
Automaton-like P Colonies

Luděk Cienciala1, Lucie Ciencialová1, and Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science
and
Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic
{lucie.ciencialova,ludek.cienciala}@fpf.slu.cz

2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

Summary. In this paper we study P colonies where the environment is given as a string.
These variants, called automaton-like P systems or
APCol systems, behave like automata: during functioning, the agents change their own
states and process the symbols of the string. We develop the concept of APCol systems
by introducing the notion of their generating working mode. We then compare the power
of APCol systems working in the generating mode and that of register machines and
context-free matrix grammars with and without appearance checking.

Key words: String processing; P Colonies; computational power

1 Introduction

P colonies are formal models of a computing device combining properties of mem-
brane systems and distributed systems of formal grammars called colonies [16].

In the basic model, the cells or agents are represented by a finite collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to be
inside any cell during the functioning of the system. These objects represent the
current state (contents) of the agents. The rules of the cells are either of the form
a → b, specifying that an internal object a is transformed into an internal object
b, or of the form c ↔ d, specifying that an internal object c is exchanged by an
object d in the environment. After applying these rules in parallel, the state of the
agent will consist of objects b, d. Each agent is associated with a set of programs
composed of such rules.

The agents of a P colony perform a computation by synchronously applying
their programs to the objects representing the state of the agents and objects in the
environment. These systems have been extensively investigated during the years;
for example, it was shown that they are computationally complete computing

106 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

devices even with very restricted size parameters and with other (syntactic or
functioning) restrictions [1, 3, 5, 6, 7, 8, 11, 12].

According to the the basic model, the impact of the environment on the be-
haviour of the P colony is indirect. To describe the situation when the behaviour
of the components of the P colony is influenced by direct impulses coming from the
environment step-by-step, the model was augmented with a string put on an input
tape to be processed by the P colony [4]. These strings correspond to the impulse
sequence coming from the environment. In addition to their rewriting rules and
the rules for communicating with the environment, the agents have so-called tape
rules which are used for reading the next symbol on the input tape. The model,
called a P colony automaton or a PCol automaton, combines properties of stan-
dard finite automata and standard P colonies. It was shown that these variants
of P colonies are able to describe the class of recursively enumerable languages,
taking various working mode into account.

In [2] one step further was made in combining properties of P colonies and
automata. While in the case of PCol automata the behaviour of the system is
influenced both by the string to be processed and the environment consisting of
multisets of symbols, in the case of automaton-like P colonies or APCol systems
the environment is given as a string. The interaction between the agents in the
P colony and the environment is realized by exchanging symbols between the
objects of the agents and the environment (communication rules), and the states
of the agents may change both via communication and evolution; the latter one
is an application of a rewriting rule to an object. The distinguished symbol, e (in
the previous models the environmental symbol) has a special role: whenever it
is introduced in the string by communication, the corresponding input symbol is
erased.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

In this paper, after recalling the model and its accepting working mode, we
introduce its generating working mode. The result of computation depends on the
mode in which the APCol system works.

In the case of accepting mode, a computation is called accepting if and only if
at least one agent is in final state and the string obtained after the computation
is ε, the empty word.

When the APCol system works in the generating mode, then a computation
is called successful if only if it is halting and at least one agent is in final state.
A string w is generated by the APCol system if starting with the empty string

Automaton-like P Colonies 107

in the environment, after finishing the computation the obtained string is w, the
computation is halting and at least one agent is in final state.

After introducing the notion of the generating working mode, we compared
the power of APCol systems working in the generating mode and that of reg-
ister machines and context-free matrix grammars with and without appearance
checking.

2 Definitions

Throughout the paper the reader is assumed to be familiar with the basics of
formal language theory and membrane computing. For further details we refer to
[14] and [20].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a. For a language L ⊆ Σ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L. For a family of languages
FL, the family of length sets of languages in FL is denoted by NFL.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
The cardinality of M , denoted by |M |, is defined by |M | =

∑
a∈V f(a). Any

multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai = f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

2.1 Register machines and matrix grammars

Definition 1. [19] A register machine is the construct M = (m,H, l0, lh, P) where:

• m is the number of registers,
• H is the set of instruction labels,
• l0 is the start label,
• lh is the final label,
• P is a finite set of instructions injectively labelled with the elements from the set

H.

The instructions of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the in-

struction (labelled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores a value different from zero, then sub-

tract 1 from its content and go to instruction l2, otherwise
proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

108 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Without loss of generality, we may assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each SUB-instruction l1 : (SUB(r), l2, l3) the labels l1, l2, l3
are pairwise different.

The register machine M computes a set N(M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with the in-
struction labelled by l0 and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If it reaches the halt
instruction, then the number stored at that time in the register 1 is said to be com-
puted by M and hence it is introduced in N(M). (Because of the non-determinism
in choosing the continuation of the computation in the case of ADD-instructions,
N(M) can be an infinite set.) It is known (see e.g.[19]) that in this way we compute
all Turing computable sets.

Moreover, we call a register machine partially blind [13], if we interpret a sub-
tract instruction in the following way: l1 : (SUB(r); l2; l3) - if in register r there
is value different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r there is stored zero when attempting to
decrement register r, then the program ends without yielding a result.

When the partially blind register machine reaches the final state, the result ob-
tained in the first register is only taken into account if the remaining registers store
value zero. The family of sets of non-negative integers generated by partially blind
register machines is denoted by NRMpb. Partially blind register machines accept
a proper subset of NRE, the family of recursively enumerable sets of numbers.

Definition 2. A context-free matrix grammar is a construct

G = (N,T, S,M,F), where

• N and T are sets of non-terminal and terminal symbols, respectively, with
N ∩ T = ∅,

• S ∈ N is the start symbol,
• M is a finite set of matrices, M = {mi | 1 ≤ i ≤ n}, where matrices mi are

sequences of the form mi = (mi,1, . . . ,mi,ni), ni ≥ 1, 1 ≤ i ≤ n, and mi,j , 1 ≤
j ≤ ni, 1 ≤ i ≤ n, are context-free rules over (N ∪ T),

• F is a subset of all productions occurring in the elements of M ,
i.e. F ∈ {mij | 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

We say that x ∈ (N ∪ T)+ directly derives y ∈ (N ∪ T)∗ in the appearance
checking mode by application of mi,j = A → w ∈ mi – denoted by x ⇒ac y, – if
one of the following conditions hold:

x = x1Ax2 and y = x1wx2 or A does not appear in x,mi,j ∈ F and x = y.

For mi = (mi,1, . . . ,mi,ni) and v, w ∈ (N ∪ T)∗ we define v ⇒mi w if and only
if there are w0, w1, . . . , wni

∈ (N ∪ T)∗ such that

v = w0 ⇒ac
mi,1

w1 ⇒ac
mi,2

w2 ⇒ac
mi,3

. . . ⇒ac
mi,ni

wni = w

Automaton-like P Colonies 109

The language generated by G is

L(G) = {w ∈ T ∗ |S ⇒mi1
w1 · · · ⇒mik

wk, wk = w,

wj ∈ (N ∪ T)∗, mij ∈M for 1 ≤ j ≤ k, k ≥ 1, 1 ≤ i ≤ n}

The family of languages generated by matrix grammars with appearance check-
ing is denoted by MATλac. The superscript λ indicates that erasing rules (λ-rules)
are allowed.

We say that M is a matrix grammar without appearance checking if and only if
F = ∅. The family of languages generated by matrix grammars without appearance
checking is denoted by MATλ.

The following results are known about matrix languages:

• CF ⊂ MAT ⊆ MATλ ⊂ RE
• MAT ⊂ MAT ac ⊂ CS
• MATλ ⊂ MATλac = CS, where CF, CS, RE are the context-free, context-

sensitive, and recursively enumerable language classes, respectively
• NRMpb = NMATλ, where NMATλ is class of the length sets associated with

matrix languages without appearance checking (in [11]).

Further details about matrix grammars can be found in [9].

2.2 Automaton-like P colony

In the following we recall the concept of an automaton-like P colony (an APCol
system, for short) where the environment of the agents is given in the form of a
string [2].

As in the case of standard P colonies, agents of APCol systems contain objects,
each being an element of a finite alphabet. With every agent, a set of programs
is associated. There are two types of rules in the programs. The first one, called
an evolution rule, is of the form a → b. It means that object a inside of the
agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that
the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An automaton-like P colony works successfully, if it is able to reduce the given
string to ε, i.e., to enter a configuration where at least one agent is in accepting
state and the processed string is the empty word.

110 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Definition 3. [2] An automaton-like P colony (an APCol system, for short) is a
construct

Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a sub-string bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a sub-string db of the input string is
replaced by string ca. That is, the agent can act only in one place in a computation
step and the change of the string depends both on the order of the rules in the
program and on the interacting objects. In particular, we have the following types
of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

The program is said to be restricted if it is formed from one rewriting and one
communication rule. The APCol system is restricted if all the programs the agents
have are restricted.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.
This string represents the initial state of the environment. Consequently, an initial
configuration of the automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where ω is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states of the
agents.

Automaton-like P Colonies 111

A configuration of an APCoL system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent and
w ∈ (O − {e})∗ is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, the agent
non-deterministically chooses one of them. At every step of computation, the max-
imal possible number of agents have to perform a program.

By applying programs, the automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations starting from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program.

3 Accepting and generating mode of computation

The result of a computation depends on the mode in which the APCol system
works. In the case of accepting mode, a computation is called accepting if and only
if at least one agent is in final state and the string obtained is ε. Hence, the string
ω is accepted by the automaton-like P colony Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi
for 1 ≤ i ≤ n.

The situation is different when the APCol system works in the generating mode.
A computation is called successful if only if it is halting and at least one agent is in
final state. The string wF is generated by Π iff there exists computation starting
in an initial configuration (ε;ω1, . . . , ωn) and the computation ends by halting in
the configuration (wF ;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.

We denote by APColaccR(n) (or APColacc(n)) the family of languages ac-
cepted by APCol system having at most n agents with restricted programs only
(or without this restriction). Similarly we denote by APColgenR(n) the family of
languages generated by APCol systems having at most n agents with restricted
programs only.

APCol system Π can generate or accept a set of numbers |L(Π)|.
By NAPColxR(n), x ∈ {acc, gen}, is denoted the family of sets of natural

numbers accepted or generated by APCol systems with at most n agents.
In [2] the authors proved that the family of languages accepted by jumping

finite automata (introduced in [18]) is properly included in the family of languages
accepted by APCol systems with one agent, and it is proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an automaton-like P colony with two agents.

Theorem 1. [2] The family of languages accepted by automaton-like P colonies
with one agent properly includes the family of languages accepted by jumping finite
automata.

112 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Theorem 2. [2] Any recursively enumerable language can be obtained as a pro-
jection of a language accepted by an automaton-like P colony with two agents.

4 The power of restricted generating APCol systems

In this section we compare the computational power of automaton-like P colonies
working in generating mode with one and two agents and that of register machine
and matrix grammars with erasing rules. We start with the comparison of APCol
systems and register machines.

Theorem 3. NAPColgenR(2) = NRE

Proof. Let us consider a register machine M with m registers. We construct an
APCol system Π = (O, e,A1, A2) simulating the computations of register machine
M . To help the easier understanding of the simulation, we provide the components
together with some explanations of their role. Let

- O = {G} ∪ {li, lIi , lIIi , lIIIi , lIVi , lVi , l
V I
i , li, li, Li, L

′
i, L
′′
i , Fi | li ∈ H}∪

∪ {r | 1 ≤ r ≤ m},
- A1 = (ee, P1, {eG})
- A2 = (ee, P2, {ee})

At the beginning of the computation the first agent generates object l0 (the label
of starting instruction of M). Then it starts to simulate instruction labelled by
l0 and it generates the label of the next instruction. The number stored at the
register r corresponds to the number of symbols r placed on the input string. The
set of programs is as follows:

(1) For initializing the simulation there is one program in P1:

P1

1 : 〈e→ l0; e↔ e〉
The initial configuration of Π is (ε; ee, ee). After the first step of computation

(only the program 1 is applicable) the system enters configuration (ε; l0e, ee).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the next programs:

P1

2 : 〈e→ r; l1 ↔ e〉 , 3 : 〈e→ a; r ↔ l1〉 ,
4 : 〈l1 → l2; a↔ e〉 , 5 : 〈l1 → l3; a↔ e〉

When there is object l1 inside the agent, it generates one copy of r, puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of the last two programs 4 and 5)

configuration of Π labels of applicable programs
A1 A2 string P1 P2

1. l1e ee rx 2 −
2. re ee l1r

x 3 −
3. al1 ee rx+1 4 or 5 −
4. l2e ee rx+1a

Automaton-like P Colonies 113

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added to
sets P1 and P2:
P1 : P2 :

6 :
〈
l1 → lI1; e↔ e

〉
12 :

〈
lV I1 → l2; e↔ L′′1

〉
19 :

〈
e→ L1; e↔ lI1

〉
7 :
〈
e→ lII1 ; lI1 ↔ e

〉
13 :

〈
L′′1 → l2; l2 ↔ e

〉
20 :

〈
lI1 → L′1;L1 ↔ lII1

〉
8 :
〈
e→ lIII1 ; lII1 ↔ e

〉
14 :

〈
lV I1 → l3; e↔ L1

〉
21 :

〈
lII1 → L′′1 ;L′1 ↔ r

〉
9 :
〈
lIII1 → lIV1 ; e↔ e

〉
15 :

〈
L1 → F3; l3 ↔ e

〉
22 : 〈r → e;L′′1 ↔ L1〉

10 :
〈
lIV1 → lV1 ; e↔ e

〉
16 :

〈
e→ l3;F3 ↔ l3

〉
23 : 〈L1 → e; e↔ e〉

11 :
〈
lV1 → lV I1 ; e↔ e

〉
17 :

〈
l3 → F ′3; l3 ↔ e

〉
24 :

〈
lII1 → e;L′1 ↔ F3

〉
18 : 〈F ′3 → l3; e↔ e〉 25 : 〈F3 → e; e↔ e〉

At the first phase of the simulation of the SUB instruction the first agent generates
object l′1, which is consumed by the second agent. The agent A2 generates symbol
L1 and tries to consume one copy of symbol r. If there is any r, the agent sends
to the environment object L′′1 and consumes L1. After this step the first agent
consumes L′′1 or L1 and rewrites it to l2 or l3.
Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores non-zero value:

configuration of Π
labels of

applicable
programs

A1 A2 string P1 P2

1. l1e ee rx 6 −
2. lI1e ee rx 7 −
3. lII1 e ee lI1r

x 8 19

4. lIII1 e L1l
I
1 lII1 r

x 9 20

5. lIV1 e L′1l
II
1 L1r

x 10 21

6. lV1 e L′′1r L1L
′
1r
x−1 11 22

7. lV I1 e eL1 L′′1r
x−1 12 23

8. l2L
′′
1 ee rx−1 14 −

9. l2e ee rx−1l2

If the register r stores value zero :

configuration of Π
labels of

applicable
programs

A1 A2 string P1 P2

1. l1e ee 6 −
2. lI1e ee 7 −
3. lII1 e ee lI1 8 19

4. lIII1 e L1l
I
1 lII1 9 20

5. lIV1 e L′1l
II
1 L1 10 −

6. lV1 e L′1l
II
1 L1 11 −

7. lV I1 e L′1l
II
1 L1 13 −

8. l3L1 L′1l
II
1 15 −

9. F3e L′1l
II
1 l3 16 −

10. l3 l3 L′1l
II
1 F3 17 24

11. F ′3e F3e l3L
′
1 18 25

12. l3e ee l3L
′
1

(4) For halting instruction lh there are programs belonging to the sets P1 and
P2. After that agent A1 generates the object lh, it writes the symbol G to the
tape. After consuming it, the second agent erases all the symbols from the tape
except these ones which correspond to the first register of the register machine.

114 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

P1 : P2 :

26 : 〈e→ G; lh ↔ e〉 27 : 〈e→ e; e↔ lh〉 28 : 〈e→ e; lh ↔ X〉
29 : 〈X → e; e↔ lh〉

X ∈ {a} ∪ {L′i, li, li | 0 ≤ i ≤ p, where |H| = p} ∪ {r | 1 < r ≤ m}
The APCol system Π starts computation in the initial configuration with

empty tape. It starts the simulation of register machine M with instruction la-
belled by l0 and it proceeds the simulation according to the instructions of the
register machine. After M reaches the halting instruction, then agent A2 in the
APCol system Π erases from the tape all the symbols except symbols 1 and then
APCol systems halts. So the length of the word placed on the tape in the last
configuration corresponds to the number stored in the first register of M at the
end of its computation.

We proved that the family of length sets of languages generated by restricted
APCol systems with two agents equals to NRE. If the APCol system is formed from
only one agent, there are some limitation for generated languages. In the following
we show the limits of the computational power of restricted APCol systems with
only one agent.

Theorem 4. NRMPB ⊆ NAPColgenR(1)

Proof. Let us consider a partially blind register machine M with m registers. We
construct an APCol system Π = (O, e,A) simulating the computations of register
machine M with:

- O = {G} ∪ {li, lIi , lIIi , lIIIi , lIVi , lVi , l
V I
i , li, li, Li, L

′
i, L
′′
i , Fi | li ∈ H}∪

∪ {r | 1 ≤ r ≤ m},
- A = (ee, P, {eG})
The functioning of the constructed APCol system is very similar to the one

from the proof of previous theorem. At the beginning of the computation, the agent
generates the object l0 (the label of starting instruction of M). Then it starts to
simulate instruction labelled by l0 and generates the label of the next instruction.
The number stored at register r corresponds to the number of symbols r placed
on the input string. The set of programs is given as follows:

(1) For initializing the simulation there is one program in P1:

P :
1 : 〈e→ l0; e↔ e〉

The initial configuration of Π is (ε; ee). After the first step of computation
(only the program 1 is applicable) the system enters configuration (ε; l0e).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P the next programs:

P
2 : 〈e→ r; l1 ↔ e〉 , 3 : 〈e→ a; r ↔ l1〉 ,
4 : 〈l1 → l2; a↔ e〉 , 5 : 〈l1 → l3; a↔ e〉

Automaton-like P Colonies 115

When there is object l1 inside the agent, it generates one copy of r, puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of two programs 4 and 5)

configuration of Π labels of applicable programs
A string P

1. l1e rx 2
2. re l1r

x 3
3. al1 rx+1 4 or 5
4. l2e rx+1a

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added to
set P :

P :

6 :
〈
l1 → lI1; e↔ r

〉
7 :
〈
r → l2; lI1 ↔ e

〉
8 :
〈
r → l3; lI1 ↔ e

〉
The agent generates object l′1 even if there is at least one object r in the envi-
ronment. Then it rewrites r to l2 or l3. If there is no r in the environment, the
computation halts and the agent is in non-final state.
(4) For halting instruction lh there are programs belonging to the set P :

P :

9 : 〈lh → G; e↔ e〉 10 : 〈e→ e;G↔ X〉 11 : 〈X → e; e↔ G〉
X ∈ {a} ∪ {lIi | 0 ≤ i ≤ p, where |H| = p} ∪ {r | 1 < r ≤ m}

After the object lh appears inside agent A, it generates the symbol G. Using G,
the agent erases all the symbols from the tape except those ones which correspond
to the first register of the register machine.

The APCol system Π starts computation in the initial configuration with
empty tape. It starts the simulation of the partially blind register machine M
with instruction labelled by l0 and it proceeds the simulation according to the in-
structions of register machine. After M reaches the halting instruction, the agent
A in the APCol system Π erases from the tape all the symbols except symbols 1
and then the APCol system halts. So the length of the word placed on the tape in
the last configuration corresponds to the number stored in the first register of M
at the end of its computation.

In the following we will examine the language generating power of restricted
APCoL systems.

Theorem 5. APColgenR(1) ⊆ MATλ

Proof. Let Π = (O, e,A) be a restricted APCol system with one agent. We con-
struct a matrix grammar G = (N,T, S,M) simulating Π as follows:

The symbol on the tape a 6= e is represented by a ∈ N and at the end of
simulation it can be rewritten to a ∈ T . The content of the agent is represented

116 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

by a non-terminal symbol AB ∈ N, where a, b ∈ O are objects placed inside the
agent. As in the previous cases, we provide only the necessary details.

The first applied matrix is
(
S → C EE

)
, representing the initial content of

the agent.
For every program of type 〈a→ b; c↔ d〉 , c, d 6= e there is a matrix in M :(

C → C, AC → BD , d → c
)

For every program of type 〈a→ b; e↔ d〉 , d 6= e there is a matrix in M :(
C → C, AC → BD , d → ε

)
For every program of type 〈a→ b; e↔ e〉 there is a matrix in M :(

C → C, AE → BE
)

For every program of the type 〈a→ b; c↔ e〉 , c 6= e there is a matrix in M :(
C → C, AC → BE c©)

and a set of matrices generating c somewhere in the string and deleting c©:(
C → C, x → x c , c©→ ε

)
,(

C → C, x → c x , c©→ ε
)
,

for all x such that x ∈ T .
When the APCol system reaches the halting configuration, the matrix grammar

generates the corresponding string. The string is formed from only non-terminals.
The matrix grammar has to rewrite the rammed terminal symbols to terminals and
to delete non-terminal representing the content of the agent and the non-terminal
C. The halting configuration can be presented by a string AB ·w, where |w|a = 1
for all a ∈ T such that a is present in this halting configuration and AB is content
of the agent such that ab ∈ F . The set of such a representations is finite.

For each representation AB ·a1a2 . . . ap, p ≤ |T |, we add the following matrices
to the matrix grammar:

(
C → [AB a1a2 . . . ap]

)(
[AB a1a2 . . . aq]→ [AB a1a2 . . . aq], aq → aq

)
,(

[AB a1a2 . . . aq]→ [AB a1a2 . . . aq−1]
)
, 1 < q ≤ p,(

[AB a1]→ [AB a1], a1 → a1

)
,
(
[AB a1]→ [AB]

)
(
[AB]→ ε, AB → ε

)
In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminal symbol corresponding to the contents of the agent is deleted.

Automaton-like P Colonies 117

If the restricted APCol system Π generates a string ω, then the matrix gram-
mar is able to generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting only of
terminals.

The last theorem is devoted to the relationship of MATλac to restricted APCol
systems with two agents.

Theorem 6. APColgenR(2) ⊆ MATλac

Proof. Let Π = (O, e,A1, A2) be the restricted APCol system with two agents.
We construct a matrix grammar G = (N,T, S,M) simulating Π as follows:

The symbol on the tape a 6= e is represented by a ∈ N and at the end of the
simulation it is rewritten to a ∈ T . The contents of the agent A1 is represented by
a non-terminal symbol AB ∈ N, where a, b ∈ O are the objects placed inside the
first agent. The contents of the agent A2 is represented by a non-terminal symbol
AB ∈ N, where a, b ∈ O are the objects placed inside the second agent.

We add label pi from the set of labels P to every program associated with both
agents. Let P ∩ (N ∪ T) = ∅. We add a set of new non-terminals {Pi | pi ∈ P} to
the set N . To control the derivation, we add non-terminals S, C, CP and #.

The first applied matrix is
(
S → C EE EE

)
, representing the initial states of

the agents.
For every possible pair of states of agents, we add the following types of matrices

toM . Let ab be a state of the agent A1. In this state there are three applicable types
of programs: 〈a→ c; b↔ d〉 – (A), 〈a→ c; b↔ e〉 – (B). The first type includes
the case where b = e and 〈a→ c; e↔ d〉 – (A’).

We divide the execution of such a program into three phases. The first phase
is to choose two programs to apply. The corresponding matrices (forming the set
M1 ⊂M) are of the form(

C → C, AB → ABv , XY → XY z
)
, (1)

where v and z depend on the type of the used programs. If the program is of the
type 〈a→ c; b↔ d〉 or 〈a→ c; e↔ d〉, v (or z) is d and it means that d will be
erased in following derivation steps. If the program is of the type 〈a→ c; b↔ e〉,
v (or z) is t and it means that there is nothing to erase from string.

Because of maximal parallelism in the computation, an agent can be in a state
when there is no program to use. For this situation, we construct another set of
matrices. We choose from the set M1 all matrices corresponding to the application
of a program of the type 〈a→ c; b↔ d〉 by the “sleeping agent”. We need not to
include matrices for the programs of type 〈a→ c; b↔ e〉 because these programs
in state ab are always applicable. To the selected matrices of the type (1), we add
the following matrices:(

C → CP , AB → ABN Pi, XY → XY z
)
, (2)

for the first agent with no applicable program and

118 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú(
C → CP , AB → ABv , XY → XYN Pj

)
, (3)

for the second agent with no applicable program and pi ∈ P, resp. pj ∈ P is the
label of program corresponding to triplet ABv resp. to XY z .

To check whether in the given state the agent has no applicable program, we
perform the following construction. Let P ′i be the set of all applicable programs of
the type (A) in the state ab of the agent. Then matrices

(CP → C,Pi → ε, d1 → #, d2 → #, . . . , dk → #) , (4)

are for checking the inactivity of the agent. d1, . . . , dk ∈ N, k = |P ′i | are non-
terminals corresponding to the objects that the agent needs to consume from the
string applying any program from P ′i . All the rules of the type dl → #, 1 ≤ l ≤ k
are in the set F . If # appears in the string, then the derivation cannot end with
a terminal word.

The last phase of the simulation of execution of programs in the APCol system
Π corresponds to the change of the state of the agents and to the changes changes
in the string. We add to M the following matrices: For the pair of programs
(〈a→ c; b↔ d〉, 〈x→ u; y ↔ z〉)(

C → C, ABd → CD , d → b , XY z → UZ , z → y

)
. (5)

For the pair of programs (〈a→ c; e↔ d〉, 〈x→ u; y ↔ z〉)(
C → C, ABd → CD , d → ε, XY z → UZ , z → y

)
(6)

For the pair of programs (〈a→ c; b↔ e〉, 〈x→ u; y ↔ z〉)(
C → C, ABt → CD b©, XY z → UZ , z → y

)
(7)

For the remaining program combinations we add another six types of matrices.
We also add the set of matrices for generating c somewhere in the string and

for deleting c©: (
C → C, x → x c , c©→ ε

)
,(

C → C, x → c x , c©→ ε
)
, for all q, x such that x ∈ T.

When the APCol system reaches the halting configuration, the matrix grammar
generates the corresponding string. The string is formed from non-terminals only.
The matrix grammar has to rewrite the rammed terminal symbols to terminals
and to delete the non-terminals representing the contents of the agents and non-
terminal C. The halting configuration can be represented by a string AB ·XY ·w,
where |w|a = 1 for all a ∈ T such that a is present in this halting configuration
and AB,XY are the contents of the agents such that ab ∈ F1 and xy ∈ F2. The
set of such a representations is finite.

Automaton-like P Colonies 119

For each representation AB · XY · a1a2 . . . ap, p ≤ |T |, we add the following
matrices to the matrix grammar:

(
C → [AB XY a1a2 . . . ap]

)(
[AB XY a1a2 . . . aq]→ [AB XY a1a2 . . . aq], aq → aq

)
,(

[AB XY a1a2 . . . aq]→ [AB XY a1a2 . . . aq−1]
)
, 1 < q ≤ p(

[AB XY a1]→ [AB XY a1], a1 → a1

)
,
(
[AB XY a1]→ [AB XY]

)
(
[AB XY]→ ε, AB → ε, XY → ε

)
In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminals corresponding to the contents of the agents are deleted.

If the restricted APCol system Π generates the string ω, then the matrix
grammar can generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting of only
terminals.

5 Conclusions

We developed the concept of automaton-like P colonies (APCol systems) - vari-
ants of P colonies that work on a string. We introduced the generating mode
of computation of these systems and compared the generative and computational
power of automaton-like P colonies and the generative power of context-free matrix
grammars with and without appearance checking and the computational power of
variants of register machines. The results of this paper can be summarized as
follows:

• NRMPB ⊆ NAPColgenR(1)
• APColgenR(1) ⊆MATλ

• NAPColgenR(2) = NRE

• APColgenR(2) ⊆ MATλac

Remark 1. This work was partially supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/-
02.0070), by SGS/24/2013 and by project OPVK no. CZ.1.07/2.2.00/28.0014.

References

1. Ciencialová, L., Cienciala, L.: Variation on the theme: P colonies. In: Kolář, D.,
Meduna, A. (eds.) Proc. 1st Intern. Workshop on Formal Models, pp. 27–34. Ostrava
(2006)

120 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: P Colonies Processing Strings. Fun-
dam. Inform. 134(1-2), 51–65 (2014)

3. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, Gy.: Variants of P colonies
with very simple cell structure. International Journal of Computers, Communication
and Control 4(3), 224–233 (2009)

4. Ciencala, L., Ciencialová, L., Csuhaj-Varjú, E., Vaszil, Gy.: PCol Automata: Recog-
nizing strings with P colonies. In: Martinez-del-Amor, M. A. et al. (eds.) Proc. BWMC
2010, pp. 65–76. Fénix Editora, Sevilla (2010)

5. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Computing
and Informatics 27, 481–496 (2008)

6. Cienciala, L., Ciencialová, L., Kelemenová, A.: On the number of agents in P colonies.
In: Eleftherakis,G. et. al (eds.) Membrane Computing, 8th International Workshop,
WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited
Papers. LNCS, vol. 4860, pp. 193–208. Springer (2007)

7. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, Gy.: Computing
with cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Com-
puting 12, 201–215 (2006)

8. Csuhaj-Varjú, E.,Margenstern, M., Vaszil, Gy.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H-J. et. al (eds.) Membrane Computing, 7th
International Workshop, WMC 2006, Leiden, The Netherlands, July 17-21, 2006, Re-
vised, Selected, and Invited Papers. LNCS, vol. 4361, pp. 352–366. Springer(2006)

9. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science 18. Springer-Verlag Berlin (1989)

10. Fischer, P. C.: Turing machines with restricted memory access. Information and
Control 9, 364–379 (1966)

11. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the
sequential mode. In: Ciobanu, G., Păun, Gh. (eds.) Pre-Proc. 1st Intern. Workshop
on Theory and Application of P Systems, pp. 49–56. Timisoara, Romania (2005)

12. Freund, R., Oswald, M.: P colonies and prescribed teams. International Journal of
Computer Mathematics 83, 569–592 (2006)

13. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7(1), 311–324 (1978)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass. (1979)

15. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multi-agent systems.
Cybernetics and Systems 23, 621–633 (1992)

16. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. In: Bedau, M. et al. (eds.) Workshop and Tutorial Pro-
ceedings. Ninth International Conference on the Simulation and Synthesis of Living
Systems (Alife IX), pp. 82–86. Boston Mass. (2004)

17. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593. Oxford Uni-
versity Press (2010)

18. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23,
1555–1578 (2012)

19. Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

20. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press (2010)

