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Summary. This paper develops a membrane-inspired evolutionary algorithm, PSMA
which is designed by using a population P system and a quantum-inspired evolution-
ary algorithm (QIEA). We use a population P system with three cells to organize three
types of QIEAs, where communications between cells are performed at the level of genes,
instead of the level of individuals reported in the existing membrane algorithms in the
literature. Knapsack problems are applied to discuss the parameter setting and to test
the effectiveness of PSMA. Experimental results show that PSMA is superior to four rep-
resentative QIEAs and our previous work with respect to the quality of solutions and the
elapsed time. We also use PSMA to solve the optimal distribution system reconfiguration
problem in power systems for minimizing the power loss.
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1 Introduction

According to the research development of interactions on membrane computing
and evolutionary computation, two kinds of research topics, membrane-inspired
evolutionary algorithms (MIEAs) and automated design of membrane computing
models (ADMCMSs), have been reported in the literature.
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The automated synthesis of some types of membrane computing models or of
a high level specification of them is envisaged to be obtained by applying vari-
ous heuristic search methods. ADMCMSs aim to circumvent the programmability
issue of membrane-based models for complex systems. In this direction, Suzuki
and Tanaka made the first attempts [20,21] to introduce a genetic method to the
Artificial Cell Systems (ACS) via a P system model called Abstract Rewriting Sys-
tems on Multisets [19,22], a rewriting Membrane Computing model where the P
systems have only one membrane. More recently, new attempts of using evolution-
ary algorithms to evolve P systems have been presented (see, e.g. [3,5,12,24]).
In [3], a nested evolutionary algorithm was used to tuning parameters of P system
models. The automatic design of P systems for fulfilling an specific task was first
discussed in [5], where genetic algorithms are used for finding simple P systems.
In [5], the membrane structure is settled and the genetic evolution only corre-
sponds to the set of rules. A population of P systems is considered and two genetic
operations, crossover and mutation perform the evolution of the population. This
work was extended from 4% to n? P systems in [12] by introducing a quantum-
inspired evolutionary algorithm (QIEA), where the set of rules were encoded by
a binary string and evolutionary operations (quantum-inspired gate (Q-gate) up-
date) were performed on genotypic individuals (quantum-inspired bits (Q-bits)),
instead of phenotypic individuals (binary bits) or evolution rules of P systems.
The outstanding advantage of this approach is that the difficulty of designing evo-
lutionary operators in the phenotypic space, such as crossover and mutation ones
is effectively avoided. In [24], the design of P systems for generating languages and
fitness functions were discussed.

A MIEA concentrates on generating new approximate algorithms for solving
various optimization problems by using the hierarchical or network structures of
membranes and rules of membrane systems, and the concepts and principles of
meta-heuristic search methodologies [33,34]. In [11,17], a cell-like membrane sys-
tem with a nested membrane structure (NMS) was used to combine with simulated
annealing and genetic algorithms to solve traveling salesman problems and con-
troller design problems for a marine diesel engine. In [31], a QIEA based on P
systems (QEPS) was proposed by incorporating a one-level membrane structure
(OLMS) with a QIEA. Knapsack problems were applied to verify that QEPS is
superior to its counterpart method and OLMS has an advantage over NMS. The
use of QEPS to solve sixty-five satisfiability problems with different complexities
was discussed in [33]. In [34], the QEPS performance was improved by introducing
a local search and the modified QEPS applied to analyze sixteen radar emitter sig-
nals. In [4,29], OLMS was integrated with differential evolution approaches and ant
colony optimization to solve numeric optimization and travelling salesman prob-
lems. In [35], the use of a cell-like membrane system with active membranes to
design a MIEA was designed for solving for combinatorial optimization problems.
In [27], a MIEA was presented to solve the DNA sequence design problem, which
has been proved to be NP-hard. In the above MIEASs, heuristic search methods,
such as genetic algorithms, QIEA, differential evolution and ant colony optimiza-
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tion, were considered as an independent subalgorithm inside each membrane. This
idea was extended by the proposal of a membrane algorithm with quantum-inspired
subalgorithm (MAQIS) in [30], where each membrane contains one component of
the approach and all the components inside membranes cooperate together to
produce offspring in a single evolutionary generation. The effectiveness of MAQIS
was tested on knapsack problems and image sparse decomposition problems. It is
worth pointing out that the analysis of the dynamic behavior of MIEAs in the
process of evolution with respect to population diversity and convergence showed
that MIEAs have better capabilities to balance exploration and exploitation than
their corresponding optimization algorithms used [32,36]. Until now MIEAs have
been studied in conjunction with cell-like membrane systems with fixed membrane
structures and by principally considering an evolutionary computing approach as
a subalgorithm put inside a membrane. Further research topics might include cell-
like membrane systems with active membranes, tissue-like membrane systems and
population membrane systems for exploring more real-world applications of mem-
brane computing.

In spite of the biological inspiration of membrane computing and evolutionary
computation, in the literature there are only a few examples of papers bridging
them. We continue to push this work forward. The main motivation of this work
is to use a population membrane system to design a MIEA for distribution system
reconfiguration. The algorithm called PSMA is designed by appropriately consider-
ing a population P system and three variants of QIEAs, where the communications
between cells are performed at the level of genes, instead of the level of individuals
reported in the existing membrane algorithms in the literature. This is the first
attempt to apply a population P system to design an approximate optimization
approach. Knapsack problems and distribution system reconfiguration are applied
to test the effectiveness and the application of PSMA, respectively. Experimental
results show that PSMA can obtain better solutions that four types of QIEAs and
QEPS (a MIEA reported in [31]) and is competitive to five types of optimiza-
tion algorithms for solving distribution system reconfiguration problems in power
systems.

This paper is organized as follows. Section 2 introduces briefly QIEA and pop-
ulation P systems, and then describes PSMA in detail. Section 3 presents exper-
iments conducted on knapsack problems for testing the PSMA performance. The
application of PSMA to distribution system reconfiguration is discussed in Section
4. Concluding remarks follow in Section 5.

2 PSMA

PSMA uses the network framework of a population P system to organize the
objects consisting of quantum-inspired bits (Q-bits) and classical bits, and rules
made up of several quantum-inspired gate (Q-gate) evolutionary rules like in QIEA
and evolution rules like in membrane systems. To clearly and concisely describe
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PSMA, we first give brief introductions on QIEAs and population P systems, and
then turn to a detailed presentation of the introduced MIEA.

2.1 QIEA

Inspired by concepts and principles of quantum computing such as quantum bits,
quantum gates and a probabilistic observation, Han and Kim [9] proposed a new
evolutionary algorithm, QIEA, for a classical computer instead of quantum one.
In QIEA, a Q-bit representation is applied to describe individuals of a popula-
tion; a Q-gate is introduced to generate the individuals at the next generation;
a probabilistic observation is employed to link Q-bit representation with binary
solutions [28]. A Q-bit is defined by a pair of numbers (a, 3) represented as [ 8],
where |a|? and |3|? are probabilities that the observation of the Q-bit will render a
‘0’ or ‘1’ state and & = arctan(8/«) is the phase of the Q-bit [9,28]. Normalization
requires that |a|? + |3 = 1. The evolution of QIEA depends on the operation
of Q-gates on Q-bit individuals. The basic pseudocode algorithm for a QIEA is
shown in Fig. 1 and a brief description for each step is as follows (here we just
list the outline of QIEA algorithm and details will be provided in the algorithm
description of PSMA (Section 2.3).).

Begin
t<«1
(i)  Initialize O(?)
While (not termination condition) do

(i) Make P(7) by observing the states of O()
(iii) Evaluate P(f)
(iv) Update Q(#) using Q-gates
W) Store the best solutions among P(¢)
t—t+1
End
End

Fig. 1. Pseudocode algorithm for a QIEA [9,28]

(i) In the “initialize Q(t)” step, a population Q(t) with n Q-bit individuals is

generated, Q(t)={q', g5, -+ ,q%}, at generation ¢, where g¢(i = 1,2,---, n)
is an arbitrary individual in Q(¢) and denoted as
ot t
¢ |adlagy| |ail:|
q; = , , 1
=[Gl W

where [ is the number of Q-bits, i.e., the string length of the Q-bit individual.
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(ii) By observing the states Q(t), binary solutions in P(t), where P(t) =

{xt, xt, .-+ xt} are produced at step t. According to the current proba-

bility, either |a§j|2 or |ﬁfj|2 of ¢, i=1,2,---,n,j=1,2,--- 1, a binary
bit 0 or 1 is generated. Thus, [ binary bits can construct a binary solution
xt(i=1,2,--- ,n). More details can be referred to Step 2 Observation in the
algorithm description of PSMA (Section 2.3).

(iii) Binary solutions :cz (j =1,2,--- ,n) are evaluated and assigned fitness values
with respect to a criterion.

(iv) In this step, Q-bit individuals in Q(¢) are updated by applying the current Q-
gates. The details will be expounded in Step 5 Q-gate update in the algorithm
description of PSMA (Section 2.3).

(v) The best solutions among P(t) are selected and stored.

2.2 Population P Systems

A population P system is a special kind of tissue P systems except for two im-
portant differences that the structure can be dynamically changed by using bond
making rules and cells are allowed to communicate indirectly by means of the
environment [2].

A population P system with degree n is formally defined as follows [2]

P = (Vv’yvaawe;CvaQv .. .,Cn,CO),

where

(i) V is a finite alphabet of symbols called objects;
(i) v=({1,2,...,n}, E), with E C {{i,5}|1 <i# j <n}, is a finite undirected
graph;
(iii) « is a finite set of bond making rules (i,xz1;x2,j), with z1,22 € V*, and
L<i#j<mn;
(iv) we € V* is a finite multiset of objects initially assigned to the environment;
(v) C; = (w;, Si, Ry), for each 1 <4 < n, with
(a) w; € V* a finite multiset of objects,
(b) S; is a finite set of communication rules; each rule has one of the following
forms: (a;b,in), (a;b, enter), (b, exit), for a € VJ{A}, b€V,
(¢) R; is a finite set of transformation rules of the form a — y, for a € V,
and y € VT,
(vi) ¢, is the (label of the) output cell, 1 < ¢, < n.

A population P system P is defined as a collection of n cells where each cell
C; corresponds in a one-to-one manner to a node % in a finite undirected graph =,
which defines the initial structure of the system. Cells are allowed to communicate
alongside the edges of the graph v, which are unordered pairs of the form {(i,7)},
with 1 < i # j < n. The cells C;, 1 < i < n, are associated in a one-to-one manner
with the set of nodes {1,2,...,n}. Each cell C; gets assigned a finite multiset of
objects wj, a finite set of communication rules S;, and a finite set of transformation
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rules R;. Each set R; contains rules of the form = — y that allow cell ¢ to consume
a multiset = in order to produce a new multiset y inside cell i. Communication
rules in S; of the form (a;b,in) are instead used by cell i to receive objects from
its neighboring cells if the object a is placed in the cell . The rules of the forms
(a; b, enter) mean that objects from the environment can enter the cell ¢ if an
object a is present in it. The rules of the forms (b, exit) allow the cell i to release
an object b in the environment.

Cell capability of moving objects alongside the edges of the graph is influenced
by particular bond making rules in « that allow cells to form new bonds. A bond
making rule (i, x1; 22, j) specifies that, in the presence of a multiset x; in the cell
i and a multiset xo inside the cell j, a new bond can be created between the two
cells. This means that a new edge {i,j} can be added to the graph that currently
defines the structure of the system. Thus the structure of a population P system
can be dynamically changed in the process of evolution of the system.

A step of a computation in a population P system P is defined as being per-
formed in two separate stages: the content of the cells is firstly modified by ap-
plying the communication rules in S;, and the transformation rules in R;, for all
1 <7 < n; the structure of the system is then modified by using the bond mak-
ing rules in a. A successful computation in P is defined as a finite sequence of
configurations from processing the initial multisets w; to the final state where the
content of the cells cannot be modified anymore by means of some communication
rules and transformation rules after a last bond making stage. The result is given
by the number of objects that are placed inside the output cell ¢, in the final
configuration.

2.3 PSMA

In this subsection, we design PSMA by applying the dynamic network structure of
a population P system with three cells and three representative variants of QIEAs
that have good performance in terms of the investigations in [9, 10, 28, 37, 38].
Specifically, three QIEAs, QIEA02 [9], QIEA04 [10] and QIEAQ7 [38], are placed
inside three cells of the population P system in a common environment. The ob-
jects consist of Q-bits and classical bits. The rules are composed of observation and
Q-gate update rules of QIEAs, transformation rules in the population P system,
evaluation rules for candidate solutions, communication rules for exchanging infor-
mation between the three cells and bond making rules for modifying the structure
of the system. Q-bits, organized as a Q-bit individual which is a special string of
Q-bits, are processed as multisets of objects. Classical bits, which are obtained
from their corresponding Q-bits by applying a probabilistic observation process,
are arranged as a binary string and are treated with also as multisets of objects.
Inside each cell, the processes of initialization, observation, evaluation and Q-gate
update processes for producing offspring are performed independently. Information
exchange between individuals are executed through communications between cells
at the level of genes. In PSMA, a binary string corresponds a candidate solution
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of a problem. The set of rules are responsible for evolving the system. The frame-
work of the population P system used in PSMA is shown in Fig. 2, where ovals
represent the cells and dashed lines indicate the links. The population P system
can be described as the following construct

P = (‘/7 s aamela C27 CS,Ce)v
where

(i) V is a finite alphabet that consists of all possible Q-bits and classical bits
(objects)(It is worth noting that the alphabet used in this paper is finite
because the number of possible Q-bits equals the product of the number of
Q-bit individuals and the length of a Q-bit individual);

(ii) v = ({1,2,3}, FE), with E = {(1,2), (1, 3),(2,3)}, is a finite undirected graph;

(iii) « is a finite set of bond making rules (i, A; A, j) or @ if no new bond can be
added;
(iv) we = X;

(v) C; = (w;, Si, Ry), for each 1 <4 < 3, with

(a) wi = q192- " Qn,;, where g;,i=1,2,--- n;, is a Q-bit individual as
shown in (1); n; is the number of individuals in cell C; and satisfies
3> 3n; = N, where N is the total number of individuals in this system;

(b) S; is a finite set of communication rules; each rule has one of the following
forms: (A;b,in), (b, exit), for b€V,

(¢) R; is a finite set of transformation rules of the form a — y, for a € V,
and y € VT;

(vi) c. means that the result is collected in the environment.

c a%,9%, 4R,
: (QIEAOZ)

\

G
QN1+N2+1'QN1+N2+2r : qN1+1IQN1+2' 'f11\11+1v2
(QIEA07) (QIEA04)

Fig. 2. The framework of the population P system involved in this paper

To clearly understand PSMA, in what follows we describe its algorithm step
by step.

Step 1 Initialization: a membrane structure of a population P system with
three cells in a common environment is created. An initial population with N
individuals is generated. Each individual is composed of a certain number of Q-
bits. The N individuals are randomly scattered across the three cells so that n; > 1
and Y 3n; = N,i=1,2,3.
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Step 2 Observation: a probabilistic observation process occurring in step (ii)
of QIEA is applied to establish a link between genotypes and phenotypes, i.e.,
between Q-bits and classical bits. To be specific, as for the Q-bit [« B]T, if a
random number r between 0 and 1 is less than |3|?, i.e., r <|3|?, the observed
classical bit equals 1, otherwise, it is 0. Thus, given a Q-bit individual, we can get
a corresponding binary solution. The observation process is shown in Fig. 3

Begin
If random[0,1) < |0£|2

Then x <0
Else x <« 1
End

Fig. 3. Observation process in PSMA

Step 3 FEwaluation: a specific criterion with respect to a problem is used to
evaluate all the binary solutions obtained in Step 2. This step is identical with
step (iii) of QIEA.

Step 4 Communication: Suppose that Pj represents the binary individuals
obtained in Step 2 inside cell Cy, P, = {z¥,zk, --- xk}, where k = 1,2,3;
ah=b b, - b, where bf; is a gene of «§ and m is the number of genes in an
individual; the fitness of the individual ¥ is f(z¥). In this step, as for each gene bfj
in the binary individual mf, a random number r. following a uniform distribution in
the range [0, 1] is produced; if r. < p., we randomly choose two binary individuals,
:c’gll and a:'jj, from the whole population (N individuals) except for the individual
azf, where k; and ko are the labels of cells, kq,k3=1,2,3; p. is a parameter denoting
a communication rate and will be discussed in the next section. If f (:c’jll) is better
5 *
to replace bfj. Thus we can obtain another binary individual ¥ corresponding to
azf In the process of replacement, the values of k1, k2 and k decide what structure
will be created and used to perform the communication for information exchange
between cells k and ki or ko. As for the values of kq, ko and k, there are three
cases: (1) ky = k2 = k means that no communication will be performed, i.e., the
dashed lines in Fig. 2 do not work and the three cells are separate; (2) k1 = kay # k
or k1 = k # kg or k1 # ko = k means that communication is performed between
two cells, i.e., only one of the dashed lines in Fig. 2 works and the communication
rule ()\; b, in) is performed between the two cells having the channel that works; (3)
k1 # ko # k means that the three dashed lines in Fig. 2 work and the three cells
communicate with each other. Thus the communication rule (\; b, in) is performed
between each pair of cells.

than f (:ij), we use the gene bfllj to replace b7., otherwise, we use the gene b’cfj
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Step 5 @-gate update: transformation rules of the form a — y is utilized to
evolve the objects in each of the three cells. The rules considered here are applied
according to evolutionary mechanisms of QIEAs, instead of the semantics of P
systems. The Q-gate update procedure

att! ot cosf —sinf| [af
[5t+1] = G(0) [5t] - {Sinﬁ COSQ:l {ﬁt} (2)
is used to transform the current Q-bit [ Bt]T into the corresponding Q-bit
[alf! BHI}T at generation t+1. The rotation angle § in the Q-gate G(6) in dif-
ferent cells has different definitions.
To be specific, in cell 1, the rotation angle is defined as 6 = s(a, ) - A, where
Af is the value of 6 determining the convergence speed of the algorithm and
s(a, B) is the sign of 6 deciding the search direction. The approach for looking up

the rotation angle 6 in [9] is shown in Tables 1, where f(.) is the fitness function;
« and B are the probabilities of the current Q-bit.

Table 1. Q-gate update approach in cell 1, where f(.) is the fitness function, Af and
s(a, B) are the value and the sign of 6, x and b are the bits of the binary individuals x}

and @}, respectively [9]
5(a,5)
T b flx) > f(b) A pg— 50
0 0 False 0 — —
0 0 True 0 - -
0 1 False 0.017 +1 -1
0 1 True 0 - -
1 0 False 0.017 +1 -1
1 0 True 0 - -
1 1 False 0 - -
1 1 True 0 - -

In cell 2, the Q-gate update procedure in (2) and the approach in Table
1 are firstly used. Then an additional process is applied to modify the Q-bit

[l ! BHI}T. The modification method is as follows.

(i) If |12 < e and |82 > 1 — ¢, [att )T = [e vVT—¢)

(i) If |a**1]2 > 1 — e and |BPH1]2 <, [at“ Bt‘*‘l]T = [\/1 —€ \/E}T
According to the investigation in [10], the parameter € is usually assigned as 0.01.
In cell 3, the approach for choosing the quantum rotation angle was defined by

using the ratio of the probabilities of Q-bits [38]. The rotation angle € is defined
as
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0 = Oos(, B)f(Va>V5) (3)

where a and [ represent the probabilities of a Q-bit; fy is an initial rotation angle
and is usually set to 0.057; s(«, 8) is a function determining the search direction
of the algorithm; f(va,vg) is a function of 7, or v, where 74 = |8|/®, v8 = 1/7a-
The values of s(«, ) and f(ya,73) can be obtained in Table 2.

Table 2. Q-gate update approach in cell 3, where f(.) is the fitness function, = and b
are the bits of the binary individuals &} and @}, respectively [38]

s(a, B)
z | b flz) = f(b) 550 | aB<0 | af=0 f(vas76)
0 0 false -1 +1 +1 exp(—vg)
0 0 true -1 +1 +1 exp(—vg)
0 1 false +1 -1 +1 exp(—7Ya)
0 1 true -1 +1 +1 exp(—vg)
1 0 false -1 +1 +1 exp(—vg)
1 0 true +1 -1 +1 exp(—7a)
1 1 false +1 -1 +1 exp(—7va)
1 1 true +1 -1 +1 exp(—7a)

Step 6 Halting: the algorithm stops when a prescribed number of evolutionary
generations is attained.

Step 7 Output: the communication rule (b, exit) is responsible for sending the
best solutions out to the environment at the end of the computation. To be spe-
cific, each cell send the best solution inside it out to the environment at the end of
the computation; thus there are three solutions coming from three cells in the envi-
ronment; through a comparison, we collect the best one among the three solutions
as the final solution of the computation.

3 Experiments

In this section, a well-known NP-hard combinatorial optimization problem, knap-
sack problem, is used to test the PSMA performance. The knapsack problem can
be described as selecting from among various items those items that are most prof-
itable, given that the knapsack has limited capacity [7,9]. The knapsack problem
is to select a subset from the given number of items so as to maximize the profit

f(@):

k
f(z) = Zpil‘i (4)
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subject to
k
i=1

where k is the number of items; p; is the profit of the i-th item; w; is the weight
of the i-th item; C is the capacity of the given knapsack; and z; is 0 or 1.
In the following experiments, strongly correlated sets of unsorted data are used

w; = uni formly random|[1,50]

pi = w; +25
and the average knapsack capacity C' is applied.

1 k

First of all, we use five knapsack problems with respective 600, 1200, 1600,
1800, 2400 and 3000 to discuss the choice of the parameter p. in PSMA. The
population size N=20. The the numbers, 20000, 30000, 40000, 60000 and 60000,
of function evaluations are used as the stopping conditions for knapsack problems
with 600, 1200, 1600, 1800, 2400 and 3000, respectively. Let p. vary from 0 to
1 with interval 0.05, i.e., there are 21 cases. In the experiment, we perform 30
independent runs for each of 21 values of p. of each knapsack problem. We record
the best, mean and worst solutions over 30 runs and the elapsed time per run.
Experimental results are shown in Fig. 4. It can be seen from these results that
the parameter p. could be assigned as the value ranged between 0.9 and 0.95 in
terms of the quality of solutions and the elapsed time. Thus we set p. to 0.9 in the
following experiments.

To test the effectiveness of PSMA, Fifteen knapsack problems that have the
items varied from 200 to 3000 items with interval 200 are used to conduct com-
parative experiments. Benchmark algorithms are considered to be composed of
four types of QIEAs and the membrane algorithm QEPS in [31]. The four QIEAs
include QIEA02 in [9], QIEA04 in [10], QIEAO07 in [38] and QIEAO08 [25]. 20 in-
dividuals are used in the six algorithms and 30 independent runs are performed
for each of the 15 cases of each algorithm. The stopping condition for the six
algorithms is set as follows: 20000 function evaluations for the first 4 knapsack
problems; 30000 function evaluations for the 3 knapsack problems with 1000, 1200
and 1400; 40000 function evaluations for the 4 knapsack problems with 1600, 1800,
2000 and 2200; 60000 function evaluations for the last 4 knapsack problems. The
best, mean and worst solutions over 30 independent runs and the elapsed time per
run are recorded and listed in Tables 3 and 4.

As shown in Tables 3 and 4, we can conclude that PSMA is superior to QIEA02,
QIEA04, QIEA07, QIEA08 and QEPS in terms of the the quality of best, mean
and worst solutions and the elapsed time. To show that PSMA really outperforms
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Table 3. Experimental results of the first 8 knapsack problems. Best, Mean, Worst and
Time represent the best, mean and worst solutions over 30 independent runs and the
elapsed time per run, respectively (to be continued)

items 200 400 600 800 1000 | 1200 | 1400 | 1600
Best | 5885 | 11650 | 17403 | 22940 | 28673 | 34399 | 39560 | 45277
Mean | 5786 | 11553 | 17173 | 22659 | 28333 | 33984 | 39149 | 44864
Worst | 5359 | 11396 | 16851 | 22010 | 27954 | 33424 | 38488 | 44423
Time 24 48 72 96 182 221 259 413
Best | 5749 | 11272 | 16561 | 21684 | 27024 | 32429 | 37329 | 42892
Mean | 5674 | 11081 | 16327 | 21499 | 26812 | 32210 | 37134 | 42596
Worst | 5627 | 10666 | 15680 | 20809 | 26524 | 31213 | 36028 | 42096
Time 29 57 89 115 225 272 320 547
Best | 5935 | 11850 | 17749 | 23390 | 29204 | 35099 | 40490 | 46403
Mean | 5893 | 11760 | 17627 | 23286 | 29080 | 34949 | 40267 | 46184
Worst | 5859 | 11700 | 17527 | 23139 | 28929 | 34822 | 40114 | 46002
Time 26 52 78 104 197 249 402 420
Best | 5456 | 10699 | 15734 | 20956 | 26073 | 31419 | 36384 | 41750
Mean | 5367 | 10615 | 15659 | 20747 | 25901 | 31244 | 36081 | 41499
Worst | 5325 | 10536 | 15591 | 20634 | 25775 | 31071 | 35942 | 41387
Time 29 58 92 126 249 309 376 599
Best | 5959 | 11873 | 17702 | 23403 | 29531 | 35441 | 40886 | 47242
Mean | 5945 | 11837 | 17647 | 23257 | 29373 | 35292 | 40722 | 47018

QIEA02

QIEA04

QIEA07

QIEA08

QEPS Worst | 5909 | 11778 | 17575 | 23109 | 29198 | 35061 | 40364 | 46672
Time 22 44 70 92 178 215 246 398
Best | 5984 | 11975 | 18000 | 23859 | 29822 | 35845 | 41412 | 47470

PSMA Mean | 5963 | 11965 | 17945 | 23782 | 29750 | 35782 | 41301 | 47365

Worst | 5959 | 11946 | 17902 | 23729 | 29687 | 35727 | 41214 | 47300
Time | 32 64 97 129 240 288 337 512

the other five algorithms, we go further to employ statistical techniques to analyze
the behavior of the six algorithms over the 15 knapsack problems. Both parametric
and non-parametric methods are considered. The parametric statistical analysis,
also called single-problem analysis [6], is used to analyze whether there is a sig-
nificant difference over one optimization problem between two algorithms. The
non-parametric statistical test, also called multiple-problem analysis [6], is applied
to compare different algorithms whose results represent average values for each
problem. In Tables 5, a 95% confidence t-test is applied to check whether the mean
solutions of the two pairs of algorithms, PSMA vs. QIEA02, QIEA04, QIEA07,
QIEA08 and QEPS, are significantly different or not. Two non-parametric tests,
Wilcoxon’s and Friedman’s tests, are employed to check whether there are signifi-
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Table 4. Experimental results of the last 7 knapsack problems. Best, Mean, Worst and
Time represent the best, mean and worst solutions over 30 independent runs and the
elapsed time per run, respectively (continued)

items 1800 2000 2200 2400 2600 2800 3000
Best | 50784 | 56453 | 61645 | 66683 | 72546 | 77511 | 83294
QIEA02 Mean | 50163 | 55879 | 61175 | 65984 | 71992 | 76734 | 82608
Worst | 49506 | 55129 | 59820 | 64981 | 71497 | 75924 | 82020

Time 475 538 619 1056 1176 1310 1454
Best | 47920 | 53276 | 58723 | 62952 | 68858 | 73355 | 79068
QIEA04 Mean | 47513 | 53018 | 58278 | 62523 | 68448 | 72938 | 78548
Worst | 46444 | 51889 | 56942 | 62250 | 66910 | 71360 | 76743

Time 569 636 708 1268 1356 1448 1560
Best | 51882 | 57579 | 63199 | 68351 | 74531 | 79471 | 85343
QIEAOT Mean | 51669 | 57414 | 62985 | 68093 | 74237 | 79215 | 85073
Worst | 51459 | 57277 | 62768 | 67932 | 73998 | 78685 | 84753

Time 475 530 587 964 1049 1133 1222

Best | 46507 | 52127 | 57221 | 61294 | 67228 | 71600 | 77142
QIEA0S Mean | 46293 | 51816 | 57008 | 61063 | 66950 | 71308 | 76867
Worst | 46155 | 51618 | 56811 | 60894 | 66817 | 71121 | 76709

Time 702 815 983 1706 1950 2230 2515
Best | 52772 | 58775 | 64513 | 70402 | 76621 | 81918 | 88207
QEPS Mean | 52600 | 58543 | 64230 | 70015 | 76245 | 81486 | 87657
Worst | 52395 | 58065 | 63680 | 69726 | 75296 | 80683 | 87044

Time 464 523 605 1051 1170 1289 1441
Best | 53201 | 59091 | 64955 | 70244 | 76569 | 81806 | 87899
PSMA Mean | 53071 | 58968 | 64785 | 70134 | 76442 | 81664 | 87740
Worst | 52982 | 58819 | 64669 | 70024 | 76311 | 81505 | 87565

Time 576 643 709 1156 1253 1352 1451

cant differences between the two pairs of algorithms, PSMA vs. QIEA02, QIEA04,
QIEA07, QIEA08 and QEPS. The level of significance considered is 0.05. The re-
sults of Wilcoxon’s and Friedman’s tests are shown in Table 6. In Tables 5 and
6, The symbols “+” and “~” represent significant difference and no significant
difference, respectively.

As shown in Tables 5 and 6, the t-test results demonstrate that there are signif-
icant differences between the two pairs of algorithms, PSMA vs. QIEA02, QIEA04,
QIEA07, QIEAO08 and QEPS. The p-values of the Wilcoxon’s and Friedman’s tests
in Table 6 are far smaller than the level of significance 0.05, which indicates that
PSMA really outperforms QIEA02, QIEA04, QIEA07, QIEA08 and QEPS.



Table 5. The results of t-test for the algorithms in Tables 3 and 4. The symbols “+”
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and “~” represent significant difference and no significant difference, respectively
PSMA vs. | QIEA02 QIEA04 QIEA07 QIEA0S QEPS
200 items |3.41e-14 (+)|4.57e-49 (4)|3.12e-24 (+) | 1.41e-65 (4) | 7.83e-08 (+)
400 items |6.71e-40 (+) | 2.81e-49 (+) [9.19e-38 (+) | 1.93e-81 (+) [1.81e-33 (+)
600 items | 7.30e-36 (+)|6.41e-53 (4) | 7.29e-35 (+) | 1.99e-92 (4) | 1.72e-43 (+)
800 items |4.39e-38 (+) | 1.66e-60 (+) | 7.09e-47 (+) | 6.87e-83 (4) |1.24e-44 (+)
1000 items | 5.93e-44 (+) | 3.49e-77 (+) | 1.71e-48 (+) | 4.70e-94 (4) |1.77e-28 (+)
1200 items | 1.67e-43 (+) | 8.17e-64 (+) | 7.48e-50 (+) | 5.28e-89 (+) |4.92e-38 (+)
1400 items | 5.58e-49 (+) | 6.68e-66 (+) | 3.65e-51 (+) | 1.06e-92 (4) |8.74e-33 (+)
1600 items | 4.75e-54 (+) | 6.57e-82 (+) | 6.17e-53 (+) | 2.12e-98 (+) |4.43e-21 (+)
1800 items | 1.43e-48 (+) | 1.32e-71 (+) | 1.61e-59 (+) | 3.02e-98 (4) |1.06e-32 (+)
2000 items [ 3.98¢-50 (+) | 5.76e-73 (+) [ 6.57e-63 (+) | 1.23e-94 (+) |3.71e-19 (+)
2200 items | 9.07e-51 (+) | 2.02e-69 (+) | 6.06e-59 (+) | 4.94e-97 (+) | 7.45e-22 (+)
2400 items [ 9.34e-50 (+) | 8.21e-88 (+) | 6.78e-63 (+) [ 7.97e-101 (+) ] 2.70e-03 (+)
2600 items | 6.98e-62 (+) | 3.20e-72 (+) | 2.24e-62 (+) | 4.07e-101 (+) | 6.71e-04 (+)
2800 items | 8.78¢-59 (+) [ 3.91e-73 (+) [ 1.45e-58 (+) | 7.47e-102 (+) | 1.60e-03 (+)
3000 items | 5.86e-64 (+) |9.18e-73 (+) | 1.36e-64 (+) | 1.08e-102 (+) | 1.16e-01 (-)

Table 6. The p-values of Wilcoxon’s and Friedman’s tests for the algorithms in Tables

3 and 4. The symbol + represents significant difference

PSMA vs.| QIEA02 QIEA04 QIEA07 QIEA08 QEPS
Wilcoxon | 6.1035e-5(+4) | 6.1035e-5(+) | 6.1035¢-5(+) [ 6.1035¢-5(+) | 6.1035¢-5(+)
Friedman | 0.0142(4) | 0.0142 (+) | 0.0142 (+) | 0.0142 (4) | 0.0142 (+)
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4 Distribution System Reconfiguration

Power network reconfiguration is an important process in the improvement of
operating conditions of a power system and in planning studies, service restoration
and distribution automation when remote-controlled switches are employed [1,
15]. The optimal distribution system reconfiguration problem is to minimize the
power loss of the system by changing the topology of distribution systems through
altering the open/closed status of sectionalizing switches. Because there are many
candidate-switching combinations in a distribution system, the distribution system
reconfiguration is a complex combinatorial problem with a large number of integer
and continuous variables and various constraints such as power flow equations,
upper and lower bounds of nodal voltages, upper and lower bounds of line currents,
feasible conditions in terms of network topology. As usual the problem can be
formulated as a minimization cost function f [1,23], i.e.,
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ming =3 i e (7

Subject to
g9(x) =0 ®)
Vinin < Vi < Vinaa )
Imn < [ < [mew (10)
det(A) =1 or — 1(for radial systems) (11)
det(A) = O(for not radial systems) (12)

where

f is the objective function (kW);

L is the number of branches;

P; is the active power at sending end of branch g;

Q; is the reactive power at sending end of branch i;

V., is the voltage at node n;

I; is the line current at branch ;

g(z) is the power flow equations;

Vinin and V4. are the lower and upper voltage limits, respectively;

I and I are the lower and upper current limits, respectively;

A is the bus incidence matrix;

r; is the resistance of branch 7.

The PSMA described above is used to solve the IEEE 33-bus and PG&E 69-bus
distribution system reconfiguration problems. The IEEE 33-bus and PG&E 69-bus
systems are shown in Fig. 5 and Fig. 6, respectively. Both of them are widely used
as examples to test the performance of various optimization approaches. As shown
in Fig. 5, the IEEE 33-bus system has 33 buses, 37 branches and 5 tie-lines. The
normally open switches are 33, 34, 35, 36 and 37. The initial real power losses
(before reconfiguration) are 202.68 kW. The PG&E 69-bus systems consists of 69
buses, 68 sectionalizing switches and 5 tie switches. The normally open switches
are 69, 70, 71, 72 and 73. The initial real power losses (before reconfiguration) are
226.4419 kW. The algorithm for solving the distribution system reconfiguration
problem by using PSMA is the same as the description in Section 2.3 except
that Step 3 Evaluation considers (7) as the candidate solution criterion. In the
experiment, PSMA uses 10 individuals as a population and 0.9 as the value of p,.
After 100 evolutionary generations, we obtain the optimal result reported in the
literature. The experimental result of the IEEE 33-bus system is listed in Table 7,
where results obtained by five optimization approaches, a heuristic approach [15],
SA+TS [13], MTS [16], PSO [1] and ACO [23], reported in the recent literature,
are also provided to be as a comparison. The experimental result from the PG&E
69-bus system is shown in Table 8, where ACS [8], HPSO [14], VSHDE [18] and
ACO [23] are considered as benchmark optimization approaches.
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Fig. 6. PG&E 69-bus system

Table 7 shows that PSMA is competitive to the nine optimization approaches,
a heuristic approach, SA+TS, MTS, PSO and ACO, due to the optimal solution
obtained. The experimental results in Table 8 show that PSMA achieves lower real
power losses and higher minimum node voltage than ACS, HPSO, VSHDE and
IIGA. These results indicate that the better solution PSMA can obtain, the more
complex the power system is.
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Table 7. Results provided by PSMA for the IEEE 33-bus test system. MNV represents
minimum node voltage

Methods Optimal configuration | Real power loss (kW) | MNV (pu)
Before reconfiguration 33, 34, 35, 36, 37 202.68 0.9378
Heuristic approach [15] 7,9, 14, 32, 37 139.55 0.9378
SA + TS [13] 7,9, 14, 32, 37 139.55 0.9378
MTS [16] 7,9, 14, 32, 37 139.55 0.9378
PSO [1] 7,9, 14, 32, 37 139.55 0.9378
ACO [23] 7,9, 14, 32, 37 139.55 0.9378
PSMA 7,9, 14, 32, 37 139.55 0.9378

Table 8. Results provided by PSMA for the PG&E 69-bus test system. MNV represents
minimum node voltage

Methods Optimal configuration | Real power loss (kW) | MNV (pu)
Before reconfiguration 69, 70, 71, 72, 73 226.4419 0.9089
ACS [g] 61, 69, 14, 70, 55 99.519 0.943
HPSO [14] 69, 12, 14, 47, 50 99.6704 0.9428
VSHDE [18] 11, 24, 28, 43, 56 99.6252 0.9427
IIGA [26] 69, 14, 70, 47, 50 99.618 0.9427
PSMA 47,12, 50, 14, 69 99.4944 0.9441

5 Conclusions

This paper is a continuous work on how to appropriately combine membrane com-
puting models and evolutionary algorithms. This is the first attempt to use a pop-
ulation P system to design an approximate optimization algorithm. Extensively
comparative experiments conducted on knapsack problems show that PSMA has
a good performance with respect to the search capability and elapsed time. We
also use PSMA to solve the distribution system reconfiguration problem in the
area of power systems and experimental results are also attractive. Further work
will focus on more and complex distribution system reconfiguration problems.
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