
Generalized P Colonies with passive environment

Lucie Ciencialová, Luděk Cienciala, and Petr Sośık

Research Institute of the IT4Innovations Centre of Excellence,
Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic
{lucie.ciencialova,ludek.cienciala,petr.sosik}@fpf.slu.cz

Summary. We study two variants of P colonies with initial content of P colony and
so called passive environment: P colonies with two objects inside each agent that can
only consume or generate objects, and P colonies with one object inside each agent using
rewriting and communication rules. We show that the first kind of P colonies with one
consumer agent and one sender agent can generate all sets of natural numbers computed
by register machines, and hence they are computationally universal in the Turing sense.
Similarly, also the second kind of systems with three agents with rewriting/consuming
rules is computationally complete. The paper improves previously published universality
results concerning generalized P colonies, and it also extends our knowledge about very
simple multi-agent systems capable of universal computation.

Key words: P colony, computational completeness, register machine

1 Introduction

P colony was introduced in [9] as a very simple variant of membrane systems
inspired by so called colonies of formal grammars. See [11] for more information
about membrane systems and [7] for details on grammar systems theory. There are
three basic entities in the P colony model: objects, agents and the environment. A
P colony is composed of agents, each containing a collection of objects embedded
in a membrane. The objects can be placed in the environment, too. Agents are
equipped with programs composed of rules that allow interactions of objects. The
number of objects inside each agent is set by definition and it is usually very low
– 1, 2 or 3. The environment of P colony serves as a communication channel for
agents: an agent is able to affect the behaviour of another agent by sending objects
via the environment. There is also a special type of environmental objects denoted
by e which are present in the environment in an unlimited number of copies.

A specific variant of P colony called eco-P colony with two object inside each
agent, where the environment can change independently on the agents, was in-
troduced in [1]. The evolution of the environment is controlled by a 0L scheme

152 L. Ciencialová, L. Cienciala, P. Sośık

applying context free rules in parallel to all possible objects in the environment
which are unused by the agents in the current step of computation.

The activity of agents is based on rules that can be rewriting, communication
or checking; these three types was introduced in [9]. Furthermore, generating,
consuming and transporting rules were introduced in [5].

Rewriting rule a→ b allows an agent to rewrite (evolve) one object a placed inside
the agent to object b.

Communication rule a ↔ b exchanges one object c placed inside the agent for
object d from the environment.

Checking rule r1/r2, where each of r1, r2 is a rewriting or a communication rule,
sets a priority between these two rules. The agent try to apply the first rule
and if it cannot be performed, the agent executes the second rule.

Generating rule a→ bc creates two objects b, c from one object a.
Consuming rule ab→ c rewrites two objects a, b to one object c.
Transporting rule of the form (a in) or (a out) is used to transport one object

from the environment into the agent, or from the agent to the environment,
respectively. The rule is always associated with a consuming/generating rule
to keep a constant number of object inside the agent.

The rules are combined into programs in such a way that all object inside the agent
are affected by execution of the rules in every step. Consequently, the number of
rules in the program is the same as the number of object inside the agent. The
programs that contain consuming rules are called consuming programs and the
programs with generating rules are called generating programs. The agent that
only contains consuming resp. generating programs is called consumer resp. sender.

P colonies with senders and consumers without evolving environment were
studied in [5] and the authors proved their computational completeness (in the
Turing sense), as well as computational completeness of P colonies with senders
and consumers with 0L scheme for the environment. Many papers were devoted to
P colonies with rewriting and communication rules without evolving environment,
e.g., [4, 6, 8], and there are two book chapters in [2] and [11] describing this topic.

In this paper we focus on P colonies with initial content of P colony with
“passive” environment. The paper is structured as follows: The second section is
devoted to definitions and notations used in the paper. The third section con-
tains results obtained during studies of P colonies with senders and consumers.
In the fourth section we study P colonies with one object inside the agent and
rewriting/communication rules. The paper concludes with a summary of presented
results.

2 Definitions

Throughout the paper we assume the reader is familiar with basic of formal au-
tomata and language theory. We introduce notation used in the paper.

Generalized P Colonies with passive environment 153

We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet
Σ (including the empty word ε). For the length of the word w ∈ Σ∗ we use the
notation |w| and the number of occurrences of symbol a ∈ Σ in w is denoted
by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns
to each object in V its multiplicity in M . The set of all multisets over the set
of objects V is denoted by V ∗. The cardinality of M , denoted by card(M), is
defined by card(M) =

∑
a∈V f(a). Any multiset of objects M with the set of

objects V = {ai, . . . an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

The mechanism of evolution of the environment is based on a 0L scheme.
It is a pair (Σ,P), where Σ is the alphabet of 0L scheme and P is the set of
context free rules fulfilling the condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a→ α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n.

A register machine [10] is the construct M = (m,H, l0, lh, P) where:
- m is a number of registers, H is a set of instruction labels,
- l0 is an initial/start label, lh is the final label,
- P is a finite set of instructions injectively labelled with the elements

from the given set H.
The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the contents of the register r and proceed to the
instruction (labelled with) l2 or l3.

l1 : (SUB(r), l2, l3) If the register r is not empty, then subtract 1 from its contents
and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this instruction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct. The register machine M computes a set N(M)
of numbers in the following way: we start with all registers empty (hence storing
the number zero) with the instruction with label l0 and we proceed to apply
the instructions as indicated by the labels (and made possible by the contents of
registers). If we reach the halt instruction, then the number stored at that time in
the register 1 is said to be computed by M and hence it is introduced in N(M).
(Because of the nondeterminism in choosing the continuation of the computation
in the case of ADD-instructions, N(M) can be an infinite set.) The family of sets
of numbers computed by register machines is denoted by N·RM.

Theorem 1. [10] N·RM = N·RE.

154 L. Ciencialová, L. Cienciala, P. Sośık

2.1 Generalized P colonies

Definition 1. A P colony with capacity c ≥ 1 is the structure

Π = (Σ, e, f, vE , DE , B1, . . . , Bn), where

• Σ is the alphabet of the colony, its elements are called objects,
• e is the basic (environmental) object of the colony, e ∈ Σ,
• f is final object of the colony, f ∈ Σ,
• vE is the initial content of the environment, vE ∈ (Σ − {e})∗,
• DE is 0L scheme (Σ,PE), where PE is the set of context free rules,
• Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (oi, Pi), where

oi is the multiset over Σ, it defines the initial state (content) of the agent Bi

and |oi| = c and Pi = {pi,1, . . . , pi,ki} is the finite set of programs of three
types:
(1) generating program with generating rules a → bc and transporting rules

d out - the number of generating rules is the same as the number of trans-
porting rules.

(2) consuming program with consuming rules ab→ c and transporting rules d in
- the number of consuming rules is the same as the number of transporting
rules.

(3) rewriting/communication program can contain three types of rules:
� a→ b, called a rewriting rule,
� c↔ d, called a communication rule,
� r1/r2, called a checking rule; each of r1, r2 is a rewriting or a communi-

cation rules.

Every agent has only one type of programs. The agent with generating pro-
grams is called sender and the agent with consuming programs is called consumer.
The capacity of P colony with senders and consumers must be even number.

The initial configuration of a P colony is the (n + 1)-tuple (o1, . . . , on, vE),
with symbols o1, . . . , on, vE as in Definition 1. In general, the configuration of the
P colony Π is defined as (n + 1)-tuple (w1, . . . , wn, wE), where wi represents the
multiset of objects inside i-th agent, |wi| = c, 1 ≤ i ≤ n, and wE ∈ (Σ − {e})∗ is
the multiset of objects different from e placed in the environment.

At each step of the (parallel) computation every agent tries to find one of its
programs to apply. If the number of applicable programs is higher than one, the
agent non-deterministically chooses one. At each step of computation, the set of
active agents executing a program must be maximal, i.e., no further agent can be
added to it.

By applying programs, the P colony passes from one configuration to another
configuration. Objects in the environment unaffected by any program in the given
step are rewritten by the 0L scheme DE . A sequence of configurations starting
from the initial configuration is called a computation. A configuration is halting if
the P colony has no applicable program. Each halting computation has associated

Generalized P Colonies with passive environment 155

a result – the number of copies of the final object placed in the environment in
halting configuration.

N (Π) = {|wE |f | (o1, . . . , on, vE)⇒∗ (w1, . . . , wn, wE)},
where (o1, . . . , on, vE) is the initial configuration, (w1, . . . , wn, wE) is the final con-
figuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

Let us denote NEPCOL(i, j, k, u, v, w) the family of the sets computing by
P colonies with at most j ≥ 1 agents with i ≥ 1 objects inside the agent and with
at most k ≥ 1 programs associated with each agent such that:

u = check if the P colony uses rewriting/communication rules with
checking rules

u = no-check if the P colony uses rewriting/communication rules without
checking rules

u = s/c/sc if the P colony contains only sender / only consumer / both
sender and consumer agents

v = pas if the rules of 0L scheme are of type a→ a only,

v = act if the set of rules of 0L scheme contains at least one rule of
another type than a→ a,

w = ini if the environment or agents contain initially objects different
from e, otherwise w is omitted,

If a numerical parameter is unbounded, we denote it by a ∗.
In [5] the authors deal with P colonies with senders and consumers with “pas-

sive” environment, they show that

NEPCOL(2, 3, ∗, sc, pas) = N·RE.

In [1] there are results of P colonies with “active” environment:

NEPCOL(2, 2, ∗, c, act, ini) = N·RE

NEPCOL(2, 2, ∗, sc, pas, ini) ⊇ N·RMpb.

Other results are shown for P colonies with “passive” environment and rewrit-
ing/communication rules and with only one object inside the agent in [3]

NEPCOL(1, 4, ∗, check, pas) = N·RE

and in [5]
NEPCOL(1, 6, ∗,no-check, pas) = N·RE.

3 P colonies with senders and consumers

In this section we study computational power of P colonies with two objects inside
the agent - consumer or sender. We extend the previous results reported in [1].

156 L. Ciencialová, L. Cienciala, P. Sośık

Theorem 2. NEPCOL(2, 2, ∗, sc, pas, ini) = N·RE.

Proof. Consider register machine M = (m,H, l0, lh, P). All labels from the set H
are objects in P colony. The content of register r is represented by the number of
copies of objects ar placed in the environment.

Let u be a mapping u : H → {ar | 1 ≤ r ≤ m} ∪ {Li | li ∈ H} defined as

u(li) =

{
ar for li : (ADD(r), lj , lk)
Li for li : (SUB(r), lj , lk)

We construct the P colony Π = (Σ, e, a1, a
w
2 , DE , B1, B2) with:

− Σ = {li, Li, L
1
i , L

2
i ,W

0
i ,W

1
i ,W

2
i , l

0
i , l

1
i | li ∈ H} ∪ {ai | 1 ≤ i ≤ m}∪

∪ {e, C,Q},
− B1 = (l0u(l0), P1),
− B2 = (ee, P2).

At the beginning of computation the agent B1 contains object l0 representing the
label of the initial instruction of M.

An instruction li = (ADD(r), lj , lk) is simulated by agent B1 by using following
programs:

B1 :

1 : 〈li → lju(lj); ar out〉;
2 : 〈li → lku(lk); ar out〉;

The computation is done in the following way: agent B1 (sender) simulates the
addition of one to the content of register r (sending one copy of object ar to the en-
vironment), and it generates the object lj or lk – the label of instruction which will
the simulated register machine M execute next. Simultaneously it “precomputes”
objects for the execution of the next instruction.

An instruction li : (SUB(r), lj , lk) is simulated by the following rules and pro-
grams:

B1 :

3 :
〈
li →W 0

i e, Li out
〉

;
4 :
〈
W 0

i →W 1
i L

1
i , e out

〉
;

5 :
〈
W 1

i →W 2
i L

2
i , L

1
i out

〉
;

6 :
〈
W 2

i → l0j l
0
j , L

2
i out

〉
;

7 :
〈
W 2

i → l0kl
0
k, L

2
i out

〉
;

8 :
〈
l0j → l1je, l

0
j out

〉
;

9 :
〈
l0k → l1ke, l

0
k out

〉
;

10 :
〈
l1j → l2je, e out

〉
;

11 :
〈
l1k → l2ke, e out

〉
;

12 :
〈
l2j → l3je, e out

〉
;

13 :
〈
l2k → l3ke, e out

〉
;

14 :
〈
l3j → lju(lj), e out

〉
;

15 :
〈
l3k → lku(lk), e out

〉
;

B2 :

A : 〈ee→ e;Li in〉;
B : 〈Lie→ Li; ar in〉;
C : 〈Liar → L1

i ;L1
i in〉;

D : 〈Lie→ L2
i ;L2

i in〉;
E : 〈L1

iL
1
i → c; l0j in〉;

F : 〈L1
iL

1
i → q; l0k in〉;

G : 〈L2
iL

2
i → q; l0j in〉;

H : 〈L2
iL

2
i → c; l0k in〉;

I : 〈l0j c→ c;L2
i in〉;

J : 〈l0kc→ c;L1
i in〉;

K : 〈L1
i c→ e; e in〉;

L : 〈L2
i c→ e; e in〉;

M : 〈l0j q → q; e in〉;
N : 〈l0kq → q; e in〉;
O : 〈qe→ q; e in〉;

Generalized P Colonies with passive environment 157

If there are objects li (the label of SUB-instruction) and Li inside the agent
B1, the agent sends object Li (using the rule labelled 3) to the environment. This
is the message for the agent B2 to try to consume one copy of object ar from the
environment (try to subtract one from the content of register r.)

If the agent B2 is successful (using the program labelled B), then the second
agent consumes L1

i . If there is no ar in the environment, the agent has to wait one
step and then it consumes object L2

i .
The agent B1 generates object l0j or l0k, non-deterministically choosing the

instruction to be simulated next (program 6 or 7). If the non-deterministic choice
was wrong (the agent generates l0j and register r was empty or the agent generates

l0k and the register was nonempty), the agent B2 would use program labelled O
and the computation never halts.

If the register r stores nonzero value:

B1 B2 Env P1 P2

1. liLi ee axrw 3 −
2. W 0

i e ee Lia
x
rw 4 A

3. W 1
i L

1
i Lie axrw 5 B

4. W 2
i L

2
i Liar L1

i a
x−1
r w 6 or 7 C

5. l0j l
0
j L1

iL
1
i L2

i a
x−1
r w 8 −

6. l1je L1
iL

1
i l

0
jL

2
i a

x−1
r w 10 E

7. l2je cl0j L2
i a

x−1
r w 12 I

8. l3je cL2
i ax−1r w 14 L

9. lju(lj) ee ax−1r w ? −

B1 B2 Env P1 P2

1. liLi ee axrw 3 −
2. W 0

i e ee Lia
x
rw 4 A

3. W 1
i L

1
i Lie axrw 5 B

4. W 2
i L

2
i Liar L1

i a
x−1
r w 7 or 6 C

5. l0kl
0
k L1

iL
1
i L2

i a
x−1
r w 9 −

6. l1ke L1
iL

1
i l

0
kL

2
i a

x−1
r w 11 E

7. l2ke ql0k L2
i a

x−1
r w 13 I

8. l3ke qe ax−1r w 15 O

9. lku(lk) qe ax−1r w ? O

If the register r stores zero:

B1 B2 Env P1 P2

1. liLi ee w 3 −
2. W 0

i e ee Liw 4 A

3. W 1
i L

1
i Lie w 5 −

4. W 2
i L

2
i Lie L1

iw 6 or 7 −
5. l0j l

0
j Lie L1

iL
2
iw 8 D

6. l1je L2
iL

2
i l0jL

1
iw 10 G

7. l2je ql0j L1
iw 12 M

8. l3je qe L1
iw 14 O

9. lju(lj) qe L1
iw ? O

B1 B2 Env P1 P2

1. liLi ee w 3 −
2. W 0

i e ee Liw 4 A

3. W 1
i L

1
i Lie w 5 −

4. W 2
i L

2
i Lie L1

iw 7 or 6 −
5. l0kl

0
k Lie L2

iL
1
iw 9 D

6. l1ke L2
iL

2
i l0kL

1
iw 11 H

7. l2ke cl0k L1
iw 13 J

8. l3ke cL1
i w 15 K

9. lku(lk) ee w ? −

No program is needed in P1 ∪ P2 to simulate the instruction lh :HALT. The
P colony Π starts its computation with object l0 in the environment and it sim-
ulates the instruction labelled l0. By the programs it places and deletes from the
environment the objects ar and it halts its computation only after object lh ap-
pears in the environment. The result of computation is the number of copies of

158 L. Ciencialová, L. Cienciala, P. Sośık

object a1 placed in the environment at the end of computation. No other halting
computation can be executed in the P colony.

4 P colonies with rewriting/communication rules

In this section we deal with P colonies with passive environment and with one
object inside each agent. We prove that such a P colony with three agents can
generate every recursively enumerable set of natural numbers.

Theorem 3. NEPCOL(1, 3, ∗,no-check, pas, ini) = N·RE.

Proof. Let us consider register machine M = (m,H, l0, lh, P). For all labels from
the set H we construct corresponding objects in P colony Π. The content of
register r will be represented by the number of copies of objects ar placed in the
environment.

We construct the P colony Π = (Σ, e, a1, d,DE , B1, B2, B3) with:

− Σ = {li, l′i, l′′i , li, li, li, l1i , l2i , l3i , l4i ,Mi,M
1
i ,M

2
i ,M

3
i ,M

4
i , Ni, N

1
i , N

2
i , N

3
i ,

N4
i | li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, f, g},

− B1 = (l0, P1),
− B2 = (d, P2),
− B3 = (e, P3).
The object l0 corresponds to the label of the first instruction executed by the

register machine.
The instruction li : (ADD(r), lj , lk) will be simulated by the agents B1 and B2

by using following programs:
B1 :

1 : 〈li → l′i〉 ; 6 :
〈
l′′i → e

〉
;

2 : 〈l′i ↔ e〉 ; 7 :
〈
l′′′i → livi

〉
;

3 :
〈
e→ l′′i

〉
; 8 :

〈
livi → lvi

〉
;

4 :
〈
l′′i → l′′i

〉
; 9 : 〈lvi → lj〉 ;

5 :
〈
l′′i ↔ l′′′i

〉
; 10 : 〈lvi → lk〉 ;

B2 :

A : 〈d↔ l′i〉;
B : 〈l′i → l′′′i 〉;
C : 〈l′′′i ↔ e〉;
D : 〈e↔ l′′i 〉;
E : 〈l′′i → ar〉;
F : 〈ar ↔ d〉;

The simulation of ADD-instruction starts by rewriting the object li to l′i by
the first agent. The agent B2 consumes the object l′i, changes it to l′′′i and sends it
to the environment. The agentB1 rewrites the object e to some l′′j , for lj ∈ H. If this
l′′j has the same index as l′′′i placed in the environment (i.e., i = j), the computation
passes to the next phase. If i 6= j, the agent B1 tries to generate another l′′j . When
the computation gets over this checking step, agent B2 generates one copy of object
ar and places it to the environment (adding 1 to the content of register i). Then
agent B1 non-deterministically chooses to generate object lj or lk.

The instruction li : (SUB(r), lj , lk) is simulated by using the following rules
and programs:

Generalized P Colonies with passive environment 159

B1 :

11 : 〈li → l′i〉; 15 : 〈l′′i → l′′i 〉; 19 : 〈livi →Mi〉; 23 : 〈Li ↔ d〉;
12 : 〈l′i ↔ e〉; 16 : 〈l′′i ↔ l′′′i 〉; 20 : 〈Mi ↔ d〉; 24 : 〈d↔ L2

i 〉;
13 : 〈e→ l′′i 〉; 17 : 〈l′′i → e〉; 21 : 〈d↔ Li〉; 25 : 〈L2

i → lj〉;
14 : 〈l′′i → l′′i 〉; 18 : 〈l′′′i → livi 〉; 22 : 〈Li → Li〉; 26 : 〈d↔ L3

i 〉;
27 : 〈L3

i → lk〉;
B2 :

G : 〈d↔ l′i〉; K : 〈l′′i → Li〉; N : 〈ar → h〉; Q : 〈L2
i ↔ d〉;

H : 〈l′i → l′′′i 〉; L : 〈Li ↔ ar〉; O : 〈h↔ Li〉; R : 〈Mi → Ni〉;
I : 〈l′′′i ↔ e〉; M : 〈Li ↔Mi〉; P : 〈Li → L2

i 〉; S : 〈Ni ↔ d〉;
J : 〈e↔ l′′i 〉;

B3 :

A′ : 〈e↔ Ni〉; C ′ : 〈L3
i ↔ Li〉; E′ : 〈e↔ h〉; G′ : 〈y ↔Mi〉;

B′ : 〈Ni → L3
i 〉; D′ : 〈Li → e〉; F ′ : 〈h→ y〉; H ′ : 〈Mi → e〉;

The simulation starts by generating the objects l′′i , l
′′′
i in the same way as in

the addition part described above. Then the agent B2 simulates subtraction (if
the subtracted register is nonzero). If there was some ar in the environment, the
agent generates object L2

i . This object agent B1 can rewrite to lj). If the register
r was empty, the agent B2 generates object Ni and this object can be rewritten
by agent B3 to object L3

i . Finally, agent B1 can rewrite object L3
i to lk.

160 L. Ciencialová, L. Cienciala, P. Sośık

If the register r stores nonzero value:

B1 B2 B3 Env P1 P2 P3

1. li d e daxrw 11 − −
2. l′i d e daxrw 12 − −
3. e d e l′ida

x
rw 13 G −

4. l′′i l′i e ddaxrw 14 H −
5. l′′i l′′′i e ddaxrw 15 I −
6. l′′i e e l′′′i dda

x
rw 16 − −

7. l′′′i e e l′′i dda
x
rw 18 J −

8. livi l′′′i e ddaxrw 19 K −
9. Mi Li e ddaxrw 20 L −
10. d ar e MiLida

x−1
r w 21 N −

11. Li h e Midda
x−1
r w 22 − −

12. Li h e Midda
x−1
r w 23 − −

13. d h e LiMida
x−1
r w − O −

14. d Li e hMida
x−1
r w − P E′

15. d L2
i h Mida

x−1
r w − Q F ′

16. d d x L2
iMia

x−1
r w 24 − G′

17. L2
i d Mi dyax−1r w 25 − H ′

18. lj d e dyax−1r w ? − −

Generalized P Colonies with passive environment 161

If the register r stores value zero:

B1 B2 B3 Env P1 P2 P3

1. li d e dw 11 − −
2. l′i d e dw 12 − −
3. e d e l′idw 13 G −
4. l′′i l′i e ddw 14 H −
5. l′′i l′′′i e ddw 15 I −
6. l′′i e e l′′′i ddw 16 − −
7. l′′′i e e l′′i ddw 18 J −
8. livi l′′′i e ddw 19 K −
9. Mi Li e ddw 20 − −
10. d Li e Midw − M −
11. d Mi e Liddw 21 R −
12. Li Ni e ddw 22 S −
13. Li d e Nidw 23 − A′

14. d d Ni Liw − − B′

15. d d L3
i Liw − − C ′

16. d d Li L3
iw 26 − D′

17. L3
i d e dw 27 − −

18. lk d e dw ? − −
No program is needed in P1 ∪ P2 ∪ P3 to simulate the instruction lh :HALT.

When lh appears, the computation halts since no agent can execute a program.
The result is the number of objects a1 placed in the environment and it corresponds
to the result of a successful computation of the register machine.

5 Conclusions

In this paper we presented the results obtained during the research of P colonies
with passive environment. We have shown that P colonies with with one consumer
and one sender agent can generate all sets of natural numbers computable by
register machines.

Analogously, if we place three agents with one object inside each of them
and with no-checking rewriting/communication programs into the passive envi-
ronment, the obtained P colony is again computationally complete in the Turing
sense.

Acknowledgments.

This work was supported by The Ministry of Education, Youth and Sports from the
National Programme of Sustainability (NPU II) project IT4Innovations excellence

162 L. Ciencialová, L. Cienciala, P. Sośık

in science - LQ1602, and by the Silesian University in Opava under the Student
Funding Scheme, project SGS/13/2016.

References

1. L. Cienciala and L. Ciencialová. Eco-P colonies. In G. Păun, M. Pérez-Jiménez,
and A. Riscos-Núñez, editors, Pre-Proceedings of the 10th Workshop on Membrane
Computing, Curtea de Arges, Romania, pages 201–209, 2009.

2. L. Cienciala and L. Ciencialová. P colonies and their extensions. In J. Kelemen and
A. Kelemenová, editors, Computation, Cooperation, and Life – Essays Dedicated to
Gheorghe Paun on the Occasion of His 60th Birthday, volume 6610 of Lecture Notes
in Computer Science, pages 158–169, Berlin Heidelberg, 2011. Springer-Verlag.

3. L. Cienciala, L. Ciencialová, and A. Kelemenová. On the number of agents in
P colonies. In Membrane Computing, volume 4860 of LNCS, pages 193–208. Springer,
2007.

4. L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú, A. Kelemenová, and V. György. On
very simple P colonies. In Proceeding of The Seventh Brainstorming Week on Mem-
brane Computing, volume 1, pages 97–108, 2009.

5. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, and G. Vaszil. Variants of P colonies
with very simple cell structure. Int. J. of Computers, Communications & Control,
3(IV):224–233, 2009.

6. R. Freund and M. Oswald. P colonies working in the maximally parallel and in the
sequential mode. In Proceedings - Seventh International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2005, pages 419–426, Sept
2005.

7. J. Kelemen and A. Kelemenová. A grammar-theoretic treatment of multiagent sys-
tems. Cybern. Syst., 23(6):621–633, Nov. 1992.

8. J. Kelemen and A. Kelemenová. On P colonies, a biochemically inspired model of
computation. Proc. of the 6th International Symposium of Hungarian Researchers
on Computational Intelligence, pages 40–56, 2005.

9. J. Kelemen, A. Kelemenová, and G. Păun. Preview of P colonies: A biochemically
inspired computing model. In Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis of Living Systems (Alife IX),
pages 82–86. Boston, Mass, 2004.

10. M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

11. G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2010.

