
Semantics of Deductive Databases in a Membrane
Computing Connectionist Model

Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, 41012, Spain
sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

Summary. The integration of symbolic reasoning systems based on logic and connec-
tionist systems based on the functioning of living neurons is a vivid research area in
computer science. In the literature, one can found many efforts where different reasoning
systems based on different logics are linked to classic artificial neural networks. In this
paper, we study the relation between the semantics of reasoning systems based on propo-
sitional logic and the connectionist model in the framework of membrane computing,
namely, spiking neural P systems. We prove that the fixed point semantics of deductive
databases and the immediate consequence operator can be implemented in the spiking
neural P systems model.

1 Introduction

Two of the most well-known paradigms for implementing automated reasoning in
machines are, on the one hand, the family of connectionist systems, inspired in
the network of biological neurons in a human brain and, on the other hand, logic-
based systems, able to represent and reason with well-structured symbolic data.
The integration of both paradigms is a vivid area in artificial intelligence (see, e.g.,
[2, 3, 8]).

In the framework of membrane computing, several studies have been presented
where P systems are used for representing logic-based information and performing
reasoning by the application of bio-inspired rules (see [7, 11]). These papers study
approaches based on cell-like models, as P systems with active membranes, and
deal with procedural aspects of the computation. The approach in this paper is
different in both senses.

On the one hand, the connectionist model of P systems is considered, i.e, the
model of P system inspired by the neurophysiological behavior of neurons sending



174 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

electrical impulses along axons to other neurons (the so-called spiking neural P
systems, SN P systems for short). On the second hand, we consider the semantics
of propositional deductive databases in order to show how SN P systems can deal
with logic-based representing and reasoning systems.

One of the key points of the integrate-and-fire formal spiking neuron models [6]
(and, in particular, of the SN P systems) is the use of the spikes as a support of the
information. Such spikes are short electrical pulses (also called action potentials)
between neurons and can be observed by placing a fine electrode close to the soma
or axon of a neuron. From the theoretical side, it is crucial to consider that all
the biological spikes of an alive biological neuron look alike. This means that we
can consider a bio-inspired binary code which can be used to formalize logic-based
semantics: the emission of one spike will be interpreted as true and the absence of
spikes will be interpreted as false. As we will show below, SN P systems suffice for
dealing with the semantics of propositional logic systems.

The main result of this paper is to prove that given a reasoning system based on
propositional logic it is possible to find an SN P system with the same declarative
semantics. A declarative semantics for a rule-based propositional system is usually
given by selecting models which satisfy certain properties. This choice is often
described by an operator mapping interpretations to interpretations. In this paper
we consider the so-called immediate consequence operator due to van Emden and
Kowalski [5]. It is well-know that such operator is order continuous and its least
fix point coincides with the least model of KB. We adapt the definition of the
immediate consequence operator to a restricted form of SN P system and we prove
that a least fix point, and hence a least model, is obtained for the given reasoning
system.

The paper is organized as follows: firstly, we recall some aspects about SN
P systems and the semantics of deductive databases. In Section 3 we prove that
standard SN P systems can deal with the semantics of deductive databases. Finally,
some conclusions are provided in the last section.

2 Preliminaries

We assume the reader to be familiar with basic elements about membrane comput-
ing and the semantics of rule-based systems. Next, we briefly recall some defini-
tions. We refer to [13] for a comprehensive presentation of the former and [1, 4, 12]
for the latter.

2.1 Spiking Neural P Systems

SN P systems were introduced in [10] with the aim of incorporating in membrane
computing ideas specific to spike-based neuron models. It is a class of distributed
and parallel computing devices, inspired by the neurophysiological behavior of
neurons sending electrical impulses (spikes) along axons to other neurons.



Semantics of Deductive Databases . . . 175

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to send
information to other neurons in the form of spikes which are accumulated at the
target cell. The applicability of each rule is determined by checking the contents
of the neuron against a regular set associated with the rule. In each time unit,
if a neuron can use one of its rules, then one of such rules must be used. If two
or more rules could be applied, then only one of them is non-deterministically
chosen. Thus, the rules are used in the sequential manner in each neuron, but
neurons function in parallel with each other. As usually happens in membrane
computing, a global clock is assumed, marking the time for the whole system, and
hence the functioning of the system is synchronized.

Formally, an SN P system of the degree m ≥ 1 is a construct1

Π = (O, σ1, σ2, . . . , σm, syn)

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) firing rules E/ap → a, where E is a regular expression over a and p ≥ 1
is an integer number;

(2) forgetting rules as → λ, with s an integer number such that s ≥ 1;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the

directed graph of synapses between neurons.

The rules of type (1) are firing rules, and they are applied as follows. If the neu-
ron σi contains k spikes, k ≥ p, and ak belongs to the language L(E) associated to
the regular expression E, then the rule E/ap → a can be applied. The application
of this rule means removing p spikes (thus only k − p remain in σi), the neuron is
fired, and it produces one spike which is sent immediately to all neurons σj such
that (i, j) ∈ syn. The rules of type (2) are forgetting rules and they are applied as
follows: if the neuron σi contains exactly s spikes, then the rule as → λ from Ri

can be used, meaning that all s spikes are removed from σi. If a rule E/ap → a of
type (1) has E = ap, then we will write it in the simplified form ap → a. In each
time unit, if a neuron σi can use one of its rules, then a rule from Ri must be used.
Since two firing rules, E1/a

p1 → a and E2/a
p2 → a can have L(E1) ∩ L(E2) 6= ∅,

it is possible that two or more rules can be applied in a neuron, and in that case
only one of them is non-deterministically chosen.

The j-th configuration of the system is described by a vector Cj = (t1, . . . , tm)
where tk represents the number of spikes at the neuron σk in such configuration.

1 We provide a definition without delays, input or output neurons because these features
are not used in this paper.



176 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

The initial configuration is C0 = (n1, n2, . . . , nm). Using the rules as described
above, one can define transitions among configurations. Any sequence of transitions
starting in the initial configuration is called a computation. A computation halts
if it reaches a configuration where no rule can be used. Generally, a computation
may not halt. If it halts, the last configuration is called a halting configuration.

2.2 Semantics of Rule-based Deductive Databases

Given two pieces of knowledge V and W , expressed in some language, the rule
V →W is usually considered as a causal relation between V and W . In this paper,
we only consider propositional logic for representing the knowledge. Given a set of
propositional variables {p1, . . . , pn}, a rule is a formula B1 ∧ · · · ∧Bm → A where
m ≥ 0, A,B1, . . . Bm are variables. The variable A is called the head of the rule and
the conjunction of variables B1∧· · ·∧Bm is the body of the rule. If m = 0, it is said
that the body of the rule is empty. A finite set of rules KB is a deductive database.
An interpretation I is a mapping from the set of variables {p1, . . . , pn} to the set
{0, 1}. As usual, we will represent an interpretation I as a vector (i1, . . . , in) with
I(pk) = ik ∈ {0, 1} for k ∈ {1, . . . , n}. The set of all the possible interpretations
for a set of n variables will be denoted by 2n. Given two interpretations I1 and I2,
I1 ⊆ I2 if for all k ∈ {1, . . . , n}, I1(pk) = 1 implies I2(pk) = 1. We will denote by I∅
the interpretation that maps to 0 every variable, I∅ = (0, . . . , 0). The interpretation
I is extended in the usual way, I(B1∧· · ·∧Bm) = min{I(B1), . . . , I(Bm)} and for
a rule2

I(B1 ∧ · · · ∧Bm → A) =

{
0 if I(B1 ∧ · · · ∧Bm) = 1 and I(A) = 0
1 otherwise

An interpretation I is a model for a deductive database KB if I(R) = 1 for all
R ∈ KB. Next, we recall the propositional version of the immediate consequence
operator which was introduced by van Emden and Kowalski [5].

Definition 1. Let KB be a deductive database on a set of variables {p1, . . . , pn}.
The immediate consequence operator of KB is the mapping TKB : 2n → 2n such
that for all interpretation I, TKB(I) is an interpretation

TKB(I) : {p1, . . . , p1} → {0, 1}

such that, for k ∈ {1, . . . , n}, TKB(I)(pk) = 1 if there exists a rule B1∧· · ·∧Bm →
pk in KB such that I(B1 ∧ · · · ∧Bm) = 1; otherwise, TKB(I)(pk) = 0.

The importance of the immediate consequence operator is shown in the follow-
ing proposition (see [9]).

2 Let us remark that, from the definition, if m = 0, I(B1 ∧ · · · ∧ Bm) = 1 and, hence,
for a rule with an empty body, we have I(→ A) = 1 if and only if I(A) = 1.



Semantics of Deductive Databases . . . 177

Theorem 1. An interpretation I is a model of KB if and only if TKB(I) ⊆ I.

Since the image of an interpretation is an interpretation, the immediate con-
sequence operator can be iteratively applied.

Definition 2. Let KB be a deductive database and TKB its immediate consequence
operator. The mapping TKB ↑: N → 2n is defined as follows: TKB ↑ 0 = I∅ and
TKB ↑ n = TKB ↑ (TKB ↑ (n− 1)) if n > 0. In the limit, it is also considered

TKB ↑ ω =
⋃
k≥0

TKB ↑ k

The next theorem is a well-known result which relates the immediate conse-
quence operator with the least model of a deductive database (see [12]).

Theorem 2. Let KB be a deductive database. The following results hold

• TKB ↑ ω is a model of KB
• If I is a model of KB, then TKB ↑ ω ⊆ I

Example 1. Let us consider the following knowledge baseKB on the set of variables
Γ = {p1, p2, p3, p4}

R1 ≡ → p1
R2 ≡ p1 → p2
R3 ≡ p1 ∧ p2 → p3
R4 ≡ p3 → p4
R5 ≡ p2 → p4

and let us consider the interpretation I : Γ → {0, 1} such that I(p1) = 1, I(p2) = 0,
I(p3) = 0 and I(p4) = 0. Such interpretation can be represented as I = (1, 0, 0, 0).
The truth assignment of this interpretation to the rules is I(R1) = 1, I(R2) = 0,
I(R3) = 1, I(R4) = 1, I(R5) = 1. Since I(R2) = 0, the interpretation I is not a
model for KB. The application of the immediate consequence operator produces
TKB(I) = (1, 1, 0, 0). We observe that TKB(I) 6⊆ I and hence, by Th. 1, we can also
conclude that I is not a model for KB. Finally, if we consider I∅ = (0, 0, 0, 0), the
following interpretations are obtained by the iterative application of the immediate
consequence operator

TKB ↑ 0 = I∅ = (0, 0, 0, 0)
TKB ↑ 1 = TKB(TKB ↑ 0) = (1, 0, 0, 0)
TKB ↑ 2 = TKB(TKB ↑ 1) = (1, 1, 0, 0)
TKB ↑ 3 = TKB(TKB ↑ 2) = (1, 1, 1, 1)

In this case TKB ↑ 3 is a fix point for the immediate consequence operator and
a model for the deductive database KB.



178 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

3 Semantics of Deductive Databases with SN P Systems

The semantics of deductive databases deals with interpretations, i.e., with map-
pings from the set of variables into the set {0, 1} (which stand for false and true)
and try to characterize which of these interpretations make true a whole deductive
database which, from the practical side, may contain hundreds of variables and
thousand of rules. The immediate consequence operator provides a tool for dealing
with this problem and provides a way to characterize such models. In this section
we will explore how this problem can be studied in the framework of SN P systems
and prove that the immediate consequence operator can be implemented in this
model and therefore, membrane computing provides a new theoretical framework
for dealing with the semantics of deductive databases.

Our main result claims that SN P systems can compute the immediate conse-
quence operator and hence, the least model of a deductive database.

Theorem 3. Given a deductive database KB and an interpretation I, a SN P
system can be constructed such that

(a) It computes the immediate consequence operator TKB(I).
(b) It computes the least model for KB in a finite number of steps.

Proof. Let us consider a knowledge database KB, let {p1, . . . , pn} be the propo-
sitional variables and {r1, . . . , rk} be the rules of KB. Given a variable pi, we will
denote by hi the number of rules which have pi in the head and given a rule rj , we
will denote by bj the number of variables in its body. The SN P systems of degree
2n+ k + 3

ΠKB = (O, σ1, σ2, . . . , σ2n+k+2, syn)

can be constructed as follows:

• O = {a};
• σj = (0, {a→ λ}) for j ∈ {1, . . . n}
• σn+j = (ij , Rj), j ∈ {1, . . . n}, where ij = I(pj) and Rj is the set of hj rules

Rj = {ak → a | k ∈ {1, . . . , hj}}
• σ2n+j = (0, Rj), j ∈ {1, . . . k}, where Rj is one of the following set of rules
• Rj = {abj → a} ∪ {al → λ | l ∈ {1, . . . , bj − 1} } if bj > 0
• Rj = {a→ a} if bj = 0.

For a better understanding, the neurons σ2n+k+1 and σ2n+k+2 will be denoted by
σG and σT .

• σG = (0, {a→ a})
• σT = (1, {a→ a})
• syn = {(n+ i, i) | i ∈ {1, . . . , n}}

∪
{

(n+ i, 2n+ j) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is a variable in the body of rj

}
∪
{

(2n+ j, n+ i) | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}
and pi is the variable in the head of rj

}



Semantics of Deductive Databases . . . 179

∪ {(G,T ), (T,G)}

∪
{

(T, 2n+ j) | j ∈ {1, . . . , k}
and rj is a rule with empty body

}
Before going on with the proof, let us note that the construction of this SN P

system is illustrated in the Example 2. The next remarks will be useful:

Remark 1. For all t ≥ 0, in the 2t-th configuration C2t the neuron σT contains
exactly one spike and the neuron σG does not contain spikes.
Proof. In the initial configuration C0, σT contains 1 spike and σG does not contain
spikes. By induction, let us suppose that in the C2t the neuron σT contains exactly
one spike and σG does not contain spikes. Since the unique incoming synapse in
σT comes from σG and the unique incoming synapse in σG comes from σT and in
both neurons occurs the rule a→ a, then in C2t+1 the neuron σG contains exactly
spike and σT does not contain spikes and finally, in C2t+2 the neuron σT contains
exactly spike and σG does not contain spikes.

Remark 2. For all t ≥ 0 the following results hold:

• For all p ∈ {1, . . . , k} the neuron σ2n+p does not contain spikes in the config-
uration C2t

• For all q ∈ {1, . . . , n}, the neuron σn+q does not contain spikes in the configu-
ration C2t+1

Proof. In the initial configuration C0, for all p ∈ {1, . . . , k}, the neuron σ2n+p

does not contain spikes and each neuron σn+q contain, at most, one spike. Such
spike is consumed by the application of the rule a → a and, since all the neu-
rons with synapse to σn+q do not contain spikes at C0, we conclude that at the
configuration C1, the neurons σn+q do not contain spikes.

By induction, let us suppose that in C2t, for all p ∈ {1, . . . , k}, the neuron σ2n+p

does not contain spikes and for all q ∈ {1, . . . , n}, the neuron σn+q does not contain
spikes in the configuration C2t+1. According to the construction, the number of
incoming synapses in each neuron σ2n+j is bj if bj > 1 and 1 if bj = 0. Such
synapses come from neurons that send (at most) one spike in each computational
step, so in C2t+1, the number of spikes in the neuron σ2n+j is, at most, bj if
bj > 1 and 1 if bj = 0. All these spikes are consumed by the corresponding rules.
Moreover, at C2t+1, all the neurons with outgoing synapses to σ2n+p do not contain
spikes, so we conclude that at C2t+2, for all j ∈ {1, . . . , k}, the neuron σ2n+j does
not contain spikes. We focus now on the neurons σn+q with q ∈ {1, . . . , n}. By
induction, we assume that they do not contain spikes in the configuration C2t+1.
Each neuron σn+q can receive at most hq, since there are hq incoming synapses
and the corresponding neuron sends, at most, one spike. Hence, at C2t+2, σn+q

has, at most, hq spikes. All of them are consumed by the corresponding rule and,
since all the neurons which can send spikes to σn+q do not contain spikes at C2t+2,
we conclude that, for all q ∈ {1, . . . , n}, the neuron σn+q does not contain spikes
in the configuration C2t+3.



180 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

Remark 3. For all q ∈ {1, . . . , n}, the neuron σq does not contain spikes in the
configuration C2t.
Proof. The result holds in the initial configuration. For C2t with t > 0 it suffices to
check that, as claimed in Remark 2, for all q ∈ {1, . . . , n}, the neuron σn+q does
not contain spikes in the configuration C2t+1 and each σq receives at most one
spike in each computation step from the corresponding σn+q. Therefore, in each
configuration C2t+1, each neuron σq contains, at most, one spike. Since such spike
is consumed by the rule a→ λ and no new spike arrives, then the neuron σq does
not contain spikes in the configuration C2t.

Before going on with the proof, it is necessary to formalize what means that
the SN P system computes the immediate consequence operator TKB . Given a
deductive database KB on a set of variables {p1, . . . , pn}, an interpretation on KB
can be represented as a vector I = (i1, . . . , in) with ij ∈ {0, 1} for j ∈ {1, . . . , n}.
Let us consider that such values ij ∈ {0, 1} represent the number of spikes placed in
the corresponding neuron σn+j at the initial3 configuration C0. We will consider
that the computed output for such interpretation is encoded in the number of
spikes in the neurons σ1, . . . , σn in the configuration C3.

The main results of the theorem can be obtained from the following technical
remark.

Remark 4. Let I = (i1, . . . , in) an interpretation for KB and let S = (s1, . . . , sn)
be a vector with the following properties. For all j ∈ {1, . . . , n}

• If ij = 0, then sj = 0.
• If ij 6= 0, then sj ∈ {1, . . . , hj}

Let us suppose that at the configuration C2t the neuron σn+j contains exactly
sj spikes. Then, the interpretation obtained by applying the immediate conse-
quence operator TKB to the interpretation I, TKB(I) is (q1, . . . , qn) where qj,
j ∈ {1, . . . , n}, is the number of spikes of the neuron σj in the configuration C2t+3.
Proof. Firstly, let us consider k ∈ {1, . . . , n} and TKB(I)(pk) = 1. Let us prove
that at the configuration C2t+3 there is exactly one spike in the neuron σk.

If TKB(I)(pk) = 1, then there exists at least one rule rl ≡ Bd1
∧ · · · ∧Bdl

→ pk
in KB such that I(Bd1

∧ · · · ∧Bdl
) = 1.

Case 1: Let us consider that there is only one such rule rl and the body of
rl is empty. By construction, the neuron σ2n+l has only one incoming synapse
from neuron σT ; the neuron σn+j contains exactly sj spikes, j ∈ {1, . . . , n} and
sj ∈ {1, . . . , hj}; and according to the previous remarks:

• In C2t the neuron σT contains exactly one spike.

3 With a more complex design of the SN P system, it may be considered that these
neurons do not contain spikes at the initial configuration and the vector I = (i1, . . . , in)
is provided as a spike train via an input neuron, but in this paper we have chosen a
simpler design and focus on the computation of the immediate consequence operator.
An analogous comment fits for the computed output.



Semantics of Deductive Databases . . . 181

• For all p ∈ {1, . . . , k} the neuron σ2n+p does not contain spikes in the configu-
ration C2t

• For all q ∈ {1, . . . , n}, the neuron σq does not contain spikes in the configuration
C2t.

In these conditions, the corresponding rules in σT and σn+k are fired and in C2t+1,
the neuron σ2n+k contains one spike. In C2t+2, the neuron σn+k contains one spike
and σk does not contain spikes. Finally, in the next step σn+k sends one spike to
σk, so, in C2t+3, σk contain one spike.

Case 2: Let us now consider that there exists rl ≡ Bd1 ∧ . . . Bdl
→ pk in KB

such that I(Bd1
∧ · · · ∧Bdl

) = 1 and dl > 0. We suppose that I(Bd1
∧ · · · ∧Bdl

) =
1 and this means that I(Bd1

) = · · · = I(Bdl
) = 1 and therefore, in C2t, the

neuron σn+dj
contains sdj

spikes, with sdj
∈ {1, . . . , hdj

}. All these neurons fire
the corresponding rule, and σ2n+k has at C2t+1 exactly bk spikes (since all the
incoming synapses send the corresponding spike). The rule abk → a is fired and
in C2t+2 the neuron σn+k contains at least one spike. It may have more spikes
depending on the existence of other rules with pk in the head, but in any case, the
number of spikes is between 1 and hk. The corresponding rule fires and the neuron
σk contains one spike in C2t+3.

Finally, we prove the statements claimed by the theorem:

(a) The SN P system computes the immediate consequence operator TKB(I).
Proof. It is directly obtained from Remark 4. Let us note that one of the possible
vectors S = (s1, . . . , sn) obtained from the interpretation I is exactly the same
interpretation I = (i1, . . . , in). If we also consider the case when t = 0, we have
proved that from the initial configuration C0 where ik represents the number of
spikes in the neuron σn+k, then the configuration C3 encodes TKB(I).

(b) The SN P system computes the least model for KB in a finite number of
steps.
Proof. Let us consider the empty interpretation as the initial one, i.e., TKB ↑ 0 =
I∅. We will prove that

(∀z ≥ 1)TKB ↑ z = C2z+1[1, . . . , n]

where C2z+1[1, . . . , n] is the vector whose components are the spikes on the neurons
σ1, . . . , σn in the configuration C2z+1. We will prove it by induction.

For z = 1, we have to prove that TKB ↑ 1 = TKB(TKB ↑ 0) = TKB(I∅)
is the vector whose components are the spikes on the neurons σ1, . . . , σn in
the configuration C3. The result holds from Remark 4 and it has been proved
in the statement (a) of the theorem. By induction, let us consider now that
TKB ↑ z = C2z+1[1, . . . , n] holds. As previously stated, this means that in the
previous configuration C2z the spikes in the neurons σn+1, . . . , σ2n can be repre-
sented as a vector S = (s1, . . . , sn) be a vector with the properties claimed in
Remark 4, namely, if the neuron σj has no spikes in C2z+1, then sj = 0 and, if the



182 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

T
G

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. Graphical representation of the synapses of the SN P system of Example 1.

neuron σj has spikes in C2z+1, then sj ∈ {1, . . . , hj}. Hence, according to Remark
4, three computational steps after C2z, TKB(C2z+1[1, . . . , n]) is computed

TKB ↑ z + 1 = TKB(TKB ↑ z) = TKB(C2z+1[1, . . . , n]) = C2z+3[1, . . . , n]

Finally, it is well-known that for a database KB, TKB ↑ z ⊆ TKB ↑ z + 1 and,
since the KB has a finite number of variables and a finite number of rules, then
there exist n ∈ N such that TKB ↑ n ⊆ TKB ↑ ω and hence, TKB ↑ n is a model
for KB. �

Example 2. Let us consider the deductive database from Example 1. The SN P
system associated with this KB and the interpretation I∅ is

Π = (O, σ1, σ2, . . . , σ13, σG, σT , syn)

where O = {a},

σ1 = (0, {r1,1 ≡ a→ a}) σ5 = (0, {r5,1 ≡ a→ a}) σ9 = (0, {r9,1 ≡ a→ a})
σ2 = (0, {r2,1 ≡ a→ a}) σ6 = (0, {r6,1 ≡ a→ a}) σ10 = (0, {r10,1 ≡ a→ a})

σ3 = (0, {r3,1 ≡ a→ a}) σ7 = (0, {r7,1 ≡ a→ a}) σ11 = (0,

{
r11,1 ≡ a→ λ
r11,2 ≡ a2 → a

}
)

σ4 = (0, {r4,1 ≡ a→ a}) σ8 = (0,

{
r8,1 ≡ a→ a
r8,2 ≡ a2 → a

}
) σ12 = (0, {r12,1 ≡ a→ a})

σ13 = (0, {r13,1 ≡ a→ a})

σG = (0, {rG,1 ≡ a→ a} and σT = (0, {rT,1 ≡ a→ a} with the synapses



Semantics of Deductive Databases . . . 183

syn =

 (5, 1), (6, 2), (7, 3), (8, 4), (5, 10), (5, 11),
(6, 11), (6, 13), (7, 12), (9, 5), (10, 6), (11, 7),
(12, 8), (13, 8), (G,T ), (T,G), (T, 9)


Let us consider the first steps of the computation

Conf. σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σG σT
C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
C2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
C3 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0
C4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
C5 1 1 0 0 0 0 0 0 1 1 2 0 1 1 0
C6 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1
C7 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0

We have obtained
TKB ↑ 0 = C1[1, . . . , 4] = (0, 0, 0, 0)
TKB ↑ 1 = C3[1, . . . , 4] = (1, 0, 0, 0)
TKB ↑ 2 = C5[1, . . . , 4] = (1, 1, 0, 0)
TKB ↑ 3 = C7[1, . . . , 4] = (1, 1, 1, 1)

4 Conclusions

Biological neurons have a binary behaviour depending on a threshold. If the thresh-
old is reached, the neuron is triggered and it sends a spike to the next neurons. If
it is not reached, nothing is sent. This binary behaviour can be exploited in order
to design connectionist systems which are able to deal with two-valued logic-based
reasoning systems. In this paper, we have proved that SN P systems are able to
deal with the semantics of deductive databases. Namely, we have proved that the
immediate consequence operator can be iteratively computed with such devices
by using an appropriate representation. This pioneer work opens a door for future
bridges between SN P systems and logic-based reasoning systems.

References

1. Apt, K.R.: Logic Programming. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pp. 493–574. The MIT Press (1990)

2. Bader, S., Hitzler, P.: Dimensions of neural-symbolic integration - a structured survey.
In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L., Woods, J. (eds.) We
Will Show Them: Essays in Honour of Dov Gabbay, vol. 1, pp. 167–194. King’s
College Publications (2005)



184 D. Dı́az-Pernil and M.A. Gutiérrez-Naranjo

3. Besold, T.R., Kühnberger, K.U.: Towards integrated neural-symbolic systems for
human-level AI: Two research programs helping to bridge the gaps. Biologically
Inspired Cognitive Architectures 14, 97 – 110 (2015)

4. Doets, K.: From logic to logic programming. Foundations of computing, MIT Press,
Cambridge (Mass.) (1994)

5. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM 23(4), 733–742 (1976)

6. Gerstner, W., Kistler, W.: Spiking neuron models: single neurons, populations, plas-
ticity. Cambridge University Press (2002)

7. Gutiérrez-Naranjo, M.A., Rogojin, V.: Deductive databases and P systems. Com-
puter Science Journal of Moldova 12(1), 80–88 (2004)

8. Hammer, B., Hitzler, P. (eds.): Perspectives of Neural-Symbolic Integration, Studies
in Computational Intelligence, vol. 77. Springer (2007)

9. Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics.
Chapman and Hall / CRC studies in informatics series, CRC Press (2011)

10. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta Infor-
maticae 71(2-3), 279–308 (2006)

11. Ivanov, S., Alhazov, A., Rogojin, V., Gutiérrez-Naranjo, M.A.: Forward and back-
ward chaining with P systems. International Journal on Natural Computing Research
2(2), 56–66 (2011)

12. Lloyd, J.: Foundations of Logic Programming. Symbolic computation: Artificial in-
telligence, Springer (1987)

13. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)


