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Summary. We consider extended spiking neural P systems with the additional possi-
bility of so-called “white hole rules”, which send the complete contents of a neuron to
other neurons, and we show how this extension of the original model allow for easy proofs
of the computational completeness of this variant of extended spiking neural P systems
using only one actor neuron. Using only such white hole rules, we can easily simulate
special variants of Lindenmayer systems.

1 Introduction

Based on the biological background of neurons sending electrical impulses along
axons to other neurons, several models were developed in the area of neural com-
putation, e.g., see [15], [16], and [10]. In the area of P systems, the model of spiking
neural P systems was introduced in [14]. Whereas the basic model of membrane
systems reflects hierarchical membrane structures, the model of tissue P systems
considers cells to be placed in the nodes of a graph. This variant was first consid-
ered in [23] and then further elaborated, for example, in [9] and [17]. In spiking
neural P systems, the cells are arranged as in tissue P systems, but the contents
of a cell (neuron) consists of a number of so-called spikes, i.e., of a multiset over
a single object. The rules assigned to a cell allow us to send information to other
neurons in the form of electrical impulses (also called spikes) which are summed up
at the target cell; the application of the rules depends on the contents of the neuron
and in the general case is described by regular sets. As inspired from biology, the
cell sending out spikes may be “closed” for a specific time period corresponding
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to the refraction period of a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”) for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of dif-
ferent magnitude. All these biologically motivated features were included in the
model of extended spiking neural P systems considered in [1], the most impor-
tant theoretical feature being that neurons can send spikes along the axons with
different magnitudes at different moments of time. In this paper, we will further
extend the model of extended spiking neural P systems by using so-called “white
hole rules”, which allow us to use the whole contents of a neuron and send it to
other cells, yet eventually multiplied by some constant rational number.

In the literature, several variants how to obtain results from the computations
of a spiking neural P system have been investigated. For example, in [14] the out-
put of a spiking neural P system was considered to be the time between two spikes
in a designated output cell. It was shown how spiking neural P systems in that
way can generate any recursively enumerable set of natural numbers. Moreover, a
characterization of semilinear sets was obtained by spiking neural P system with
a bounded number of spikes in the neurons. These results can also be obtained
with even more restricted forms of spiking neural P systems, e.g., no time delay
(refraction period) is needed, as it was shown in [13]. In [4], the generation of
strings (over the binary alphabet 0 and 1) by spiking neural P systems was inves-
tigated; due to the restrictions of the original model of spiking neural P systems,
even specific finite languages cannot be generated, but on the other hand, regular
languages can be represented as inverse-morphic images of languages generated by
finite spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused by
the quite restricted way the output is obtained from the output neuron as sequence
of symbols 0 and 1. The strings of a regular or recursively enumerable language
could be obtained directly by collecting the spikes sent by specific output neurons
for each symbol.

In the extended model considered in [1], a specific output neuron was used for
each symbol. Computational completeness could be obtained by simulating register
machines as in the proofs elaborated in the papers mentioned above, yet in an
easier way using only a bounded number of neurons. Moreover, regular languages
could be characterized by finite extended spiking neural P systems; again, only a
bounded number of neurons was needed.

In this paper, we now extend this model of extended spiking neural P systems
by also using so-called “white hole rules”, which may send the whole contents of a
neuron along its axons, eventually even multiplied by a (positive) rational number.
In that way, the whole contents of a neuron can be multiplied by a rational number,
in fact, multiplied with or divided by a natural number. Hence, even one single
neuron is able to simulate the computations of an arbitrary register machine.
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The idea of consuming the whole contents of a neuron by white hole rules is
closely related with concept of the exhaustive use of rules, i.e., an enabled rule is
applied in the maximal way possible in one step; P systems with the exhaustive
use of rules can be used in the usual maximally parallel way on the level of the
whole system or in the sequential way, for example, see [27] and [26]. Yet all the
approaches of spiking neural P systems with the exhaustive use of rules are mainly
based on the classic definitions of spiking neural P systems, whereas the spiking
neural P systems with white hole rules as investigated in this paper are based on
the extended model as introduced in [1].

The rest of the paper is organized as follows: In the next section, we recall some
preliminary notions and definitions from formal language theory, especially the
definition and some well-known results for register machines. In section 3 we recall
the definitions of the extended model of spiking neural P systems as considered
in [1] as well as the most important results established there. Moreover, we show
a new result for extended spiking neural P systems – such systems with only one
actor neuron have exactly the same computational power as register machines with
only one register that can be decremented.

In section 4, we define the model of extended spiking neural P systems extended
by the use of white hole rules. Besides giving some examples, for instance showing
how Lindenmayer systems can be simulated by extended spiking neural P systems
only using white hole rules, we prove that the computations of an arbitrary register
machine can be simulated by only one single neuron equipped with the most
powerful variant of white hole rules. In that way we can show that extended
spiking neural P systems equipped with white hole rules are even more powerful
than extended spiking neural P systems, which need (at least) two neurons to
be able to simulate the computations of an arbitrary register machine. Finally, in
section 5 we give a short summary of the results obtained in this paper and discuss
some future research topics for extended spiking neural P systems with white hole
rules, for example, variants with inhibiting neurons or axons.

2 Preliminaries

In this section we recall the basic elements of formal language theory and espe-
cially the definitions and results for register machines; we here mainly follow the
corresponding section from [1].

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [5] and [25]. We just list a
few notions and notations: V ∗ is the free monoid generated by the alphabet V
under the operation of concatenation and the empty string, denoted by λ, as unit
element; for any w ∈ V ∗, |w| denotes the number of symbols in w (the length
of w). N+ denotes the set of positive integers (natural numbers), N is the set
of non-negative integers, i.e., N = N+ ∪ {0}, and Z is the set of integers, i.e.,
Z = N+ ∪ {0} ∪ −N+. The interval of non-negative integers between k and m is
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denoted by [k..m], and k · N+ denotes the set of positive multiples of k. Observe
that there is a one-to-one correspondence between a set M ⊆ N and the one-
letter language L (M) = {an | n ∈M}; e.g., M is a regular (semilinear) set of
non-negative integers if and only if L (M) is a regular language. By FIN

(
Nk
)
,

REG
(
Nk
)
, and RE

(
Nk
)
, for any k ∈ N, we denote the sets of subsets of Nk that

are finite, regular, and recursively enumerable, respectively.
By REG (REG (V )) and RE (RE (V )) we denote the family of regular and

recursively enumerable languages (over the alphabet V , respectively). By ΨT (L)
we denote the Parikh image of the language L ⊆ T ∗, and by PsFL we denote the
set of Parikh images of languages from a given family FL. In that sense, PsRE (V )
for a k-letter alphabet V corresponds with the family of recursively enumerable
sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [18]
for original definitions, and to [7] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, P, l0, lh) , where n is the number
of registers, P is a finite set of instructions injectively labelled with elements from
a given set Lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (ADD (r) , l2, l3) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) l2 and l3.

– l1 : (SUB (r) , l2, l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to instruction
l2, otherwise proceed to instruction l3.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, · · · , sβ) of natural numbers if, starting with the instruction with label l0 and
all registers containing the number 0, the machine stops (it reaches the instruction
lh : halt) with the first β registers containing the numbers s1, · · · , sβ (and all other
registers being empty).

Without loss of generality, in the succeeding proofs we will assume that
in each ADD instruction l1 : (ADD (r) , l2, l3) and in each SUB instruction
l1 : (SUB (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof
see [9]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets of
vectors of non-negative integers which can be generated by Turing machines, i.e.,
the family PsRE.
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Based on the results established in [18], the results proved in [7] and [8] imme-
diately lead to the following result:

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M gen-
erating L in such a way that, when starting with all registers 1 to β+2 being empty,
M non-deterministically computes and halts with ni in registers i, 1 ≤ i ≤ β, and
registers β+ 1 and β+ 2 being empty if and only if (n1, ..., nβ) ∈ L. Moreover, the
registers 1 to β are never decremented.

When considering the generation of languages, we can use the model of a
register machine with output tape, which also uses a tape operation:

– l1 : (write (a) , l2)
Write symbol a on the output tape and go to instruction l2.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P, l0, lh).

The following result is folklore, too (e.g., see [18] and [6]):

Proposition 2. Let L ⊆ T ∗ be a recursively enumerable language. Then L can be
generated by a register machine with output tape with 2 registers. Moreover, at the
beginning and at the end of a successful computation generating a string w ∈ L
both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [21] and [24]; comprehensive information can be found on the P systems
web page [28]. Moreover, for the motivation and the biological background of
spiking neural P systems we refer the reader to [14]. The definition of an extended
spiking neural P system is mainly taken from [1], with the number of spikes k still
be given in the “classical” way as ak; later on, we simple will use the number k
itself only instead of ak.

3.1 The Definition of ESNP Systems

The definitions given in the following are taken from [1].

Definition 1. An extended spiking neural P system (of degree m ≥ 1) (in the
following we shall simply speak of an ESNP system) is a construct

Π = (m,S,R)

where
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• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m (obviously, we could instead use an alphabet with
m symbols to identify the neurons);

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron; for the sake of simplicity, we assume that at the beginning of a
computation we have no pending packages along the axons between the neurons;

• R is a finite set of rules of the form
(
i, E/ak → P ; d

)
such that i ∈ [1..m]

(specifying that this rule is assigned to cell i), E ⊆ REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs this
rule), and P is a (possibly empty) set of productions of the form (l, w, t) where
l ∈ [1..m] (thus specifying the target cell), w ∈ {a}∗ is the weight of the energy
sent along the axon from neuron i to neuron l, and t is the time needed before
the information sent from neuron i arrives at neuron l (i.e., the delay along
the axon). If the checking sets in all rules are finite, then Π is called a finite
ESNP system.

Definition 2. A configuration of the ESNP system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;
• in each neuron i, we may find an “activated rule”

(
i, E/ak → P ; d′

)
waiting to

be executed where d′ is the remaining time until the neuron spikes;
• in each axon to a neuron l, we may find pending packages of the form (l, w, t′)

where t′ is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”(
i, E/ak → P ; d′

)
waiting to be executed; if d′ = 0, then neuron i “spikes”,

i.e., for every production (l, w, t) occurring in the set P we put the correspond-
ing package (l, w, t) on the axon from neuron i to neuron l, and after that, we
eliminate this “activated rule”

(
i, E/ak → P ; d′

)
;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading to
neuron l; provided the neuron is not closed, i.e., if it does not carry an activated
rule

(
i, E/ak → P ; d′

)
with d′ > 0, we then sum up all weights w in such

packages where t′ = 0 and add this sum of spikes to the corresponding number
of spikes in neuron l; in any case, the packages with t′ = 0 are eliminated from
the axons, whereas for all packages with t′ > 0, we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”(
i, E/ak → P ; d′

)
(with d′ > 0) or not; if we have not found an “activated rule”,

we now may apply any rule
(
i, E/ak → P ; d

)
from R for which the current num-

ber of spikes in the neuron is in E and then put a copy of this rule as “activated
rule” for this neuron into the description of the current configuration; on the
other hand, if there still has been an “activated rule”

(
i, E/ak → P ; d′

)
in the
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neuron with d′ > 0, then we replace d′ by d′−1 and keep
(
i, E/ak → P ; d′ − 1

)
as the “activated rule” in neuron i in the description of the configuration for
the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence of
configurations starting with the initial configuration given by S. A computation is
called successful if it halts, i.e., if no pending package can be found along any axon,
no neuron contains an activated rule, and for no neuron, a rule can be activated.

In the original model introduced in [14], in the productions (l, w, t) of a rule(
i, E/ak → {(l, w, t)} ; d

)
, only w = a (for spiking rules) or w = λ (for forgetting

rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron i).
Moreover, reflexive axons, i.e., leading from neuron i to neuron i, were not al-
lowed, hence, for (l, w, t) being a production in a rule

(
i, E/ak → P ; d

)
for neuron

i, l 6= i was required. Yet the most important extension is that different rules for
neuron i may affect different axons leaving from it whereas in the original model
the structure of the axons (called synapses there) was fixed. In [1], the sequence
of substeps leading from one configuration to the next one together with the in-
terpretation of the rules from R was taken in such a way that the original model
can be interpreted in a consistent way within the extended model introduced in
that paper. As mentioned in [1], from a mathematical point of view, another inter-
pretation would have been even more suitable: whenever a rule

(
i, E/ak → P ; d

)
is activated, the packages induced by the productions (l, w, t) in the set P of a
rule

(
i, E/ak → P ; d

)
activated in a computation step are immediately put on the

axon from neuron i to neuron l, whereas the delay d only indicates the refraction
time for neuron i itself, i.e., the time period this neuron will be closed. The delay t
in productions (l, w, t) can be used to replace the delay in the neurons themselves
in many of the constructions elaborated, for example, in [14], [23], and [4]. Yet as
in (the proofs of computational completeness given in) [1], we shall not need any
of the delay features in this paper, hence we need not go into the details of these
variants of interpreting the delays in more details.

Depending on the purpose the ESNP system is to be used, some more features
have to be specified: for generating k-dimensional vectors of non-negative integers,
we have to designate k neurons as output neurons; the other neurons then will also
be called actor neurons. There are several possibilities to define how the output
values are computed; according to [14], we can take the distance between the first
two spikes in an output neuron to define its value. As in [1], also in this paper, we
take the number of spikes at the end of a successful computation in the neuron
as the output value. For generating strings, we do not interpret the spike train
of a single output neuron as done, for example, in [4], but instead consider the
sequence of spikes in the output neurons each of them corresponding to a specific
terminal symbol; if more than one output neuron spikes, we take any permutation
of the corresponding symbols as the next substring of the string to be generated.
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Remark 1. As already mentioned, there is a one-to-one correspondence between
(sets of) strings ak over the one-letter alphabet {a} and the corresponding
non-negative integer k. Hence, in the following, we will consider the checking
sets E of a rule

(
i, E/ak → P ; d

)
to be sets of non-negative integers and write

k instead of ak for any w = ak in a production (l, w, t) of P . Moreover, if
no delays d or t are needed, we simply omit them. For example, instead of(
2,
{
ai
}
/ai →

{
(1, a, 0) ,

(
2, aj , 0

)}
; 0
)

we write (2, {i} /i→ {(1, 1) , (2, j)}).

3.2 ESNP Systems as Generating Devices

As in [1], we first consider extended spiking neural P systems as generating devices.
The following example gives a characterization of regular sets of non-negative
integers:

Example 1. Any semilinear set of non-negative integers M can be generated by a
finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular gram-
mar G generating the language L (G) ⊆ {a}∗ with N (L (G)) = M ; without loss of
generality we assume the regular grammar to be of the form G = (N, {a} , A1, P )
with the set of non-terminal symbols N , N = {Ai | 1 ≤ i ≤ m}, the start symbol
A1, and P the set of regular productions of the form B → aC with B,C ∈ N and
A → λ. We now construct the finite ESNP system Π = (2, S,R) that generates
an element of M by the number of spikes contained in the output neuron 1 at the
end of a halting computation: we start with one spike in neuron 2 (representing
the start symbol A1 and no spike in the output neuron 1, i.e., S = {(1, 0) , (2, 1)}.
The production Ai → aAj is simulated by the rule (2, {i} /i→ {(1, 1) , (2, j)}) and
Ai → λ is simulated by the rule (2, {i} /i→ ∅), i.e., in sum we obtain

Π = (2, S,R) ,
S = {(1, 0) , (2, 1)} ,
R = {(2, {i} /i→ {(1, 1) , (2, j)}) | 1 ≤ i, j ≤ m,Ai → aAj ∈ P}
∪ {(2, {i} /i→ ∅) | 1 ≤ i ≤ m,Ai → λ ∈ P} .

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production Ai → λ, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in Π, without loss of generality we assume G to be reduced, i.e., for
every non-terminal symbol A from N there is a regular production with A on the
left-hand side. These observations prove that we have N (L (G)) = M .

The following results were proved in [1]:

Lemma 1. For any ESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.
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Theorem 1. Any regular language L with L ⊆ T ∗ for a terminal alphabet T with
card (T ) = n can be generated by a finite ESNP system with n + 1 neurons. On
the other hand, every language generated by a finite ESNP system is regular.

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

Theorem 2. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T ) = n can be generated by an ESNP system with n + 2
neurons.

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n+ 2 neurons.

Besides these results already established in [1], we now prove a characterization
of languages and sets of (vectors of) natural numbers generated by ESNPS with
only one neuron. Roughly speaking, having only one actor neuron corresponds
with, besides output registers, having only one register which can be decremented.

Lemma 2. For any ESNP system with only one actor neuron we can effectively
construct a register machine with output tape and only one register that can be
decremented, generating the same language, respectively a register machine with
one register that can be decremented, generating the same set of (vectors of) natural
numbers.

Proof. First we notice that the delays would not matter: the overall system is
sequential, and therefore it is always possible to pre-compute what happens until
the actor neuron re-opens; the weight of all pending packages is also bounded. All
the details of storing and managing all these features by the finite control of the
register machines are tedious, but very much straightforward. In the following, we
therefore assume that the ESNPS is given as:

Π = (n+ 1, S,R),

S = {(1,m1), · · · , (n,mn), (n+ 1,mn+1)},
R = {(n+ 1, Er/ir → {(1, pr,1), · · · , (n, pr,n), (n+ 1, pr,n+1)}) | 1 ≤ r ≤ q}.

Thus, given n, Π can be specified by the following non-negative integers: the num-
ber q of rules, initial spikes m1, · · · ,mn,mn+1, and, for every rule r, the following
ingredients: the number ir of consumed spikes, the numbers pr,1, · · · , pr,n+1 of pro-
duced spikes, and the regular sets Er of numbers. Note that, as it will be obvious
later, it is enough to only consider the case m1 = · · · = mn = 0, because other-
wise placing the initial spikes can be done by a 1-register machine in a preparatory
phase, before switching to the instruction corresponding to starting the simulation.

The main challenge of the construction is to remember the actual “status”
of the regular checking sets. It is known that every regular set E of numbers
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is semilinear, and it is possible to write Er =
⋃lr
j=1(krN + dr,j) ∪ Dr, i.e., all

the linear sets constituting Er can be reduced to a common period kr, and an
additional finite set. Then, we can take a common multiple k of periods kr, and
represent each checking set as Er =

(
kN+ + {d′r,j | 1 ≤ j ≤ l′r}

)
∪D′r, where D′r is

finite.
Finally, take a number M such that M is a multiple of k, that M is larger than

any element of Dr, 1 ≤ r ≤ q, that M is larger than any number d′r,j , 1 ≤ j ≤ l′r,
1 ≤ r ≤ q, that M is larger than any of ir and pr,n+1, 1 ≤ r ≤ q. Then, if neuron
n+ 1 has N spikes, the following properties hold:

• rule r is applicable if and only if N ∈ Er in case when ir ≤ N < M , and if and
only if M + (Nmod M) ∈ Er in case when N ≥M ,

• the difference between the number of spikes in neuron n+ 1 in two successive
configurations is not larger than M .

For neuron n + 1, Mk + j spikes (where 0 ≤ j ≤ M − 1) will be represented
by value k of register 1 and state j.

We simulate Π by a register machine R with one register and an output tape
of m symbols. Before we proceed, we need to remark that, without restricting the
generality, we may have an arbitrary set of “next instructions” instead of {l2, l3} in
l1 : (ADD(r), l2, l3), and arbitrary sets of “next instructions” instead of {l2} and
{l3} in l1 : (SUB(r), l2, l3). Indeed, non-determinism between choice of multiple
instructions can be implemented by an increment followed by a decrement in each
case, as many times as needed for the corresponding set of “next instructions”.
Clearly, l1 : (ADD(r), {l2}) is just a shorter form of l1 : (ADD(r), l2, l2).

Finally, besides instructions ADD(r), SUB(r), write(a) and halt, we introduce
the notation of NOP , meaning only a switch to a different instruction without
modifying the register. This will greatly simplify the construction below, and such
a notation can be reduced to either compressing the rules (by substituting the
instruction label with the label of the next instruction in all other instructions),
or be simulated by an ADD(1) instruction, followed by a SUB(1) instruction.

We take b(mn+1mod M) as the starting state of R, and the starting value of
register 1 is mn+1div M.

For every class modulo M , 0 ≤ j ≤M − 1, we define sets

Lj,0 = {lr,0 | 1 ≤ r ≤ q, j ∈ Er, ir ≥ j},
Lj,+ = {lr,+ | 1 ≤ r ≤ q, j +M ∈ Er}

of applicable rules corresponding to remainder j, subscripts 0 and + represent
cases of having less than M spikes, and at least M spikes, respectively. Let us
redefine any of these sets to {lh} if the expression above is empty.

We proceed with the actual simulation. A rule

(n+ 1, Er/ir → {(1, pr,1), · · · , (n, pr,n), (n+ 1, pr,n+1)})

can be simulated by the following rules of R:
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b(j) : (S(1), Lj,+, Lj,0), lr ∈ Lj,0;

lr,α : · · · , (a sequence of pr1 instructions write(a1), · · · ,)
· · · , (prn instructions write(an)),

· · · l′r,α, (and prn+1
instructions ADD(1)), α ∈ {0,+};

l′r,+ : (NOP, {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 < 0;

l′r,+ : (ADD(1), {l′r,0}), if j − ir + pr,n+1 < M ;

l′r,0 : (NOP, {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 < M;

l′r,0 : (ADD(1), {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 ≥ M;

lh : halt.

Indeed, instruction b(j) corresponds to checking whether neuron n+ 1 has at least
M spikes, transitioning into the halting instruction, or into the set of instructions
associated with the corresponding applicable rules, in the context of the result of
the checking mentioned above. Sending spikes to output neurons is simulated by
writing the corresponding symbols on the tape. This goal is obtained, knowing
values j, ir, pr,n+1, and whether neuron 1 had at least M spikes or not, by transi-
tioning to instruction b((j − ir + pr,n+1)mod M) after incrementing register 1 the
needed number of times (0, 1 or 2), which is equal to (j − ir + pr,n+1div M) + d,
where d = 0 if neuron 1 had at least M spikes, and d = 1 otherwise (to com-
pensate for the subtraction done by instruction b(j) in the initial checking). The
simulation of instructions continues until we reach the situation where no rules of
the underlying spiking system are applicable, transitioning to some Lj,α = {lh}.

Finally, let us formally describe the instruction sequences from lr,α to l′r,α.
For the sake of simplicity of notation, we do not mention subscripts r, α in the
notation of the intermediate instructions, keeping in mind that these are different
instructions for different r, α. The difficulty for generating the string languages is
that, by the definition, all permutations are to be considered if spikes are sent to
multiple neurons 1, · · · ,m.

lr,α : (NOP, {s(pr1 , · · · , prn)});
s(i1, · · · , in) : (NOP, {sk(i1, · · · , in) | ik > 0, 1 ≤ k ≤ n}),
0 ≤ ij ≤ prj , 1 ≤ j ≤ n, (i1, · · · , in) 6= (0, · · · , 0);

s(k)(i1, · · · , in) : (write(ak), {s(i′1, · · · , i′n)}),
i′k = ik − 1, and i′j = ij , 1 ≤ j ≤ n, j 6= k,

0 ≤ ij ≤ prj , 1 ≤ j ≤ n, (i1, · · · , in) 6= (0, · · · , 0);

s(0, · · · , 0) : (NOP, {t(prn+1)});
t(i) : (ADD(n+ 1), t(i− 1)), 1 ≤ i ≤ prn+1 ;

t(0) : (NOP, l′r,α).

The rules above describe precisely the following behavior: to produce any sequence
with the desired numbers of occurrences of symbols a1, · · · , an, a symbol is non-
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deterministically chosen (out of those, the current desired number of occurrences
of which is positive) and written, iterating until all desired symbols are written.

Next, the register is incremented the needed number of times. This finishes the
explanation of the instruction sequences from lr,α to l′r,α, as well as the explanation
of the simulation.

Therefore, the class of languages generated by ESNP systems with only one
neuron containing rules and n output neurons is included in the class of languages
generated by 1-register machines with an output tape of n symbols.

Applying Parikh mapping to both classes, just replacing write-instructions by
ADD-instructions on new registers associated with these symbols, it follows that
the class of sets of vectors generated by ESNP systems with only one neuron
containing rules and n output neurons is included in the class of sets of vectors
generated by n+ 1-register machines where all registers except one are restricted
to be increment-only. These observations conclude the proof. ut

The inclusions formulated at the end of the proof given above are actually
characterizations, as we can also prove the opposite inclusion.

Lemma 3. For any register machine with output tape with only one register that
can be decremented respectively for any register machine with only one register
that can be decremented we can effectively construct an ESNP system generating
the same language respectively the same set of (vectors of) natural numbers.

Proof. By definition, output registers can only be incremented, so the main com-
putational power lies in the register which can also be decremented. The decre-
mentable register can be simulated together with storing the actual state by storing
the number dn+ ci where: n is the actual contents of the register, ci is a number
encoding the i-th instruction of the register machine, and d is a number bigger than
all ci. Then incrementing this first register by an instruction ci and jumping to cj
means consuming ci and adding d+ cj in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN + ci. Decrementing
means consuming d+ ci and adding cj in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN+ + ci; if n = 0, then ci
is consumed and ck is added in the actor neuron with ck being the instruction to
continue in the zero case. At the same time, with each of these simulation steps,
the output neurons can be incremented in the exact way as the output registers;
in the case of register machines with output tape, a spike is sent to the output
neuron representing the symbol to be written. Further details of this construction
are left to the reader. ut

4 ESNP Systems with White Hole Rules

In this section, we extend the model of extended spiking neural P systems, in-
troduced in [1] and described in the previous section, by white hole rules. We
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will show that with this new variant of extended spiking neural P systems, com-
putational completeness can already be obtained with only one actor neuron, by
proving that the computations of any register machines can already be simulated
in only one neuron equipped with the most general variant of white hole rules.
Using this single actor neuron to also extract the final result of a computation, we
even obtain weak universality with only one neuron.

As already mentioned in Remark 1, we are going to describe the checking sets
and the number of spikes by non-negative integers. The following definition is an
extension of Definition 1:

Definition 3. An extended spiking neural P system with white hole rules (of
degree m ≥ 1) (in the following we shall simply speak of an EESNP system) is a
construct

Π = (m,S,R)

where

• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m;

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron;

• R is a finite set of rules either being a white hole rule or a rule of the form as
already described in Definition 3 (i, E/k → P ; d) such that i ∈ [1..m] (specifying
that this rule is assigned to cell i), E ⊆ REG (N) is the checking set (the
current number of spikes in the neuron has to be from E if this rule shall be
executed), k ∈ N is the “number of spikes” (the energy) consumed by this rule, d
is the delay (the “refraction time” when neuron i performs this rule), and P is
a (possibly empty) set of productions of the form (l, w, t) where l ∈ [1..m] (thus
specifying the target cell), w ∈ N is the weight of the energy sent along the axon
from neuron i to neuron l, and t is the time needed before the information sent
from neuron i arrives at neuron l (i.e., the delay along the axon). A white hole
rule is of the form (i, E/all→ P ; d) where all means that the whole contents of
the neuron is taken out of the neuron; in the productions (l, w, t), either w ∈ N
as before or else w = (all + p)·q+z with p, q, z ∈ Q; provided (c+ p)·q+z, where
c denotes the contents of the neuron, is non-negative, then b(c+ p) · q + zc is
the number of spikes put on the axon to neuron l.
If the checking sets in all rules are finite, then Π is called a finite EESNP
system.

Allowing the white hole rules having productions being of the form w =
(all + p) · q+z with p, q, z ∈ Q is a very general variant, which can be restricted in
many ways, for example, by taking z ∈ Z or omitting any of the rational numbers
p, q, z ∈ Q or demanding them to be in N etc.

Obviously, every ESNPS also is an EESNPS, but without white hole rules, and
a finite EESNPS also is a finite ESNPS, as in this case the effect of white hole rules
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is also bounded, i.e., even with allowing the use of white hole rules, the following
lemma as a counterpart of Lemma 1 is still valid:

Lemma 4. For any EESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Hence, in the following our main interest is in EESNPS which really make use
of the whole power of white hole rules.

4.1 Examples for EESNPS

EESNPS can also be used for computing functions, not only for generating sets
of (vectors of) integer numbers. As a simple example, we show how the function
n 7→ 2n+1 can be computed by a deterministic EESPNS, which only has exactly
one rule in each of its two neurons; the output neuron 2 in this case is not free of
rules.

Example 2. Computing n 7→ 2n+1

(1,N+/1→ {(2, 1)})
1

(2, 2 · N+ + 1/all→ {(2, (all − 1) · 2)})
2

Initial value = n Initial value = 2

The rule (2, 2 · N+ + 1/all→ {(2, (all − 1) · 2)}) could also be written as
(2, 2 · N+ + 1/all→ {(2, (all) · 2− 2)}). In both cases, starting with the input
number n (of spikes) in neuron 1, with each decrement in neuron 1, the con-
tents of neuron 2 (not taking into account the enabling spike from neuron 1) is
doubled. The computation stops with 2n+1 in neuron 1, as with 0 in neuron 1
no enabling spike is sent to neuron 2 any more, hence, the firing condition is not
fulfilled any more. We finally remark that with the initial value 1 in neuron 2 we
can compute the function n 7→ 2n.

Example 3. Pure White Hole Model of EESNPS for DT0L Systems
Let G = ({a} , P, as) be a Lindenmayer system with the axiom as and the

finite set of tables P each containing a finite set of parallel productions of the
form a → ak. Such a system is called a tabled Lindenmayer system, abbreviated
T0L system, and it is called deterministic, abbreviated DT0L system, if each
table contains exactly one rule. Now let G = ({a} , P, as) be a DT0L system with
P =

{{
a→ aki

}
| 1 ≤ i ≤ n

}
. Then the following EESNPS using only white hole

rules computes the same set of natural numbers as are represented by the language
generated by G, with the results being taken with unconditional halting, i.e., taking
a result at every moment (see [2]).

{(1,N+/all→ {(1, all · ki)}) | 1 ≤ i ≤ n}
1

Initial value = s
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If we want to generate with normal halting, we have to add an additional output
neuron 2 and an additional rule {(1,N+/all→ {(2, all · 1)})} in neuron 1 which
at the end moves the contents of neuron 1 to neuron 2.

4.2 Universality with EESNPS

Lemma 5. The computation of any register machine can be simulated in only one
single actor neuron of an EESPNS.

Proof. Let M = (n, P, l0, lh) be an n-register machine, where n is the number of
registers, P is a finite set of instructions injectively labelled with elements from a
set of labels Lab (M), l0 is the initial label, and lh is the final label.

Then we can effectively construct an EESNPS Π = (m,S,R) simulating the
computations of M by encoding the contents ni of each register i, 1 ≤ i ≤ n, as
pni
i for different prime numbers pi. Moreover, for each instruction (label) j we take

a prime number qj , of course, also each of them being different from each other
and from the pi.

The instructions are simulated as follows:

– l1 : (ADD (r) , l2, l3) (ADD instruction)
This instruction can be simulated by the rules
{(1, ql1 · N+/all→ {(1, all · qlipr/ql1)}) | 2 ≤ i ≤ 3}
in neuron 1.

– l1 : (SUB (r) , l2, l3) (SUB instruction)
This instruction can be simulated by the rules
(1, ql1pr · N+/all→ {(1, all · ql2/ (ql1pr))})
and
(1, ql1 · N+ \ ql1pr · N+/all→ {(1, all · ql2/ql1)})
in neuron 1; the first rule simulates the decrement case, the second one the
zero test.

– lh : halt (HALT instruction)
This instruction can be simulated by the rule
(1, qlh · N+/all→ {(1, all · 1/qlh)})
in neuron 1.
In fact, after the application of the last rule, we end up with pm1

1 · · · pmn
n in

neuron 1, where (m1, · · · ,mn) is the vector computed by M and now, in the
prime number encoding, by Π as well.

All the checking sets we use are regular, and the productions in all the white
hole rules even again yield integer numbers. ut

Remark 2. As the productions in all the white hole rules of the EESNPS con-
structed in the preceding proof even again yield integer numbers, we could also
interpret this EESNPS as an ESPNS with exhaustive use of rules:

The white hole rules in the EESNPS constructed in the previous proof are of
the general form
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(1, q · N+/all→ {(1, all · p/q)})
with p and q being natural numbers. Each of these rules can be simulated in a
one-to-one manner by the rule

(1, q · N+/q → p)
used in an ESNPS with one neuron in the exhaustive way.

Theorem 3. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n+ 1 neurons.

Proof. We only have to show how to extract the results into the additional output
neurons from the single actor neuron which can do the whole computational task
as exhibited in Lemma 5. Yet this is pretty easy:

When the actor neuron reaches the halting state, the desired result mi for
output neuron i + 1 is stored as factor in this one number stored in the actor
neuron within the prime number encoding, i.e., as qmi

i , for 1 ≤ i ≤ n. Instead of
using the final rule (1, qlh · N+/all→ {(1, all · 1/qlh)}) in neuron 1 we now take
the rule (1, qlh · N+/all→ {(1, all · r1/qlh)}).

With the rules (1, riqiN+/all→ {(1, all · 1/ki) , (i+ 1, 1)}) , we can decode the
factor qmi

i to mi into output neuron i + 1, with the instruction code (prime
number) ri for 1 ≤ i ≤ n. If the contents of the actor neuron is not divid-
able by qi any more, we switch to the next instruction code ri+1 by the rule
(1, ri · N+ \ riqi · N+/all→ {(1, all · ri+1/ri)}). At the end, we can end up with 0
in the actor neuron after having used the rule (1, ri · N+ \ riqi · N+/all→ ∅) and
then stop with mi in output neuron i+ 1, 1 ≤ i ≤ n. ut

Theorem 4. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T ) = n can be generated by an ESNP system with n + 1
neurons.

Proof. In the case of generating strings, we have to simulate a register ma-
chine with output tape; hence, in addition to the simulating rules already de-
scribed in Lemma 5, we have to simulate the tape rule l1 : (write (a) , l2),
which in the EESNPS means sending one spike to the output neuron
N (a) representing the symbol a. This task is accomplished by the rule
(1, l1 · N+/all→ {(1, all · l2/l1) , (N (a) , 1)}). The rest of the construction and of
the proof is similar to that what we have done in the proof of Lemma 5. ut

5 Summary and Further Variants

In this paper, we have extended the model of extended spiking neural P systems
from [1] by white hole rules. With this new variant of extended spiking neural P
systems, computational completeness can already be obtained with only one actor
neuron, as the computations of any register machine can already be simulated in
only one neuron equipped with the most general variant of white hole rules. Using
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this single actor neuron to also extract the final result of a computation, we even
obtain weak universality with only one neuron.

A quite natural feature found in biology and also already used in the area of
spiking neural P systems is that of inhibiting neurons or axons between neurons,
i.e., certain connections from one neuron to another one can be specified as in-
hibiting ones – the spikes coming along such inhibiting axons then close the target
neuron for a time period given by the sum of all inhibiting spikes, e.g., see [3].
Such variants can also be considered for extended spiking neural P systems with
white hole rules.
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