
Complexity of Simulating R Systems by
P Systems

Artiom Alhazov1, Bogdan Aman2, Rudolf Freund3, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

2 Romanian Academy, Institute of Computer Science, Iaşi, Romania
Blvd. Carol I no.8, 700505 Iaşi, Romania
E-mail: bogdan.aman@gmail.com

3 Faculty of Informatics, TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria
E-mail: rudi@emcc.at

4 Université Paris Est, France
E-mail: sergiu.ivanov@u-pec.fr

Summary. We show multiple ways to simulate R systems by non-cooperative P systems
with atomic control by promoters and/or inhibitors, or with matter-antimatter annihi-
lation rules, with a slowdown by a factor of constant. The descriptional complexity is
also linear with respect to that of simulated R system. All these constants depend on
how general the model of R systems is, as well as on the chosen control ingredients of
P systems. Special attention is paid to the differences in the mode of rule application in
these models.

1 Introduction. Differences between P and R

Membrane systems, also called P systems (non-distributed, with symbol-objects)
are a formal model of (possibly controlled) multiset rewriting [8]. Reaction sys-
tems, also called R systems, is also a formal rewriting-like model of set evolution
introduced in [6], see also a recent survey [5]. Both P systems and R systems are
inspired by the functioning of the living cells. It is a natural task to compare R
systems, which was introduced later, to P systems, by simulation. The application
of a successful solution would be possibilities to use membrane computing tools
and perspective for studying reaction systems. Some research comparing them was
done in [10], more exactly, this paper considers P systems with no-persistence as-
pect of R systems, from the viewpoint of the computational power. We, however,
first focus on comparing standard R systems to standard P systems by simulat-
ing the former with latter, and then revisit the direction of bringing aspects of R
systems to the P systems model, verifying how closer this can make the models.

2 A. Alhazov, B. Aman, R. Freund, S. Ivanov

We start the explanation of the simplest case – triples of single objects. Rules
in R systems have form (a, b, c), which loosely correspond to a→ c|¬b in P systems,
i.e., the first element is the reactant (in this paper we may also call it the left side)
the second element is the product (in this paper we may also call it the right side),
and the third element is the inhibitor, with the following differences in the mode
of application.

The first difference is that the configuration is a set, not a multiset, and thus
simultaneously producing the same symbol by multiple rules yields a single object.
P systems with sets of objects instead of multisets of objects have been considered
in [1], where they have been shown to be universal in the distributed P systems,
both for the transitional model, and for the model with active membranes. How-
ever, in [1] the goal of showing universality was reached without actually using
this first aspect (automatic reduction of multiple copies of identical object into
one object), but rather by avoiding to ever need multiple copies of the same object
(in the same region). This aspect, combined with the one below, are called the
threshold principle in the literature. However, it is also meaningful to view them
individually.

The second difference is that, if multiple rules with the same a in the left side
exists, (if a is present in the configuration, for all of these rules where the inhibitors
are not present in the configuration) all these rules are applied, simultaneously
producing the corresponding products. (This comes from an inspiration that either
the abundance of objects a is sufficient, or the replication and, possibly, proper
control take place to guarantee the application of all such rules.) This second
aspect is standard, e.g., in H systems [11] (together with the first one). The second
aspect has been already considered also in P systems area, see, e.g., [3].

The third difference is that the objects are not persistent. This means that, even
if an object does not undergo any rule, it still disappears from the configuration
of the next step, unless, of course, it is produced by some rule. This third aspect
is standard in time-varying distributed H systems [9, 12], (together with the first
and second ones), and they relate especially naturally to TVDH1 systems, see [7].

In the general case, the elements of the triples describing the rules of R systems
are sets of objects. Hence, the meaning of the triple (A,B,C) is: the joint presence
of objects in A, in the case when all objects in B are absent, leads to production
of objects in C, and, moreover, the subsequent configuration is precisely equal to
the union of the right sides of applicable rules (possibly united with the input
context).

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing, see [13] for a comprehensive introduction and the web-
page [15] of P systems.

The notation (ncoo, prok,l + inhk′,l′) describes the possible class of rules: non-
cooperative evolution with at most k promoters of weight at most l and at most k′

Complexity of Simulating R Systems by P Systems 3

inhibitors of weight at most l′, see [4, 14]; the sign “+” here means both promoters
and inhibitors are allowed to be used in the same rule, if it is not the case, we
write a comma instead of a plus sign.

The notation (ncoo, antim/pri) stands for non-cooperative evolution rules and
matter-antimatter annihilation rules, with weak priority of all annihilation rules
assumed over all other rules (the most studied variant of P systems with antimat-
ter), see [2].

3 Using promoters and inhibitors

In fact, in terms of intuition from P systems, A is more similar to a promoter than
a reactant (and there is no difference between a set of distinct atomic promoters
and a corresponding one higher-weight promoter), and B corresponds to a set of
atomic inhibitors (if B were a single higher-weight inhibitor, it would disable the
rule when all its elements are present, not just any of them, which would not
correspond to the correct definition). However, within the traditional P systems
mode, we would additionally need to restrict the rule application to only once per
step.

3.1 Using powerful rules

Hence, an arbitrary general R system with alphabet V of k symbols and rules
(Ai, Bi, Ci), 1 ≤ i ≤ n could be written as the following P systems (non-
cooperative, but with powerful promoters and inhibitors), having additional ob-
jects I1 and di for all 1 ≤ i ≤ n:

Π0 = (O,µ = []
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ I1,
R1 = {di →

∏
c∈Ci

c|Ai,{¬b|b∈Bi}, di → λ|¬Ai
, di → λ|b | b ∈ Bi, 1 ≤ i ≤ n}

∪ {a→ λ | a ∈ V } ∪ {I1 → I1
∏

1≤i≤n
di}.

This combination of features only takes one step to simulate a step of P systems,
n+ k + 1 symbols and 2n+ k + 1 +

∑
1≤i≤n |Bi| rules. Note that the first rule in

the description of R1 uses a higher-weight promoter together with a set of atomic
inhibitors. Also note that in a special case when the rules of the simulated R
system are triples of single symbols, the control used becomes atomic promoters
together with atomic inhibitors.

In the rest of the paper we show how to achieve the same goal with P systems
having more restricted rules, also discussing how to produce only one copy of
symbols present in the simulated R system. We use promoters and inhibitors,
then consider only one kind of these features, then we replace them by matter-
antimatter annihilation rules, and finally, we discuss how much the problem is
simplified if some of the aspects of R systems are assumed by the P systems
model.

4 A. Alhazov, B. Aman, R. Freund, S. Ivanov

3.2 Triples of symbols

We start with the simplest case - when the elements of triples describing the rules
are single elements. Consider such an R system S with alphabet V and rules
{(ai, bi, ci) | 1 ≤ i ≤ n}. We construct a P system Π1 simulating S, where the
initial configuration w1 matches the initial configuration of S, and the following
rules, the simulation taking only 2 steps:

Π1 = (O,µ = []
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n},
R1 = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {di → ci|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }.

The simulation task here is simple for two reasons: we took the simpler model
of R systems, and using promoters besides inhibitors makes it possible to remove
unneeded objects easily. We also note that the number of objects and rules can be
decreased by not producing a′ when a participates in the left side of any rule, and
using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter and inhibitor.

If |V | = k, then |O| = 2k + n and |R1| = 2k + 2n. Moreover, the optimization
described in the previous paragraph decreases both |O| and |R1| by the number
of symbols appearing on the left side of some rule of S.

The multiplicities of symbols may grow. When the same symbol is produced
simultaneously by multiple rules, the multiplicative effect happens. It is, however,
fairly easy to reset the multiplicities of objects in V to one, at a cost of one more
step, 2k + 3 additional symbols in O and 3k + 3 additional rules, also using an
additional object I1 in the initial configuration:

Π2 = (O,µ = []
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n},∪{I1, I2, I3}
Ri = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2},

Rii = {di → (ci)
′′|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n}

∪ {a′ → λ | a ∈ V } ∪ {I2 → I3
∏

a∈V
a},

Riii = {a→ a|a′′ , a→ λ|¬a′′ , a′′ → λ | a ∈ V } ∪ {I3 → I1}.

3.3 Triples of sets

Now the task is more complicated. While generating a set Ci instead of symbol
ci is straightforward, instead of verifying that ai is present and bi is absent, rule
applicability is defined as presence of all symbols from set Ai and absence of all
symbols from set Bi. We recall that our task is a constant-time solution. Notice

Complexity of Simulating R Systems by P Systems 5

that the rule is not applicable if and only if some symbol from Ai is absent or
some symbol from Bi is present.

Consider such an R system S with alphabet V and rules {(Ai, Bi, Ci) | 1 ≤
i ≤ n}. We construct a P system Π3 simulating S, where the initial configura-
tion matches the initial configuration of S, plus an additional object I1, and the
following rules, the simulation taking only 3 steps:

Π3 = (O,µ = []
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → d1 · · · dnI2}
∪ {di → λ|¬a, di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3}
∪ {di →

∏
c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {a→ λ|I3 | a ∈ V } ∪ {I3 → I1}.

If |V | = k, then |O| = k + n + 3 and |R1| = k + n + 3 +
∑

1≤i≤k(|Ai| + |Bi|).
Notice also that, besides objects from V , no object ever appears in multiple copies.
As for each object from V , its multiplicity represents the number of rules in S
that has produced it in the last simulated step. Unlike the construction from the
previous section, the multiplicative effect does not carry over to the next step of
computation of S, since each object from V (except the instances in the starting
configuration) is produced from some object di, produced in one copy, effectively
resetting the multiplicities of the previous step. However, producing objects in V
in a single copy requires additional overhead. Similarly to obtaining Π2 from Π1,
we can obtain Π4 from Π3, at the price of one more step, 2k+1 additional symbols
in O and 3k + 1 additional rules. We skip the details.

3.4 Using only promoters

It should not be any surprise that (in the maximally parallel mode) the effect of in-
hibitors can be obtained by non-cooperative rules with promoters only. Informally,
to verify that some object b is absent, we first check if b is present by some rule
a→ a′|b, and it suffices to check in the next step whether a is unchanged. The re-
verse, i.e. replacing promoters with inhibitors, is even easier to see, since promoting
a rule by b can be modeled by inhibiting a rule by some immediately-erased object
b′, creation of which is inhibited by b. We still think it is interesting to consider
the use of only promoters or only inhibitors, for two reasons. First, the reduction
of promoters/inhibitors in the general case of P systems is too complicated, and
second, we would like to explore how little overhead in terms of slowdown and
descriptional complexity would suffice to achieve our task.

First, as an exercise, we construct a P system for an R system S with triples
of symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial con-
figuration of S, plus an additional object I1.

6 A. Alhazov, B. Aman, R. Freund, S. Ivanov

Π5 = (O,µ = []
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3} ∪ {di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }

∪ {I3 → I1} ∪ {di → ci|I3 , | 1 ≤ i ≤ n}.

This construction is obtained from the first one with promoters and inhibitors,
implementing the group of rules with inhibitors (contrasted with existing rules
with the same objects as promoters) in the next step, promoted by “timer” I3.
We also note, similarly to Π1, that the number of objects and rules can be de-
creased by not producing a′ when a participates in the left side of any rule, and
using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter. Once again, this simulation
has multiplicative effect, and the multiplicities can be reset to one, at the price of
one more step, 2k+ 1 additional symbols in O and 3k+ 1 additional rules. Let us
call the obtained system Π6. We omit the details, only mentioning that instead
of rules a→ λ|¬a′′ as in Π2, we can erase these symbols in the next step by rules
a→ λ|I1 .

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional objects
I1 and a′ for each a ∈ V .

Π7 = (O,µ = []
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
Ri = {I1 → d1 · · · dnI2} ∪ {a′ → λ|a | a ∈ V },
Rii = {di → λ|a′ , di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {a→ λ|I2 , a′ → λ|I2 | a ∈ V } ∪ {I2 → I3},

Riii = {di →
∏

c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {I3 → I1
∏

a∈V
a′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects a′ is to survive for one step if and only if
the corresponding object a is present, to be used as a promoter instead of inhibitor
a; objects a′ are recreated in the last step, for the next simulation cycle. Moreover,
as now objects from V are no longer used as inhibitors, they can be removed one
step earlier.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 2k + n + 3 and |R1| = 3 + 3k + n +

∑
1≤i≤n(|Ai| + |Bi|). Of course,

alternatively, objects a′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. We again
comment that, although this construction has no multiplicative effect, the number

Complexity of Simulating R Systems by P Systems 7

of copies of a symbol in V produced in the end of the simulation equals the number
of rules in S that have produced this symbol in the last step. Producing exactly
one copy needs one more step, 2k+1 additional symbols in O and 3k+1 additional
rules. We call this system Π8 and give no more details, since obtaining it from Π7

is exactly like obtaining Π6 from Π5.

3.5 Using only inhibitors

First, as an exercise, we construct a P system for an R system S with triples of
symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial config-
uration of S, plus an additional object I1.

Π9 = (O,µ = []
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I1} ∪ {di → ci|¬(bi)′ | 1 ≤ i ≤ n}
∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 | a ∈ V }.

This construction is obtained from the one with promoters and inhibitors,
implementing the group of rules with promoters (contrasted with existing rules
with the same objects as inhibitors) in the next step, inhibited by “timer” I2.
Moreover, removing objects a′ is delayed for one step, to make sure that the rules
inhibited by them in the second step are not applied in the third step. Notice also
that the simulation of a computation step of S only takes two steps of computation
in Π; the third step of computation cleaning objects di and a′ overlaps with the
first step of simulation of the next step in S. However, this produces no interference,
since sub-alphabets {di | 1 ≤ i ≤ n} ∪ {a′ | a ∈ V } and {I1} ∪ V are disjoint. We
also note, similarly to Π1, that the number of objects and rules can be decreased
by not producing a′ when a participates in the left side of any rule, and using
dmin{j|1≤j≤n, aj=b} instead of b′ as promoter.

The problem of multiplicative effect can be solved in the usual way, resetting
multiplicities to one: produce one copy of each candidate-object, and erase the
objects where the multiplicity is zero. However, with inhibitors it takes longer: one
additional step to erase objects a when the corresponding object a′′ is absent, and
one further step to rewrite a into a.

Π10 = (O,µ = []
1
, w1, R1) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3
∏

a∈V
a} ∪ {di → (ci)

′′|¬(bi)′ | 1 ≤ i ≤ n}

8 A. Alhazov, B. Aman, R. Freund, S. Ivanov

∪ {I3 → I4} ∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 , a→ λ|¬a′′ | a ∈ V }
∪ {I4 → I1} ∪ {a→ a|¬I3 , a′′ → λ|¬I3 | a ∈ V }.

Hence, the total additional price for resetting the multiplicities of elements of
V to one using only inhibitors is 2 more steps, 2k+2 additional objects, and 3k+2
rules.

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional objects
I1, J and b′ for each b ∈ V .

Π11 = (O,µ = []1, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {b′, b′′ | b ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, J},
Ri = {I1 → d1 · · · dnI2J} ∪ {b′ → b′′|¬b | b ∈ V } ∪ {J → λ},
Rii = {di → λ|¬a, di → λ|¬b′′ | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {b′ → λ|¬I1 | b ∈ V } ∪ {I2 → I3, J → λ},

Riii = {di →
∏

c∈Ci

c|¬I2 | 1 ≤ i ≤ n}

∪ {a→ λ|¬J | a ∈ V } ∪ {b′′ → λ|¬I2 | b ∈ V } ∪ {I3 → I1J
∏

b∈V
b′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects b′ is to change into b′′ if and only if the
corresponding object b is present, so b′′ can be used as an inhibitor instead of
promoter b; objects b′ are recreated in the last step, for the next simulation cycle.
Moreover, to make sure the rules erasing di in the absence of a are not applied
in the third step, objects a can only be removed in the third step. This is why
an additional object J is present in each of the first two steps of the simulation,
inhibiting premature removal of objects a. The rule erasing J is written both in
Ri and Rii only to highlight that it is applied both in the first and in the second
step.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 3k + n + 4 and |R1| = 4 + 4k + n +

∑
1≤i≤n(|Ai| + |Bi|). Of course,

alternatively, objects b′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. Resetting to
one the multiplicities of objects in V can be done exactly how Π10 was constructed
from Π9. Hence, the new system Π12 will have, compared to Π11, 2 more steps,
2k + 2 additional objects, and 3k + 2 rules.

Complexity of Simulating R Systems by P Systems 9

4 Using antimatter

This section is devoted to a different control mechanism: matter-antimatter anni-
hilation rules are used instead of promoters and/or inhibitors. The weak priority
of annihilation rules over non-cooperative rules is assumed, which is the most com-
mon variant of the antimatter model. First, we notice that erasing with a promoter,
say, d→ λ|b, in the case the promoting object b is erased without being used any-
where else, and when the number of copies of d is bounded, can be modeled by
antimatter as follows:

• replace the promoting object b by anti-object d− of the promoted object, in
sufficient copies to erase all possible copies of promoted object d,

• add erasing rules for this anti-object d− to remove the copies of the anti-objects
which did not annihilate.

We now construct the P system equivalent to Π1 using antimatter.

Π13 = (O = V ∪ {di, d−i | 1 ≤ i ≤ n}, µ = []
1
, w1, R1) where

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {did−i → λ, di → ci, d
−
i → λ | 1 ≤ i ≤ n}.

In each rule of the first group of R1, it is enough to produce a single copy of
d−i , because at most one di may be generated by the system in the same step, since
the rule uniquely determines its left side. The simulation only takes two steps, and
uses k + 2n objects and k + 3n rules.

This construction, too, has multiplicative effect. Resetting multiplicities to one
can be done by two-step annihilation. Say, we got some number (possibly zero) of
objects c′′, and we only want to know whether this number is positive. Then we
produce one copy of (c′′)− and rewrite it to c′ if it does not immediately annihilate.
One step later, we produce one copy of (c′)−, and rewrite it to c if it does not
immediately annihilate. As a result, c will appear if and only if (c′)− did not
annihilate, i.e., c′ did not appear one step before. But this happened if and only
if (c′′)− was annihilated, i.e., there was at least one copy of c′′ two steps before.
Performing this routine to objects in V of Π13, we obtain the following system,
using an additional starting object I1:

Π14 = (O,µ = []
1
, w1, R1) where

O = V ∪ {a′, a′′, (a′)−, (a′′)− | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2}

∪ {did−i → λ, di → (ci)
′′, d−i → λ | 1 ≤ i ≤ n} ∪ {I2 → I3

∏
a∈V

(a′′)−}

∪ {a′′(a′′)− → λ, (a′′)− → a′ | a ∈ V } ∪ {I3 → I4}
∪ {a′(a′)− → λ, (a′)− → a | a ∈ V } ∪ {I4 → I1}.

10 A. Alhazov, B. Aman, R. Freund, S. Ivanov

As you can see, resetting multiplicities with antimatter has a price of two more
steps, 4k + 4 additional objects and 4k + 4 additional rules.

Now consider the general case of simulating an R system S with alphabet V
and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the initial
configuration which matches the initial configuration of S, plus additional object
I1.

Π15 = (O,µ = []
1
, w1, R1 = Ri ∪Rii ∪Riii where

O = V ∪ {a′, (a′)−, a′′, | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3},

Ri = {I1 → I2d1 · · · dn
∏

a∈V
a′} ∪ {a→ (a′)−a′′ | a ∈ V },

Rii = {a′(a′)− → λ, a′ → d−i , b
′′ → d−i , (a′)− → λ

| a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3},
Riii = {did−i → λ, di →

∏
c∈Ci

c, d−i → λ | 1 ≤ i ≤ n} ∪ {I3 → I1}.

Symbols from Ci are produced from di if and only if it is not annihilated, i.e.,
neither a′ nor b′′ should produce d−i for any a ∈ Ai, b ∈ Bi. Since a′ is annihilated
if and only if a is present, and b′′ is not produced if and only if b is absent, the
simulation of an application of rule i of the R system happens if and only if all
symbols from the first set are present and all symbols from the second set are
absent. The simulation takes 3 steps, using the alphabet of 4k + 2n + 3 symbols
and the set of 3k + 3n+ 3 +

∑
1≤i≤n(|Ai|+ |Bi|) rules.

This construction produces each symbol in multiplicity equal to the number
of rules of S that produced it, not carrying the multiplicative effect to the next
step. If needed, resetting multiplicities can be done costing two more steps, 4k+ 2
additional objects and 4k+2 additional rules. We call this system Π16, and provide
no more details since it is obtained from Π15 exactly as Π14 is obtained from Π13.

5 Non-standard P systems

Some difficulty of simulation of R systems by P systems lie in the difference of
their standard derivation modes. We would like to discuss how varying this may
affect the problem.

First, if we consider P systems with sets instead of multisets, where produc-
tion of a symbol multiple times still yields a single copy of the result, then all
constructions in this paper still hold literally, i.e., no changes in the description
of these P systems is needed. However, some things may become simpler, e.g., in
this case resetting multiplicities to one is done by the model, and does not require
additional time, symbol and rule complexity.

We note that, in a non-distributed case, P systems with sets of objects are no
longer universal, since the number of possible configuration is bounded by two to

Complexity of Simulating R Systems by P Systems 11

the power of the cardinality of the alphabet. However, universality is not needed
to simulate R systems (which has also been shown in the case of deterministic P
systems with promoters and/or inhibitors).

Second, if we consider P systems which deterministically apply all individually
applicable rules, even with overlapping left sides (i.e., competing for resources),
then of course the existing solutions still literally hold, but in some cases there are
much easier ways: we would have no need to explicitly produce multiple objects
from one. For instance, the constructions in this paper usually involve production
of rule labels di, either from the corresponding reactant ai, or from some “timer”
object Ij , and then have different rules processing these label objects. In this “auto-
replication” mode, these various processing rules could be applied directly to the
corresponding original object ai or Ij , the replication being done by the model
itself. This would definitely simplify the simulation. Let us refer to this aspect as
auto-replication. For example, the set of rules of system Π1 can be simplified to
the following:

{ai → ci|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V },

i.e., just one step, no additional objects and k additional rules. The problem with
resetting the multiplicities is also simpler:

Π = (O,µ = []
1
, w1, R1 where

O = V ∪ {a′ | a ∈ V } ∪ {I1, I2},
R1 = {I1 → I2} ∪ {ai → (ci)

′|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V }
∪ {I2 → I1} ∪ {I2 → c|c′} ∪ {c′ → λ | c ∈ V },

i.e., requiring only one more step, k+2 additional symbols and 2k+2 additional
rules (compared to increase of complexity of Π2 over Π1 by one step, 2k+3 symbols
and by 3k + 3 rules).

Third, if we consider P systems where idle objects (i.e., those not consumed
by applied rules) do not contribute to the next configuration, we call this aspect
“no persistence”, then many erasing rules (in particular, all erasing promoted or
inhibited by some “timer” Ij) would no longer be needed, while occasionally some
renaming rules should be added when object was designed to be used later than in
the next step after its production. For instance, in case of no-persistence, all n+k′

erasing rules of Π1 may be removed, leaving just n+ k rules. Similarly, all erasing
rules of Π2 may be removed; hence, the subtask of resetting the multiplicities to
one in this case only needs k + 3 additional rules instead of 3k + 3.

However, testing for presence of some object b by “failing to apply a rule with
inhibitor b and finding the reactant unchanged in the next step” would not work.
The working solution is to use b as an inhibitor in a rule producing some object
b′, and to use b′ as an inhibitor in the next step. Testing for absence by “failing
to apply a rule with a promoter and finding the reactant unchanged in the next

12 A. Alhazov, B. Aman, R. Freund, S. Ivanov

step” would be no longer possible, so the model with promoters only seems to be
considerably weaker in the case without persistence of idle objects.

We would like to note that, in case of P systems with sets and auto-replication,
the aspect of no-persistence can be simulated as follows: add rules a→ λ for each
a ∈ V ; they will make sure that such objects are not carried over to the next step,
in the same time not adding anything to the result (as for productive objects,
erasing them is just another option, which in the auto-replication case neither
grows nor shrinks the set of objects obtained from them). This simulation takes
one step, k objects and n+ k rules.

And, of course, if we consider P systems with all these differences, i.e., with sets,
auto-replication, and without object persistence, then rule (a, b, c) of R systems
becomes identical to rule a→ c|¬b of P systems, while rule (A,B,C) of R systems
becomes identical to rule

∏
a∈A a →

∏
c∈C c|{¬b|b∈B}, so the simulation is trivial,

requiring one step, k objects and n rules of type (ncoo, pro1,∗ + inh∗,1).

6 Conclusions

We recall that although deterministic P systems with promoters and/or inhibitors
are not universal and have subregular characterizations, their power is sufficient
to simulate R systems.

All constructions presented in this paper (except those in previous section)
simulate R systems (in their standard derivation mode) by P systems (in their
standard derivation mode), with the slowdown by a factor of constant, where
the descriptional complexity of the simulating P system is linear with respect
to the descriptional complexity of the simulating P system. The proportionality
constants vary depending on whether R systems are defined as triples of symbols
or as triples of sets of symbols, and on whether promoters, inhibitors or both are
used in P systems. All constructions are deterministic: while the multiset of rules
to be applied to a given configuration may not be unique, the next configuration
is unique. Indeed, in all these constructions, if two rules have the same left side,
then either their applicability is mutually exclusive (one is being promoted and the
other one is being inhibited by the same symbol), or also the right side is the same
(and thus, if there are multiple choices which object would promote or inhibit the
rule, such choice would not influence the result).

Seventeen constructions are presented, see Table 1: 0)(general and simple in
particular) R systems using single higher-weight promoters together with multi-
ple atomic inhibitors, 1)simple R systems using promoters and inhibitors, 2)sim-
ple R systems using promoters and inhibitors and resetting multiplicities to one,
3)general R systems using promoters and inhibitors, 4)general R systems using
promoters and inhibitors and resetting multiplicities to one, 5)simple R systems
using promoters, 6)simple R systems using promoters and resetting multiplicities
to one, 7)general R systems using promoters, 8)general R systems using promoters
and resetting multiplicities to one, 9)simple R systems using inhibitors, 10)simple

Complexity of Simulating R Systems by P Systems 13

P R mult features steps |O| |R1|
Π0 s L (ncoo, pro1,1 + inh1,1) 1 n+ k + 1 3n+ k + 1
Π0 G L (ncoo, pro1,∗ + inh∗,1) 1 n+ k + 1 2n+ k + 1 + T ′

Π1 s M (ncoo, pro1,1, inh1,1) 2 n+ k + k′ 2n+ k + k′

Π2 s 1 (ncoo, pro1,1, inh1,1) 3 n+ 3k + k′ + 3 2n+ 4k + k′ + 3
Π3 G L (ncoo, pro1,1, inh1,1) 3 n+ k + 3 n+ k + 3 + T
Π4 G 1 (ncoo, pro1,1, inh1,1) 4 n+ 3k + 4 n+ 4k + 4 + T

Π5 s M (ncoo, pro1,1) 3 n+ k + k′ + 3 2n+ k + k′ + 3
Π6 s 1 (ncoo, pro1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π7 G L (ncoo, pro1,1) 3 n+ 2k + 3 n+ 3k + 3 + T
Π8 G 1 (ncoo, pro1,1) 4 n+ 4k + 4 n+ 6k + 4 + T

Π9 s M (ncoo, inh1,1) 2 n+ k + k′ + 2 2n+ k + k′ + 2
Π10 s 1 (ncoo, inh1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π11 G L (ncoo, inh1,1) 3 n+ 3k + 4 n+ 4k + 4 + T
Π12 G 1 (ncoo, inh1,1) 5 n+ 5k + 6 n+ 6k + 6 + T

Π13 s M (ncoo, antim/pri) 2 2n+ k 3n+ k
Π14 s 1 (ncoo, antim/pri) 4 2n+ 5k + 4 3n+ 5k + 4
Π15 G L (ncoo, antim/pri) 3 2n+ 4k + 3 3n+ 3k + 3 + T
Π16 G 1 (ncoo, antim/pri) 5 2n+ 8k + 5 3n+ 7k + 5 + T

Table 1. Comparative table of simulation of R systems by P systems

R systems using inhibitors and resetting multiplicities to one, 11)general R systems
using inhibitors, 12)general R systems using inhibitors and resetting multiplicities
to one, 13)simple R systems using antimatter, 14)simple R systems using anti-
matter and resetting multiplicities to one, 15)general R systems using antimatter,
16)general R systems using antimatter and resetting multiplicities to one. The
table below shows the number of steps of simulating P system to simulate one
step of R system, alphabet size and the number of rules in these simulations (n
is the number of rules in S, k is the number of symbols in S, k′ is the number of
symbols that do not appear in the left side of any rule of the simulated system;
by T we denote

∑
1≤i≤k(|Ai| + |Bi|) and by T ′ we denote

∑
1≤i≤k |Bi|). Column

R describes the type of simulated system, where s stands for simple (rules with
triples of symbols) and G stands for general (rules with triples of sets). Column
mult describes the multiplicities of symbols in the simulating P system, where
M stands for multiplicative effect, L stands for last multiplicity, and 1 stands for
multiplicities 0 and 1. Column features describes the kinds of rules used.

Note: in Π6, Π8 and Π9, intermediate objects are removed one step later,
in parallel with the first step of simulation of the next step of evolution of the
simulated R system, but not interfering with it.

Finally, in the previous section we discussed how (qualitatively and quanti-
tatively) adopting some aspects of R systems (such as sets instead of multisets,
auto-replication or no-persistence) into the working model of P systems simplifies
simulation of R systems.

14 A. Alhazov, B. Aman, R. Freund, S. Ivanov

References

1. A. Alhazov. P systems without multiplicities of symbol-objects. Information Pro-
cessing Letters, 100(3):124–129, 2006.

2. A. Alhazov, B. Aman, and R. Freund. P systems with anti-matter. In M. Gheorghe,
G. Rozenberg, A. Salomaa, P. Sośık, and C. Zandron, editors, Membrane Computing
- 15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers, volume 8961 of Lecture Notes in Computer Science,
pages 66–85. Springer, 2014.

3. A. Alhazov, S. Cojocaru, A. Colesnicov, L. Malahova, and M. Petic. A P system for
annotation of Romanian affixes. In A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Ro-
gozhin, G. Rozenberg, and A. Salomaa, editors, Membrane Computing - 14th In-
ternational Conference, CMC 2013, Chişinău, Republic of Moldova, August 20-23,
2013, Revised Selected Papers, volume 8340 of Lecture Notes in Computer Science,
pages 80–87. Springer, 2013.

4. A. Alhazov and R. Freund. Asynchronous and maximally parallel deterministic
controlled non-cooperative P systems characterize NFIN and coNFIN. In E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, and Gy. Vaszil, editors, Membrane
Computing - 13th International Conference, CMC 2012, Budapest, Hungary, August
28-31, 2012, Revised Selected Papers, volume 7762 of Lecture Notes in Computer
Science, pages 101–111. Springer, 2012.

5. R. Brijder, A. Ehrenfeucht, M. G. Main, and G. Rozenberg. A tour of reaction
systems. International Journal of Foundations of Computer Science, 22(7):1499–
1517, 2011.

6. A. Ehrenfeucht and G. Rozenberg. Reaction systems. Fundamenta Informaticae,
75(1):263–280, 2007.

7. M. Margenstern, Yu. Rogozhin, and S. Verlan. Time-varying distributed H systems
with parallel computations: The problem is solved. In J. Chen and J. H. Reif,
editors, DNA Computing, 9th International Workshop on DNA Based Computers,
DNA9, Madison, WI, USA, June 1-3, 2003, revised Papers, volume 2943 of Lecture
Notes in Computer Science, pages 48–53. Springer, 2003.

8. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61:108–143, 1998.

9. Gh. Păun. DNA computing based on splicing: universality results. Theoretical Com-
puter Science, 231(2):275–296, 2000.

10. Gh. Păun and M. J. Pérez-Jiménez. Towards bridging two cell-inspired models: P
systems and R systems. Theoretical Computer Science, 429:258–264, 2012.

11. Gh. Păun, G. Rozenberg, and A. Salomaa. Computing by splicing. Theoretical
Computer Science, 168(2):321–336, 1996.

12. Gh. Păun, G. Rozenberg, and A. Salomaa. DNA Computing - New Computing
Paradigms. Texts in Theoretical Computer Science. An EATCS Series. Springer,
1998.

13. Gh. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA, 2010.

14. D. Sburlan. Further results on P systems with promoters/inhibitors. International
Journal of Foundations of Computer Science, 17(1):205–221, 2006.

15. The P Systems Website. http://ppage.psystems.eu.

