v and is uniformly bounded in Lp(SZ) for some p &#x3E; 1. Then vn ---+ v

strongly in 

Applying this result to a(x, DUn) we conclude that a(x, Du) E and

Therefore,

We also have

Let in(x) = un). The only remaining difficulty consists in proving that (i)
jn - w in ~’(SZ), (ii) w (x) = (3(x, u(x)) a.e., and (iii) /3(x, u(x)) E 

We can easily establish local equi-integrability for the sequence 
Indeed, the first part of formula (6.7) gives

for k large enough, uniformly with respect to n. Together with assumption
(H5) this implies that the sequence in is uniformly equi-integrable. Hence, after
passing to a subsequence we can assume that

Note moreover that -~ 0 in since it converges a.e. and
we have a uniform estimate for the un in a Marcinkiewicz space of higher
exponent.

The other facts are easier. That w(x) = follows from the

continuity of ~3. Finally, by (6.7) is uniformly bounded in hence
we get /3(x, u(x)) E 
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Step 4. To complete the proof it remains to show that u is an entropy
solution. In order to prove inequality (3.6) we take a function bounded
above by k, k &#x3E; 0, and such that T’(s) = 0 for s &#x3E; k; we also choose a smooth
function 0 E and apply the test function T (un - 0) to equation (6.4) to
get

We can write the first member of (6.12) as

Since un - u and Du a.e., we have by Fatou’s Lemma

The second term of (6.13) is estimated as follows. We know that

a.e as n - oo. We also know that a(Dun) converges strongly in Ll , hence we
may assume that it is dominated in Then 

loc

The second member of (6.12) can be likewise split into two terms. The first,
f in(z, un)T(un - 0) dx is estimated as follows: let us consider an increasing
n

sequence of compact subsets of Q such that UmKm = S2. Of course, for
m large, say m &#x3E; mo, the support of 0 will be contained in Km. Then, using
the monotonicity of in we have

On the other hand, we can write

where
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tends to 0 since --+ w weakly in and

can be split into I2 + I2 , where I2 is the integral on the set where I &#x3E; L,
and IZ is the integral on IUnl  L. On the first set we conclude that I2 is small
(uniformly in n) if L is large by (6.11), while for given L we can make I2 small
by letting n --+ oo and using the uniform bound ~F(x, u(x))~  
given by (H5). Therefore,

Combining (6.14) and (6.15) we get

Since the second member is independent of m, passing to the limit m --+ oo we
get the same inequality with Km replaced by Q. Finally, passing to the limit in
the last term of (6.12) is immediate and we have

Using these estimates we obtain (3.6) in the limit when n ~ oo.

IMPORTANT REMARK. Actually, it is possible to prove that equality holds
in (3.3) or (3.6) by proving that for all k &#x3E; 0

in

7. Properties of the solution. Semigroup generation

We gather in this section a number of properties of the solution of problem
(1.4)-(1.2) we have constructed which can be of use in the applications. We
write the equation in the form

where, as in Section 6, f = F(x, 0) and u) = F(x, o) - F(x, u). Given f E
Ll(’1) let u = u f be the entropy solution of (7.1 )-( 1.2) and let w f (x) _ /3(x, u f (x)).
Then we have
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THEOREM 7.1. Under the assumptions (H 1 )-(H5 ) if f , f E and

(u,w)=(uf,wf), (u, f ) _ (u f, w f) then:
(i) w and iu E and

It follows that the map f " w f is an order-preserving contraction in 
The map f " u f from to MPl(Q) is also order-preserving.

(ii) Assume that ~Q(x, r) depends only on r and let j : R --+ R+ be a convex
function with j(O) = 0. Then

In particular, the map f ~--~ w f is bounded from LP(i2) n into itself for
every 1  p  oo.

The above results have an interpretation in terms of accretive operators.
Indeed, given the spatial domain Q and the functions a and ,Q as above, we
define the (possibly multivalued) operator A in by the rule: " f E A(w) if
and only if w, f E and there exists u E such that

and u is the entropy solution of

with zero boundary data". Then we have

THEOREM 7.2. The operator A is m-accretive in Ll(i2).
. 

According to Crandall and Liggett’s Semigroup Generation Theorem (see
[C]) such an operator generates a semigroup of (order-preserving) contractions
St in which solves in a generalized sense, usually called the mild sense,
the evolution problem

with w(., t) = Stuo(.).
It is however interesting to note that in order to generate a semigroup

we can restrict the operator to act on functions such that u is bounded, thus
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avoiding the problems of integrability of Du, the major source of concern in
the foregoing theory. Therefore, we consider ,~o defined as follows: "f E 
if and only if w, f E and there exists u E nL°°(S2) such that (7.4)
holds and

(no entropy condition needed). Observe moreover that for SZ bounded
= Clearly, Ao is a restriction of A. By classical

monotone arguments one shows that is accretive in as well as the

range condition

for every A &#x3E; 0. According to the semigroup theory ([B1], [BCP]) this operator
generates a semigroup of contractions St in on D(Ao) = {w E 
w(x) E R(/3(x, .)}. This solves (7.6) in the mild sense.

In this respect Theorem 7.2 amounts to say that A is the closure of Ao in
This fact completely characterizes the functional setting in the stationary

problems.
We will skip further discussion of the evolution aspects since the extensive

theory of mild solutions falls out of the scope of this work. Let us only say that
for particular choices of a and /3 one proves that the mild solution is in fact
a continuous weak solution, in the lines of standard PDE theory. Most often
found in the literature are cases when a and ,Q are power-like, i.e.

Then .~ is a realization of the sometimes called doubly-nonlinear Laplacian and
we solve the evolution problem

with m = 1 /r. Especially well-known cases are, apart from (i) the classical heat
equation (r = 1, p = 2), (ii) the case r = 1, p ~ 2, which gives the p-Laplacian
equation, and (iii) the case p = 2, r # 1, which gives the so-called porous medium-
equation.

8. Extensions

8.1. Maximal monotone graphs. There are a number of interesting
generalizations that can be considered in the above existence and uniqueness
results. One of the most common variations of equation (1.4) found in the
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literature concerns the possibility of including functions F(x, u) which are

monotone but discontinuous in u. To simplify matters, we will consider functions
F of the uncoupled form

where, according to (H5) we assume that f E We also assume that:

(H6) ,Q is maximal monotone graph in with 0 e #(0).

Therefore, we allow the term /3(u) to be multivalued, not necessarily
defined in the whole of R. The reader interested in the properties of maximal
monotone graphs can consult the monograph [Br]. This leads to the differential
inclusion

But for the complications of taking care of the multiplicity of ,Q, and replacing
equations by inclusions, nothing essential changes in the proofs of the uniqueness
result (Theorem 5.1) and the existence result (Theorem 6.1), if we assume the
form (8.2) with (Hl)dH4) and the extra hypothesis (H6). We leave the details
to the interested reader. Notice in particular that a complete specification of
the solution involves a pair (u, w) where w is an integrable function such that
w(x) E /3(u(x)) for a.e. x E Q and u is a solution of

in the sense of Section 3. Both u and w are unique.
Actually, using the tools of [BC] we can deduce directly the results for

F(x, u) = f (x) - ,Q(u) from the results for F(x, u) = f (x). See also [BeW] for the
case F(x, u) = f (x) -,Q(x, u) when /3 is maximal monotone in u with 0 E /3(a:, 0).

8.2. Existence for measures. Another interesting extension direction
concerns the possibility of replacing the integrable functions of the second
member by bounded measures. We consider again an equation of uncoupled
form, but this time we avoid the complications of dealing with graphs and take
the equation

THEOREM 8.1. Let 1  p  N, let the assumptions (Hl)-(H4) hold and
let f. E the space of bounded measures in Q. Assume that /3 be a
continuous and nondecreasing real function with ~3(0) = 0 and assume moreover
that Domain(03B2) = R and
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Then there exists a function u E such that w = 3(u) E and u is a
solution of - div (a(Du)) _ , f - w in the sense of distributions in Q. Moreover,
u E Mpl (SZ) and IDul E MP2(Q).

PROOF. The existence proof of Section 6 can be easily adapted to this
case. The proof begins by approximating the second member f E Mb(i2) with
a sequence of smooth functions fn E fn --+ f in the weak* topology
of Then it stays litterally the same from the beginnig to Step 3, where
a different proof has to be given for the equi-integrability of the sequence
1-Yn(Un)l- In doing this we need to assume the restrictions on ,Q stated above. It
is clear that the term still converges to 0 in since u

a.e. and is bounded in The proof of local equi-integrability
proceeds as follows: we use the following facts:

(Use the classical definition of p-l as a multivalued function).
(iii) By Lemma 4.1 we have

(iv) By hypothesis (H6)
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N-p
Indeed, if = I x I - p- I one has

hence

We also have a similar result for ,~-1(-t)}. From all this we deduce
that -

as k --+ oo uniformly respect to n. Finally, noting that is bounded we
then deduce the local equi-integrability of /3n(un). We then have (up to extraction
of a subsequence)

weakly in

As in the first case we then prove that w E /3(u) a.e. and that w E We
have thus completed the proof of Theorem 8.1.

REMARK. In this case we are not able to establish a property like (3.3)
or (3.6). Consequently we cannot prove uniqueness. Notice that the expressions
(3.3) and (3.6) make no sense when f is just a measure, not an integrable
function.

8.3. For bounded domains or, more generally, when meas(i2)  oo the
case p &#x3E; N does not offer much difficulty.

Actually, in the case p &#x3E; N, under assumptions (H2)-(H4) there exists a
unique solution u E Wo’p(S2) of (1.4) (which is continuous, indeed u E Co(i2)).
This case can be proved by classical monotone arguments.

When p = N one can prove with the same arguments developed above
that there exists a unique u satisfying the entropy conditions.

The case meas = oo is a bit trickier: to be convinced one can look at
the problem 

--

for N = 1 and N = 2 as studied in [BBC]. We will refrain here from entering
into more details.
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8.4. Another extension direction consists in dealing with more general
operators A. A simple example is provided by operators of the form A(u) =
- div a(x, u, Du).

Appendix I

The introduction of a special functional setting for our problem if

p  2 - (1 /N) is motivated by the following result

PROPOSITION. Let S2 be an open set in and let p  2 - Then
there exists a function f E such that the problem

has no solution.

PROOF. If a solution u exists and since p  2 we have ~,(u) E (Q).
If this happens then for every f E Ll(i2) we have

By the Closed Graph Theorem and Duality this implies that

which can only hold if 1/(2 - p) &#x3E; N, i.e. p &#x3E; 2 - ( 1 /N).

Appendix II

We give here useful characterizations of the spaces 7ó1’P(Q) which played
such a role in the preceding theory.

PROPOSITION. Let 1  p  oo and let K2 be an open subset in The

following statements are equivalent for a measurable function u : SZ --~ R :

(i) u E 7ól’P(Q) according to the definition of Section 2.
(ii) u E and there exists a sequence Co’(K2) such that for any

k &#x3E; 0

( a) ~n --+ u a. e. in Q,

(b) - D(Tk(u)) in LP(Q).

(iii) For any k &#x3E; 0 there exists a sequence such that

(a) --+ Tk(U) a. e. in 0,

(b) the sequence is bounded in 
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(iv) u E and for every k &#x3E; 0 and every smooth cutoff function
g E 

(a) E WJ’P(Q),
(b) if p  N we also need the condition Tk(u) E Lo(f2).

We recall that the space Lo(S2) is defined in Section 2.

PROOF. It is immediate that (i) ~ (iii). (ii) =&#x3E; (i) is also clear taking
0,, = To show that (iii) # (iv) we need to prove that whenever v E L"0(92)
is an a.e. limit of a sequence §n in with gradient bounded in

then

for any
when

Notice first that we can assume the sequence Øn to be bounded in 

by substituting for Øn, c v 00. Then we have 0,, --+ v in 

and thus D~ 2013~ Dv as distributions. Since D§n is bounded in V(Q)N then
(a) holds. Moreover, for ~ E we have g§n - gv in LP(Q). Since g§n
is bounded in (~8) also holds. Finally, if p  N the sequence Øn is
bounded in p* = Np/(N - p) by the Sobolev embedding. Therefore,
v E Lp* C Leo(2), and (i) holds.

Let us now prove that (iv) ~ (ii). Assuming that (iv) holds we take k, e and
R &#x3E; 0. We claim that there exists ~ E Col(O) such that (with  R})

This will prove (ii). Indeed, let c be the function corresponding to
the choice k = n, e = = m ih the above estimate. Then, for fixed n,

and

for any R &#x3E; 0, as m - oo. It follows that for any 0  k  n

in and

for any R &#x3E; 0 as m -~ oo. Thus, for any n there exists ~n = ~n,m(n) E 
such that

for any k = 1, 2, ... After extracting a suitable subsequence (ii) holds.
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To prove the claim let 0  8  k and set v = Consider
also p E 0  p  1, p = 1 for Ixl  1 and p = 0 for Ixl &#x3E; 2 and set

= p(x/m). We have for m &#x3E; R

On the other hand,

with

where B = flul &#x3E;  2m}. Since DTk(u) E LP(Q)N, II goes to 0 as
have &#x3E; 8}1 ~ oo and

for every 6 &#x3E; 0, 13 ---&#x3E; 0 as m - 00. We also have 1{1  2}1. 
When p &#x3E; N, 13 -~ 0 as m --+ oo uniformly in 6 &#x3E; 0, and when p = N, 13 is
bounded uniformly in m, 6.

From this analysis it follows that for we can choose 6 and m &#x3E; 0
in such a way that 

’

Since gmv E the claim (*) holds. To show that it also holds for p = N
we take 6 = 0 and observe that

as m -~ oo. Then we may find w in the convex hull of m &#x3E; R} in
such that

Since w = Tk(u) in flxl  R}, (*) still holds.

Appendix III

We give an example of a function u E and a Lipschitz-
continuous and bounded T : R - R such that T(u) ft Wh~ (-1,1 ). More
precisely, we show that condition (2.3) is optimal.

PROPOSITION. Let T : ll~ -~ R be a monotone Lipschitz-continuous and



270

bounded function that does not satisfy (2.3). Then there exists u E ~1,1( -1, 1)
such that T(u) 9É 

PROOF. After replacing T(r) by -T(-r) if necessary we may assume that
there exists a real sequence uo = 0  u 1  ...  un  ... such that 00

and T (un+1 ) &#x3E; T (un ) for any n. Let kn be a sequence of integers such that the
sum E k,,(T(u,,,,) - T(un)) diverges, and set an = 2-n. Finally, define

where

We have u E ~~([-1,1] B {0}), u(± 1) = 0 u(x)  un+1 for

an  lxl  and in fact u goes from the value un at x = an to the
value un+1 at x = an+, by going up and down in this range 2kn + 1 times. It is
clear that u E TO’,P(- 1, 1) for any p e [ 1, oo) since the truncation eliminates all
but a finite number of terms in the sum. On the other hand, for T(u) all terms
count. We have

for i  (2kn + 1)(2 -  i + 1, n = 0,..., 2kn . It follows that for every
xl E (0, 1)

Appendix IV

We discuss here the question of uniqueness of solutions of (1.4), (1.2),
which motivated our introduction of the concept of entropy solution, in the light
of an example given by J. Serrin [S] of a solution of the linear equation

with
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which is uniformly elliptic for a &#x3E; 0. J.S. considers a solution of the form

where

Assuming that a &#x3E; 1 one has N - 1  a  N. It is clear that u E

for p  N/a, and u g The author also
verifies that u is a weak solution of (E). By an easy computation one can also
see that u E 7í~(JRN) for p  pa = 1 + (N - 1)/« and u V 

Let now S2 be the unit ball in and let

We have f (x) E for q  N. The function

is a weak solution in {0}) n of the problem

But v g and then v is not the entropy solution of (P).
This example shows that we cannot derive in general (3.5) from (3.2),

even for bounded and smooth SZ, at least if we only assume u E To’,l(L2) with
a(x, Du) E L1(Q). However, the 7. uestion of deriving (3.5) from (3.2) is still

open for a solution of (3.1) in TO,P(92). According to the above existence and
uniqueness theory, this question is equivalent to the problem of uniqueness of
a solution of (3.1) in the class 

It is worth noting in the example that v(x) is a weak solution of the

equation - A(u ) = f in the domain S21 - ~ x : r  1, x 1 &#x3E; 0 } . Though
v E C°° (SZ 1 ) n it is not an entropy solution of problem (P) in S21.
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