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Spectral Mapping Theorem for Fractional Powers
in Locally Convex Spaces

CELSO MARTINEZ - MIGUEL SANZ *

1. - Introduction

In [9] the authors extended the theory of fractional powers of non-negative
operators, a classical topic in Banach spaces, to sequentially locally convex
spaces. Previously, W. Lamb (see [6], [7] and [13]) had elaborated another,
more restrictive, extension. The reason for this study was the fact that the
natural domain of certain operators is not contained in a Banach space. In

particular, this happens if we consider the fractional derivatives and integrals
of Riemann-Liouville and Weyl (see [12]). On the other hand, the generalized
differential operators which are very important in the applications are defined
in distributional spaces which are not Banach spaces but sequentially complete.
With this new theory some of these operators (let us consider, as an example,
the operator -A, where A is the Laplacian) will be non-negative, and there-
fore we could study their fractional powers. In particular, Bessel potentials
(see [14]), defined in the space of tempered distributions, could be described
as the fractional powers of the operator (I - 0 ) -1.

The basic properties of fractional powers were established in [9], with the
exception of the spectral mapping theorem. The known techniques (based on
the theory of Gelfand) were not suitable to prove this theorem. In this paper,
this result has been proved by obtaining new integral representations for the
resolvent operator of the fractional powers.

In the following, X will be a sequentially complete locally convex space
and we will say that X is an S-space (Frechet spaces are a particular case).

Given a linear operator T : D(T) c X - X, we will say that a complex
number z belongs to the algebraic resolvent if the operator z - T is

bijective. Otherwise, we will say that z belongs to the algebraic spectrum or(r).
In a topological sense, the resolvent set p (T ) will be the set of all complex
z of peT) such that (z - T) - 1 is continuous and the spectrum a (T) will be
the complement of p (T ). If T is closed and the space X has the property that
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every linear closed operator from X to X, everywhere defined, is continuous

(closed graph theorem) then p(T) = peT) and a(T) = 8 (T).
Given a directed family of seminorms P that describes the topology of

X, we will say that a linear operator A : D (A) C X - X is non-negative if
p (A) D] - oo, 0[ and the set + A)-1: ~, &#x3E; 01 is equicontinuous, i.e., if for
all p E P there exist a seminorm q ( p) and a constant Mp &#x3E; 0 such that

The fractional powers with complex exponent a
were defined in [9] in the following way:

if A is continuous and D(A) = X,

where J" is the integral operator as defined by Balakrishnan in [ 1 ], whose
expression for 0  91a  n (n &#x3E; 1) is

(a formula obtained by H. Komatsu in [5]). Although in [9] the space X was
a Frechet space, the results of this paper are true also when X is an S-space,
since the sequential completeness is sufficient for the validity of the elementary
results of integration applied there. On the other hand, the definition of Aa
coincides, in Banach spaces, with the one introduced in [10] and [8].

In [9] it was proved that the operators A’, for a E C+, are closed, satisfy
the property of additivity and that Aa is an extension of JI; moreover Aa is

equal to Ja if and only if the domain D(A) is dense. In [11] and [12] the
fractional powers in Frechet spaces were applied to obtain certain results about
fractional integration and differentiation.

The main goal of this paper is to relate 8(A") to 8(A) and a(Aa) to

cr (A). In particular, we will prove that

In relation to these results, a notable difference between S-spaces and
Banach spaces is that if X is of the first class, the algebra of the continuous
linear operators, everywhere defined, from X to X, does not admit neither the
Riesz-Dunford Functional Calculus, nor the theory of Gelfand.
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2. - Functional calculus for densely defined non-negative operators

In this section we will construct a Functional Calculus that will allow us
to obtain integral formulas for certain operators and to establish, in some cases,
the existence of continuous inverse, everywhere defined on X.

Given 3 &#x3E; 0, we will say that a holomorphic function

belongs to the class go if 0 and G (z) exists.
It is understood that the number 3 can vary with each function G. We will

say that G belongs to the class g, if eZ G (z) = 0 and G (z)
exists.

A function G belongs to go n gi if and only if there exist the limits

G(z) and G(z).
From classes go and g, we can define fi = {F : CB~- -+ C, holomorphic,

such that F (z) = G(log z), G E Gj 1, j = 0, 1, where R- =] - oo, 0] and for
log z we consider the branch that is real for positive real numbers and is
discontinuous along the negative real axis.

PROPOSITION 2.1. If F E To, then:
(i)o limz~o F(z) exists and lim 1, 1 ,, z-1 F(.z) = 0.
(ii) For all A &#x3E; 0 there exist the limits

and f, l and f2 are analytic functions in R* =]0, oo[, as functions of real
variable.

(iii)o The functions (k = 1, 2) are bounded in ]0, 1 ], while the fk (k = 1, 2)
are bounded in [ 1, oo[.

(iv)o By writing

the following formula

holds, where the integral converges as a Riemann improper integral.
For all F E property (ii) is maintained, but properties (i)o, (iii)o and (iv)o

are respectively replaced by
(i) 1 lim 1, 1 , . F (z) exists and z F (z) = 0.

(iii) 1 ThefunctionsÀ2 f£(À) (k = 1, 2) are bounded in ]0, 1 ], while the Xfk (k = 1, 2)
are bounded in [ 1, oo[.
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(iv) 1 With f meaning the same as in (iv)o, and writing F (C)O) = lim F (z) we
obtain the identity

where the integral converges as a Riemann improper integral.

PROOF. Since a function F belongs to if and only if function F (z) =
F(I/z) belongs to it is sufficient to prove properties (i)o, (ii), (iii)o and (iv)o.
The first one follows on immediately from the definition of Let us prove
(ii). Given F(z) = G (log z), where G E go is defined for )i3z) I  1r + 8, we
take s : 0  s  min{8, ~c/2{, and calling , log to the branch of the logarithmic
function which is real for positive real numbers and is discontinuous along the
ray {~,ei ~’~+~~ : ~~ &#x3E; 01, we consider the function FE (z) = G(Elog z). Clearly,

and, by continuity, there exists the limit called in the statement, with a
value equal to Similar reasoning is applied for f2 (~,) .

To prove property (iii)o, given X &#x3E; 0, we take a circumference r centered
on 2013~, of radius ch (0  c  sin s). Then r does not cut to the ray 
t &#x3E; 01 and thus r is contained in the domain of Fg. Expressing the function
Fe( -À) = by means of Cauchy’s integral formula along r we have

and derivating

Taking into account (in a similar way as property (i)o) that the functions
and are bounded, respectively, in the proximities of zero and

infinity, we obtain assertion (iii)o for function fl. An analogue procedure is
used for f2.

Finally, given z E C B property (iv)o results from expressing F(z)/z
through Cauchy’s integral formula along of the path composed from the arcs:

counter-clockwise oriented, with s, p, R positive. Taking limits as E - 0,
p --&#x3E;. 0 and R ~ o~o we conclude (2.2), after having applied properties (i)o
and (ii). D
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REMARKS 2.2. If F E Fo, (2.2) would allow us to consider as

the Stieltjes transform associated with the complex measure dJ1(t) = 
Likewise, (2.3) would indicate that F(z) is the Stieltjes transform corresponding
to the measure (see [3] and [4]).

In addition to the notations introduced in the previous result, we will write

We define the classes

In particular,

From now on, in this section, A will be a densely defined non-negative
operator.

It is not very difficult to check if a holomorphic function defined on C ) R-
belongs to classes Fk, ’Hk, k = 0, 1. The following examples will be of
usefulness in our exposition.

EXAMPLE 2.3. If 0  9la  1, function z’ belongs to ~o (but not to 
and, if SEe B R-, the function

is in class Ho 

EXAMPLE 2.4 Given 0  y  1/2 and t &#x3E; 0, function belongs to
The same is valid for 1.

EXAMPLE 2.5 If a is such that 91a &#x3E; la 12, the set S2« = CB f~.’e’o’ : k &#x3E; 0
and -~c sf) S 7rl is not empty and if - Jvt E S2«, the function (J1 + za) -1 belongs
to For the same values of a, given S E C B R-, the function

is in class Ho, but not in The same is true, given r &#x3E; 0, for
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DEFINITION 2.6. Given F E and being f : :]0, oo[--+ C the function
given by the expression (2.1), the integral operator

verifies the estimate

where C1 - and C2 = 1 dk. From this

inequality we can deduce that, given k &#x3E; 0, operator T (X -~- A) -1 is continuous,
which implies that T is closable. We define F(A) = F(0) + T. A simple
example is the operator A’ = (z~)(A).

It is evident that if A is continuous or D(A) = X, operator F(A) inherits
the same properties. For F E Hi we define the continuous operator

REMARK 2.7. If F E for all q5 E X it is easy to see that the

integral 
--

is absolutely convergent with respect to any seminorm p E P and therefore
defines on X a continuous operator. Taking into account the identities (2.2)
and (2.3), we have

and we can deduce, thanks to the density of D(A), that the two definitions of
F (A) coincide.

REMARK 2.8. It is immediate that if F E then, for all J1 &#x3E; 0, F(A)
commutes with (~ + A) - 1 in the domain of A. As F(A) is defined as a

closure operator, this commutativity can be extended to the domain of F(A).
This property is verified in all the space X when F E In this case, F(A)
commutes with A in D(A), since the equality

for q5 E D(A), implies that E D(A) and = F(A)Aq5.
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REMARK 2.9. It can be proved, by means of the path used in Proposition 2.1
(part (iv)o), that if A is a bounded operator in Banach space X with 0 E p (A)
and F E U J-li , the definition of F (A ) coincides with the one obtained with
the Riesz-Dunford functional calculus (see [2, p. 568]).

REMARK 2. lo. When F’ E and f (~,) &#x3E; 0 for all h &#x3E; 0, Remark 2.2
shows that F(A) coincides with the operator associated to the function F ac-
cording to the Hirsch functional calculus (see [3] -[4]). Likewise, the same

property is verified when F E and f(À) S 0 for all X &#x3E; 0. However, the
functions considered in the examples 2.3, 2.4 and 2.5, the more interesting in
this paper, do not belong, in general, to the above mentioned cases, and thus,
Hirsch functional calculus cannot be used here.

THEOREM 2.11 (Formula of the product in If F E Ho, G E and
H = FG E Ho, then the operator F (A) G (A) is closable and

In the case that D[H(A)] C D[G(A)], then

This happens when G (A) is everywhere defined on X, in particular, if G E 

In order to prove the formula of the product we need several lemmas.

LEMMA 2.12. If F E Ho n HI and F (oo) = 0, we have

where f and f * are given by (2.1 ) and (2.4) and the integral is absolutely convergent.
Furthermore, da is uniformly bounded for À &#x3E; 0.

PROOF. It is easy to obtain the estimate

where H and K are respective bounds of the functions f and Àf’. Thus, the
final part of the statement is proven. Given ), &#x3E; 0 and b &#x3E; 0, let w == 2013~+~&#x26;,
w2 - -~, - i b and let r be the contour used in the proof of Proposition 2.1
(part (iv)o), with the suitable size of positive s, p, R so that r contains inside
w 1 and w2 . Through Cauchy’s integral formula, by taking limits as s 0,
p- 0 and R - oo, hypothesis F (oo) = 0 enables us to obtain
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Consequently:

On the other hand, by denoting:

and making b = À(1 - r )q with 0  r  1 and q &#x3E; 0, it is easy to obtain the
estimates:

which, if we take q &#x3E; 3/2, imply that Jk ) = 0, k = 1, 2. Hence,
in order to prove the formula of the statement, it only remains to check that
lim,,, 13 = 0, which is a consequence of the inequality:

where for the second integral we have used the estimate

which comes from log(I + x )  x, if x &#x3E; 0. D

LEMMA 2.13 (Formula of the product in Ho nHI). If F and G belong to
the product H = FG is in Ho fl and F(A)G(A) = H(A).

PROOF. Let f, g, h and f *, g*, h* be the functions associated to F, G and
H, given, respectively, by (2.1 ) and (2.4). The fact that H belong to ~Lo n HI I
is obvious, since
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and the functions f * and g* are bounded. The proof can be reduced to the
case in which F(oo) = G(oo) = 0. In this case, by using Tonelli-Hobson’s
theorem we can write

its second member can be rewritten in the form

Next, we will write Il with the variables ~ and 12 with J1 and
a = À/ J1 (after which will be done in 12, À = /~). Then, by applying the
second resolvent equation we obtain

where

and, given r, s :  r,

The functions hj 4) are absolutely integrable on Ws,r with respect
to any seminorm p c= P. The restriction to Ws,r is made because there is no

guarantee that each one of the functions hj is integrable on W. By means of
the change ha - h we obtain:



694

Therefore, by associating h 1 with h4 and h2 with h3 we deduce:

where in order to substitute lims-o by ffw and then apply reiterated
r,l 1 S,r

integration, it suffices to check the integrability on W of the functions

and

but this is an immediate consequence of the second assertion of Lemma 2.12,
together with the fact that the functions À -1 f and À -1 g are absolutely inte-

grable. After carrying out the reiterated integration on W and applying (2.6),
we conclude that

as we wished to prove. D

Given 0  y  1 /2, for t &#x3E; 0 we will denote Gt (z) = the function

already mentioned in the example 2.4, that belongs to Ho n HI. With the model
of expressions (2.1 ) and (2.4) we are able to obtain its associated functions gt
and g:.

LEMMA 2.14. If F e Ho, the product F Gt belongs to Ho n HI for all
t 

Furthermore,

PROOF. It is clear that if co E C and )i3co) I  n + 8 (with
then:

It follows that
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On the other hand, by simple calculation, we have:

Therefore, gt and belong to and g7 and À g7 belong to 
Furthermore, from Proposition 2.1 (part (ii)) we can see that F e Fo implies
that ~. -1 f * e oo[) and f * e 1]). If h t is the function given by
(2.1 ), associated to Ht, then, taking into account the identity

together with the fact that ~, -1 f 1]) and ~. -2 f E L 1 (] 1, oo[), one easily
deduces that ), - 1 h Hence, Ht belongs to Ho n Hi .

For q5 E D (A) we have

where, by the dominated convergence theorem, the part between brackets tends
to F(A)o as t goes to zero, due to the fact that

and fixed

It must therefore be proved that the second integral tends to zero. By
denoting

(these suprema exist due to part (i)o of Proposition 2.1 ) and by changing the
variable k = we obtain

(where Mp and the seminorm q(p) verify ( 1.1 )). Equality 
0, together with the fact that F E Ho and the integrability of the function



696

1 
on Rj imply that the last term of the second member of the

obtained expression tends to zero as N - oo, while, after fixing N, the first
summand of this member tends to zero as t -~ 0. Therefore, we conclude that
the first member tends to zero as t ~ 0, which completes the proof of (2.7).

Relation (2.8) can be obtained as a particular case of (2.7) for q5 E D(A).
Taking into account the density of D (A) and the estimate

which is obtained from the definition of Gt (A), we conclude the validity of
(2.8) for all 0 E X. D

PROOF. OF THEOREM 2.11. Let F E and G E ~lo such that H =
FG E Ho. For t &#x3E; 0, the fact that G Gt t belongs to 1 implies, as noted
in Remark 2.8 that operator (GGt)(A) commutes with A on D(A) and thus

E D(A) for all q5 E D(A). Given s &#x3E; 0, by virtue of Lemma 2.13
we have (FGt)(A) (HGsGt)(A)Ø, and taking limits for t going
to zero, Lemma 2.14 assures that

and as F(A) is closed, once again the same lemma implies that

after making s go to zero. Hence, equality F (A) G (A) - H (A) is easily
obtained, because of the fact that H (A) is closed and D(A) is dense. D

3. - Spectral mapping theorem for fractional powers of non-negative
operators with dense domain

We will continue in this section by supposing that A is a non-negative
operator with a dense domain. By using the formula of the product, we will
establish algebraic and topological spectral mapping theorems for the fractional
power Aa . In particular, we will give new integral formulas to represent the
resolvent operator (w - 

1 if the exponent a is small and w has the form
w = raeiea with r &#x3E; 0 and -1r S () S 7r. The following lemma studies the
product of A" (n &#x3E; 1) by Gt (A), and will be very useful, since it will enable

operators An to be treated as if they belong to 
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LEMMA 3.1. The range of Gt (A) is contained in and

PROOF. Since the function belongs to ~Co n HI we can use (2.5) to
describe the operator (z"Gt)(A) and thus

and reasoning by induction on n, one deduces that Ran[Gt (A)] C D(An) and
identity (3.1 ). Moreover, Gt(A) and An commute on D (An ) . 0

THEOREM 3. 2. If 91a &#x3E; lal2, the following assertions are satisfied:
(i) The non-empty set S2a = (C ~ ~ ~.a el 8a : ~ &#x3E; 0 and -7r  o  7c } is contained in

the resolvent set p (Aa ) and if -A E S2a, then

(ii) Given SEe B R-, then sa E p (Aa ) if and only if s E p (A), and S’ E p (A’) if
and only if s E p (A). For S E p (A) and 0 E X we have

PROOF. Assertion (i) (proved in [1] ] and [10] when X is a Banach space)
is obtained applying the formula of the product to the functions za + it and

1
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Let us now prove (ii). We have already seen in the examples of Section 2
that the functions

respectively belong to Ho n HI and to Ho. Since the function z - s belongs
neither to the class Ho nor to ?-Cl, we will need to use the function Gt in order
to apply the formula of the product.

As the function (za - sa)Gt(z) belongs to nHI and its product by G
is the function (z - s ) Gt (z), also in n Hi, we can apply Theorem 2.11 and
thus

from which, by applying Lemmas 2.14 and 3.1 and taking limits for t going
to zero, one deduces that

Similarly it is proved that

Accordingly, s E if and only if sa E If s E by denoting

we have:

where the last equality is due to (2.1 ). As the integral operator that appears in
last term is everywhere defined on X and continuous, it follows that sa E 
if and only if s E p (A).
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The proof of (iii) is analogous to (ii), by considering the functions

of the class Ho, and checking the identities

LEMMA 3.3 (Moment inequality). Let 0  91a  and a seminorm 

Then, there exist a positive number C(p, a, fi) (depending on p, a and fi) and a
seminorm r(p, fi) E P (depending on p and fi) such that

PROOF. From the definition of non-negative operator, by induction on m, it
follows that given p E p and a positive integer m, there exist a positive number
K (p, m) and a seminorm q ( p, m ) E 7~ (depending on p and m ) such that

Firstly, let us prove (3.3) for f3 - m. Given writing J.o . =
(1.2), applying (3.4) and minimizing with respect to 3 &#x3E; 0,

we obtain

where

Let us now prove the inequality (3.3) for 0  9lot  If q5 E D(A~)
and we take m = [91p] + 1 (where is the integer part of we see,

after expressing the integrand in the form Àa-lAm-,B [(X + A)-’]m A°q5 and by
using (3.5), that the integral fooo Àa-l ~A(~, -I- A)-1~"Z ~ d~, is absolutely conver-
gent with respect to any seminorm p E P. Operating with [(I+ A)-’]m it
follows from (1.2) that

By arguing in a similar way to the former case, we write L oo[ --~ 
and in the first integral we use the second inequality of (3.4) and in the second,
after writing the integrand in the form (~, -+- A ) -1 ~ m A~ ~, we first

apply inequality (3.5) and after (3.4). Finally, by minimizing the obtained
estimate with respect to 3 &#x3E; 0, inequality (3.3) is concluded. D
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THEOREM 3.4. Let a E C+. Then

0 E p (A) if and only if 0 and 0 E p (A) if and only if 0 E p (Aa ) .

PROOF. Let 0 and n &#x3E; ffia. From relation

it follows that 0 Conversely, if 0 E p (Aa ) then, for all positive integer
m we have that 0 E P [(A~)~ = and taking m such that m(91a) &#x3E; 1, we
have that which yields that 0 E p(A).

If 0 E (3.6) implies that (A’)-’ = A"-’(A-’). On the other hand,
from (1.2) it follows that (A-~ )" = A"-’(A-’)" and therefore

Identity (3.7) implies that if 0 E p (A), then 0 E Conversely, if
0 E p(Aa), then operator (A-1)a is continuous and if 0  f3  min(l, 91a),
Lemma 3.3 implies that (A-1)~ is continuous and thanks to the multiplicativity
(Proposition 3.3 of [9]) the operator A-’ = ~(A-1)~~ 1/f3 so is and thus 0 E

p (A). D

THEOREM 3.5. (Algebraic spectral mapping theorem) Let a E C+. If8 (A) is
not empty, then

If cr (A) is empty, the spectrum cr (A" ) also is.

PROOF. Given a linear operator T : D(T) C X -~ X, it is known that

Because of this, the proof can be limited, without loss of generality, to the case
where  and in this case the algebraic spectral mapping theorem is a
consequence of Theorems 3.2 and 3.4. D

THEOREM 3.6. (Topological spectral mapping theorem) Let a E C+. If a (A)
is not empty, then 

M 11 -. "’

If a (A) is empty, the spectrum cr (A" ) also is.

PROOF. Theorems 3.2 and 3.4 show that the result is true if lal2  
Hence, the validity of the theorem for all a E C+ would follow if equality (3.8)
is true for topological spectra. We can only prove, in general, that

To prove the other inclusion, taking into account the identity

we would have to assure that if the operator (zn - is a continuous

everywhere defined operator, the operators Tm (zn - T") - I (m = 1, 2, ... , n - 1)
so are. But this result, which is not true in general, is valid for T = A’/", as
a consequence of Lemma 3.3. D
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4. - Spectral mapping theorem for fractional powers of non-negative
operators with non-dense domain

Throughout this section, A will be a non-negative operator defined on an
S-space X such that D (A) ~ X. Let us consider the S-space Xo = D(A) and
the operator Ao with domain D(Ao) = D(A) : Aq5 e and defined as

Aoo = Aq5 for 0 E D(Ao). The operator Ao is obviously a non-negative densely
defined operator and it is easy to check that Ag = J a for all a E C+. The

following proposition allows us to adapt literally the results of the preceding
section to the case of non-densely defined operators.

PROPOSITION 4.1. Let a E C+ and n &#x3E; 91a. Then the following assertions hold:

PROOF. It is clear that the operator T(a) = ( 1 + A)nja(1 + A)-" is an
extension of A". Conversely, if g6 E D[T(a)], then ( 1 + A)~"q5 E D(J’) and
J" ( 1 + A)-’o belongs to D(A" = An-" A" ) (Proposition 3.1 of [9])
which gives A n ( 1 + A)~"q5 E D ( A" ) . Hence 0 E D ( A" ) (Lemma 3.2 of [9])
which completes the proof of (i).

It is immediate to check, through paragraph (i), that p(Aa) c 
Conversely, given z E it is clear that z - A" is a one-to-one operator.
Let us see that it is surjective. Given 0 E X, the element 1fr _ (,z - +

A) -"q5 E D(Ao) and we have that (z - _ (1 + A)-n~ E D(An). Let us
take an integer k &#x3E; and let ~8 = nka, then c D(Ag), and from
the equality Aglfr = ( 1 + A)-’q5 we have that Ag1fr E D(Ag). Therefore,

E D(A§~~) . As c D(A 2~), the former identity implies that
1fr E D(A +2~) . Reiterating the reasoning it is concluded that * E 
Taking 17 = ( 1 we have that q E D (A" ) and

and therefore z D

THEOREM 4.2. Theorems 3.4, 3.5 and 3.6 also are valid, though the operator
A was non-densely defined.

PROOF. By applying Theorem 3.4 to the densely defined operator Ao and
by using the relations

and

valid for z E p (A) and W E p (Aa), we obtain that Theorem 3.4 continues being
true for the operator A.

The proof of the spectral mapping theorems for the operator A is the same
as that of the case densely defined, taking into account that Lemma 3.3 and
Theorem 3.4 are true for all non-negative operator. D
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