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Summary. Spiking neural P systems (in short, SN P systems) and their variants, in-
cluding fuzzy spiking neural P systems (in short, FSN P systems), generally lack learning
ability so far. Aiming at this problem, a class of modified FSN P systems are proposed in
this paper, called adaptive fuzzy spiking neural P systems (in short, AFSN P systems).
The AFSN P systems not only can model weighted fuzzy production rules in fuzzy knowl-
edge base but also can perform dynamically fuzzy reasoning. It is more important that
the AFSN P systems have learning ability like neural networks. Based on neuron’s firing
mechanisms, a fuzzy reasoning algorithm and a learning algorithm are developed. An
example is included to illustrate the learning ability of the AFSN P systems.
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1 Introduction

Spiking neural P systems (in short, SN P systems) firstly introduced by Ionescu
et al. in 2006 [1], are a class of distributed parallel computing models, which
are incorporated into membrane computing from the way that biological neu-
rons communicate through electrical impulses of identical form (spikes) [2]. Since
then, a large number of SN P systems and their variants have been proposed
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. From the viewpoint of real-world applications, SN
P systems have attractive due to the following features: (i) parallel computing
advantage, (ii) high understandability (due to their directed graph structure), (iii)
dynamic feature (neurons firing and spiking mechanisms make them suitable to
model dynamic behaviors of a system), (iv) synchronization (that makes them
suitable to describe concurrent events or activities), (v) non-linearly (that makes
them suitable to process non-linear situation), and so on. Recently, in order to
take full the advantage of SN P systems, a class of extended SN P systems were
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proposed by introducing fuzzy logic, which were called fuzzy spiking neural P
systems (in short, FSN P systems) [12, 13, 14, 15]. The motivation of proposing
these FSN P systems is to deal with the representation of fuzzy knowledge and
model fuzzy reasoning in some real-world applications, such as process control,
expert system, fault diagnosing, etc. As we know, since knowledge in real-world
applications mentioned above is frequently updated, they are essentially dynamic
systems. This requires that the FSN P systems should be adaptive, that at, FSN
P systems must have ability to adjust themselves. However, the FSN P systems
might fails to cope with potential changes of actual systems due to their lack of
adaptive or learning mechanism. Besides, a few of adaptive SN P systems have
been addressed in recent years [16, 17].

In this paper, we propose a class of modified FSN P systems, which are called
adaptive fuzzy spiking neural P systems (in short, AFSN P systems). The practical
motivation is to build a novel way to deal with the learning problem of dynamical
fuzzy knowledge in some real-world applications under the framework of SN P
systems. For this purpose, based on neuron’s firing mechanisms, a fuzzy reasoning
algorithm and a learning algorithm are developed in this paper.

The rest of this paper is organized as follows. In Section 2, we firstly present
the AFSN P systems, and then describe a way to model weighted fuzzy production
rules by the AFSN P systems, finally move on to give the developed fuzzy reasoning
algorithm and learning algorithm. Simulation example is provided in Section 3.
Finally, Section 4 draws the conclusions.

2 AFSN P Systems

2.1 Definition of AFSN P Systems

Currently, fuzzy spiking neural P systems (FSN P Systems, in short) have been
discussed [12, 13, 14, 15]. However, they can not adjust themselves and lack learn-
ing ability. In this paper, we will introduce “adaptive” mechanism into the FSN P
systems to propose a class of adaptive FSN P systems, called AFSN P systems.

Definition 1. An AFSN P systems ( of degree m ≥ 1) is a construct of the form

Π = (A,Np, Nr, syn, I,O)

where

1) A={a} is the singleton alphabet (the object a is called spike);
2) Np = {σp1, σp2, . . . , σpm} is called proposition neuron set, where σpi is its

i-th proposition neuron associated with a fuzzy proposition in weighted fuzzy
production rules, 1 ≤ i ≤ m. Each proposition neuron σpi has the form
σpi = (αi,ωi, λi, ri), where:
a) αi ∈ [0, 1] and it is called the (potential) value of pulse contained in propo-

sition neuron σpi. αi is used to express fuzzy truth value of the proposition
associated with proposition neuron σpi.
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b) ωi = (ωi1, ωi2, . . . , ωisi) is called the output weight vector of the neuron σpi,
where component ωij ∈ [0, 1] is the weight on j-th output synapse (arc) of
the neuron, 1 ≤ j ≤ si, and si is the number of all output synapses (arc)
of the neuron.

c) ri is a firing/spiking rule, of the form E/aα → aα, where α ∈ [0, 1]. E =
{α ≥ λi} is called the firing condition, i.e., if α ≥ λi, then the firing rule
will be enabled, where λi ∈ [0, 1) is called the firing threshold.

3) Nr = {σr1, σr2, . . . , σrn} is called rule neuron set, where σri is its i-th rule
neuron associated with a weighted fuzzy production rule, 1 ≤ i ≤ n. Each rule
neuron σri has the form σri = (αi, γi, τi, ri), where
a) αi ∈ [0, 1] is called the (potential) value of pulse contained in rule neuron

σri.
b) γi ∈ [0, 1] is called the certain factor. It represents the strength of belief of

the weighted fuzzy production rule associated with rule neuron σri. At the
same time, γi is also the weight on output synapse (arc) of the neuron.

c) ri is a firing/spiking rule, of the form E/aα → aβ, where α, β ∈ [0, 1].
E = {α ≥ τi} is called the firing condition, i.e., if α ≥ τi, then the firing
rule will be enabled, where τi ∈ [0, 1) is called the firing threshold.

4) syn ⊆ (Np ×Nr)
∪
(Nr ×Np) indicates synapses between both proposition neu-

rons and rule neurons. Note that there are no synapse connections between any
two proposition neurons or between any two rule neurons;

5) I,O ⊆ Np are input neuron set and output neuron set, respectively.

In the AFSN P systems, there are two types of neurons: proposition neurons
and rule neurons. In this paper, we denote proposition neurons and rule neurons
by circles and rectangles respectively, shown in Fig. 1.

(a) (b)

Fig. 1. Two types of neurons: (a) a proposition neuron; (b) a rule neuron.

For a proposition neuron, its content is used to express the fuzzy truth value of
the fuzzy proposition associated with it. When its firing condition E = {α ≥ λi}
is satisfied, the neuron fires and its firing/spiking rule E/aα → aα can be applied.
Applying the firing/spiking rule E/aα → aα means that the spike contained in
the neuron is consumed, and then it produces a spike with value α, which will
be weighted by the corresponding weight factor. Thus, its outputs are α · ωi(i =
1, 2, . . . , s).
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Note that each rule neuron is assigned only an output weight ν. Suppose that
a rule neuron has k predecessor proposition neurons. When it receives k spikes
from its all predecessor proposition neurons and its firing condition E = {α ≥ τi}
is satisfied, then it fires and its firing/spiking rule E/aα → aβ can be applied. The
value of the received k spikes is calculated as its content α: α = x1+x2+ . . .+xk.
Applying the firing/spiking rule E/aα → aβ means that the spike contained in the
neuron is consumed, and then it produces a spike with value β where β = α · γ.
Thus, its all outputs are α · γ.

Suppose that a proposition neuron has k predecessor rule neurons and it re-
ceives k spikes from them. Let output weights of the k predecessor rule neurons
be γ1, γ2, . . . , γk respectively. If (potential) values of the received k spikes are
x1, x2, . . . , xk respectively, then its new content is computed by α = (x1 + x2 +
. . .+ xk)/(γ1 + γ2 + . . .+ γk).

2.2 Modeling Weighted Fuzzy Production Rules by AFSN P Systems

In many real-world applications such as expert system, fault diagnosing and pro-
cess control, fuzzy production rules are used to describe the fuzzy relation between
two propositions. In order to consider the degree of importance of each proposition
in the antecedent contributing to the consequent, weighted fuzzy production rule
has been introduced, and a more detained description can be found in [18, 19, 20].

However, we will discuss the following three types of weighted fuzzy production
rules in order to study AFSN P systems in this paper.

Type 1: A simple fuzzy production rule

R : IF p1 THEN p2 (CF = γ), τ, ω

Type 2: A composite conjunctive rule

R : IF p1 AND p2 AND · · · AND pn THEN pn+1 (CF = γ), τ, ω1, ω2, . . . , ωn

Type 3: A composite disjunctive rule

R : IF p1 OR p2 OR · · · OR pn THEN pn+1 (CF = γ), τ, ω1, ω2, . . . , ωn

Above three types of weighted fuzzy production rules can be modeled by the
proposed AFSN P systems according to the idea that each fuzzy proposition is
mapped into one proposition neuron and each fuzzy production rule is mapped
into one rule neuron or several rule neurons. Thus, the three types of weighted
fuzzy production rules are represented by the following three AFSN P systems,
Π1, Π2 and Π3, respectively:

• Π1 = (A, {σp1, σp2}, {σr1}, syn, I, O) where:
(1) A = {a}
(2) For each j (j = 1, 2), σpj = (αj ,ω, λ, rj) is a proposition neuron associated

with proposition pj , and rj is a spiking rule of the form E/aα → aα.
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(3) σr1 = (α3, γ, τ, r3) is a rule neuron associated with rule R, and r3 is a
spiking rule of the form E/aα → aβ .

(4) syn = {(σp1, σr1), (σr1, σp2)}.
(5) I = {σp1}, O = {σp2}.

Fig. 2(a) shows the AFSN P system model of Type 1 : Π1.

• Π2 = (A, {σp1, σp2, . . . , σpn, σp(n+1)}, {σr1}, syn, I,O) where:
(1) A = {a}
(2) For each j (j = 1, . . . , n, n + 1), σpj = (αj ,ωj , λj , rj) is a proposition

neuron associated with proposition pj , and rj is a spiking rule of the form
E/aα → aα.

(3) σr1 = (αn+2, γ, τ, rn+2) is a rule neuron associated with rule R, and rn+2

is a spiking rule of the form E/aα → aβ .
(4) syn = {(σp1, σr1), (σp2, σr1), . . . , (σpn, σr1), (σr1, σp(n+1))}.
(5) I = {σp1, σp2, . . . , σpn}, O = {σp(n+1)}.

Fig. 2(b) shows the AFSN P system model of Type 2 : Π2 (in the case of n = 2).

• Π3 = (A, {σp1, σp2, . . . , σpn, σp(n+1)}, {σr1, σr2, . . . , σrn}, syn, I, O) where:
(1) A = {a}
(2) For each j (j = 1, . . . , n, n+1), σj = (αj ,ωj , λj , rj) is a proposition neuron

associated with proposition pj , and rj is a spiking rule of the form E/aα →
aα.

(3) For each j (j = 1, . . . , n), σrj = (αn+j+1, γj , τj , rn+j+1) is a rule neuron
associated with rule R, and rn+j+1 is a spiking rule of the form E/aα → aβ .

(4) syn = {(σp1, σr1), (σp2, σr2), . . . , (σpn, σrn), (σr1, σp(n+1)), (σr2, σp(n+1)),
. . . , (σrn, σp(n+1))}.

(5) I = {σp1, σp2, . . . , σpn}, O = {σp(n+1)}.

Fig. 2(c) shows the AFSN P system model of Type 3 : Π3 (in the case of n = 2).

2.3 Fuzzy Reasoning Based on AFSN P systems

Since the presented AFSN P systems mainly focus on the weighted fuzzy reasoning,
we assume that firing threshold of every proposition neuron is λ = 0. This means
that once a proposition neuron contains a spike with α > 0 it will fires. According
to firing mechanism of AFSN P systems, fuzzy reasoning processes of above three
types of weighted fuzzy production rules can be described as follows:

• For Type 1, we can set ω = 1 since there is only one proposition in antecedent
of the rule R. Initially, assume that neuron σp1 contains a spike with α1 > 0.
At first step, neuron σp1 fires and emits a spike with α1. At second step, neuron
σr1 receives the spike. If α1 ≥ τ , then neuron σr1 fires and emits a spike with
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Fig. 2. AFSN P systems of weighted fuzzy production rules of three types: (a) Type 1 ;
(b) Type 2 ; (c) Type 3.

α1 ·γ. Neuron σp2 will receive the spike at next step. Thus, α2 can be expressed
by

α2 =

{
α1 · γ, if α1 ≥ τ
0, if α1 < τ

(1)

• For Type 2, assume that neurons σp1, σp2, . . . , σpn contain a spike with α1 >
0, α2 > 0, . . . , αn > 0, respectively. At first step, the n neuron fire simulta-
neously, and emit a spike with α1, α2, . . . , αn, respectively. At second step,
neuron σr1 receives the n spikes and its content is updated as

∑n
i=1 αi · ωi. If

(
∑n

i=1 αi ·ωi) ≥ τ , then neuron σr1 fires and emits a spike with (
∑n

i=1 αi ·ωi)·γ.
Neuron σp(n+1) will receive the spike at next step. Thus, αn+1 can be expressed
by
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αn+1 =


( n∑

i=1

αi · ωi

)
· γ, if

( n∑
i=1

αi · ωi

)
≥ τ

0, if
( n∑

i=1

αi · ωi

)
< τ

(2)

• For Type 3, we can set ω1 = ω2 = 1. Assume that neurons σp1, σp2, . . . , σpn

contain a spike with α1 > 0, α2 > 0, . . . , αn > 0, respectively. At first step, the
n neuron fire simultaneously, and emit a spike with α1, α2, . . . , αn, respectively.
At second step, each neuron σri receives a spike sent by σpi, whose value is αi,
i = 1, 2, . . . , n. Let J = {j | αj ≥ τj , j = 1, 2, . . . , n}. Then neurons σrj(j ∈ J)
fire and each neuron of them emits a spike. Neuron σp(n+1) will receive the
spikes at next step. Thus, αn+1 can be expressed by

αn+1 =


( ∑

j∈J

αj · γj
)/( ∑

j∈J

γj

)
, if αj ≥ τj , j ∈ J

0, if αj < τj , j = 1, 2 . . . , n
(3)

From fuzzy reasoning process described above, we can see that fuzzy reasoning
based on AFSN P systems are easily implemented. Thus, through firing mecha-
nism of AFSN P systems, certainty factors can be reasoned from a set of known
antecedent propositions to a set of consequent propositions step by step.

Let Pcurrent = {σpi | σpi ∈ Np, αi > 0} be a set of current enabled proposition
neurons. If a neuron σpi ∈ Pcurrent, then it will fire. Let Rcurrent = {σrj | σrj ∈
Nr, αj > τj} be a set of current enabled rule neurons. Likewise, if a neuron σrj ∈
Rcurrent, then it will fire. Therefore, fuzzy reasoning algorithm based on AFSN P
systems can be summarized as follows.

program Fuzzy_reasoning_algorithm

input

Certainty factors of a set of antecedent propositions, which

are corresponding to I of AFSN P systems;

output

Certainty factors of a set of consequence propositions, which

are corresponding to O of AFSN P systems;

begin

Pcurrent := I;

Rcurrent := {}

P := Np;

R := Nr;

repeat

Compute the outputs of current enabled proposition

neurons in Pcurrent;

Find current enabled rule neurons Rcurrent form R;

Compute the outputs of current enabled proposition

neurons in Rcurrent;

P := P - Pcurrent;
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R := R - Rcurrent;

Find current enabled proposition neurons Pcurrent form P;

until P = {} and R = {}

end.

2.4 Learning of AFSN P systems

In order to deal with the learning problem of AFSN P systems, we assume that

1) AFSN P system model Π has been developed;
2) In the AFSN P system model, weights and thresholds of all rule neurons are

known;
3) Certainty factor values of all neurons in I and O are given.

From the discussion above, we know that the presented AFSN P systems are
mainly used to model weighted fuzzy production rules and these rules consist of
three types. So, an AFSN P system model can be divided into three types of
sub-structures, which are shown in Fig.2(a)-(c). Therefore, the learning of entire
system can be decomposed to several simpler learning procedures of the sub-nets.
This means that the complexity of the learning algorithm can be greatly reduced.
According to above assumption, certainty factors of the proposition neurons associ-
ated with antecedent propositions are known, however, their weights are unknown.
Therefore, these weights need to be learned. Note that for AFSN P system Π1 of
Type 1, we have ω1 = 1, while we have ω1 = ω2 = 1 for AFSN P system Π3 of
Type 3. So, only weights of AFSN P system Π2 of Type 2 need to be learned.
In order to carry out the weight learning, the AFSN P system Π2 of Type 2 can
be converted to a single-layer neural network, shown in Fig.3. So, Widrow-Hoff
learning law (Least Mean Square) can be applied in this paper.

a1

an

an+1

wn

w1

a2 w2

Fig. 3. The single-layer neural network converted by the AFSN P system Π2 of Type 2.

We can summarize the learning algorithm of AFSN P systems as follows
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program Weight_learning_algorithm

input

Training data set D;

m = |D|;

Learning rate delta;

output

The weights (w1, w2,..., wn);

begin

Select a set of initial weights;

i=1;

repeat

Compute the outputs error of i-th training sample;

Update the weights (w1, w2,..., wn) using Widrow-Hoff

learning law with learning rate delta;

i = i + 1

until i>m

end.

3 Simulation

In this section, a typical example is selected to illustrate the learning ability.

Example 1. Let p1, p2, p3, p4, p5 and p6 are related propositions of a knowledge
base of fault diagnosis. There are the following weighted fuzzy production rules:
R1: IF p1 THEN p4 (γ1, τ1)
R2: IF p2 AND p4 THEN p5 (ω2, ω4, γ2, τ2)
R3: IF p3 AND p5 THEN p6 (γ3, γ4, τ3, τ4)

This example includes three types of rules: R1 is a simple rule and R2 is a com-
posite conjunctive rule, while R3 is a composite disjunctive rule. These weighted
fuzzy production rules can be modeled by the following AFSN P system Π:

• Π = (A, {σp1, σp2, σp3, σp4, σp5, σp6}, {σr1, σr2, σr3, σr4}, syn, I, O)
where:
(1) A = {a}
(2) For each j (j = 1, 2, 3, 4, 5, 6), σpj = (αj ,ωj , λj , rj) is a proposition neuron

associated with proposition pj , and rj is a spiking rule of the form E/aα →
aα. Here, λj(j = 1, 2, . . . , 6) = 0, and ω1 = ω3 = ω5 = 1.

(3) For each j (j = 1, 2, 3, 4), σrj = (αk+j , γj , τj , rk+j) is rule neuron. σr1 and
σr2 are associated with rule R1 and R2 respectively, while σr3 and σr4 are
associated with rule R3. rk+j(j = 1, 2, 3, 4) are spiking rule of the form
E/aα → aβ .

(4) syn = {(σp1, σr1), (σp2, σr2), (σp3, σr3), (σp4, σr2), (σp5, σr4), (σr1, σp4),
(σr2, σp5), (σr3, σp6), (σr4, σp6)}.

(5) I = {σp1, σp2, σp3}, O = {σp4, σp5, σp6}.



244 J. Wang, H. Peng

Fig.4 shows the AFSN P system Π. The AFSN P system has three input proposi-
tion neurons {σp1, σp2, σp3} and three output proposition neurons {σp4, σp5, σp6}.
Suppose parameters of the AFSN P system are given as follows:

γ1 = 0.80, γ2 = 0.85, γ3 = 0.85, γ4 = 0.90
τ1 = 0.40, τ2 = 0.60, τ3 = 0.55, τ4 = 0.45

(4)

Here, weights ω2 and ω4 are unknown. Assume the ideal weights are ω∗
2 = 0.63 and

ω∗
4 = 0.37. Using fuzzy reasoning algorithm, we can obtain a set of output data

(certainty factors of consequence propositions) according to the input data (cer-
tainty factors of antecedent propositions). Table 1 gives the part of the reasoning
results of the AFSN P system.

sp1 sr1 sp4

t1 

1 g1

sr2 sp5

t2
g2

sp2

w2
sr4

sp6

t4 
w4

g4

sp3

sr3

t3 

1 g3

1

Fig. 4. AFSN P system of Example 1.

Table 1. The reasoning results of AFSN P systems.

No. α1 α2 α3 α4 α5 α6

1 0.8762 0.7724 0.8536 0.7010 0.6341 0.7470
2 0.8325 0.8271 0.6124 0.6660 0.6524 0.6365
3 0.7518 0.8912 0.5896 0.6390 0.6782 0.6326
4 0.6785 0.7216 0.6518 0.5767 0.5678 0.6110
5 0.6127 0.6874 0.7829 0.5208 0.5319 0.6610
6 0.5866 0.8516 0.5908 0.4986 0.6128 0.6015
7 0.5236 0.7835 0.5862 0.4451 0.5595 0.5732
8 0.3645 0.7845 0.6628 0.0 0.0 0.3409
9 0.5235 0.5648 0.7461 0.4450 0.0 0.3837
10 0.3246 0.6324 0.5582 0.0 0.0 0.2871
· · · · · · · · · · · · · · · · · · · · ·
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From Fig.4, we can see that only two weights ω2 and ω4 need to be learned in
the AFSN P system Π. In this paper, neural network technique will be employed
to adjust the two weights. The learning part of the AFSN P system Π (see the part
in the dashed box of Fig.4) can be transformed as a single layer neural network
(see Fig.5):

y(t) = W (t)TX(t) + b
where t is time, X(t) = [α2(t), α4(t)]

T is input vector, W (t) = [ω2(t), ω4(t)]
T is

weights vector, and b is the bias.

a4

a2

a5

w2

w4

Fig. 5. The neural network transformed by the learning part in the AFSN P system of
Example 1.

In order to learn these weights by using neural networks, Widrow-Hoff learning
law can be applied as follows

W (t+ 1) = W (t) + 2δe(t)X(t), (5)

e(t) = y∗(t)− y(t) (6)

Here, we select δ = 1.23. Let initial weights be W (0) = [ω2(0), ω4(0)]
T =

[0.5, 0.2]T . By applying Widrow-Hoff learning law, after a training process (t > 33),
the two weights convergence to their real values. Fig.6 shows simulation results.

Form the example, we can see that the fuzzy reasoning algorithm and the
Widrow-Hoff learning are very effective if we do not know the weights of AFSN
P systems. After a training process, we can build a good input-output mapping
relation of a knowledge system.

4 Conclusion

In this paper, we presented a class of modified fuzzy spiking neural P systems:
adaptive fuzzy spiking neural P systems (AFSN P systems, in short). In addition
to fuzzy knowledge representation and dynamically fuzzy reasoning, they have
learning ability as neural netwarks. Therefore, fuzzy knowledge in knowledge base
not only can be modeled by a AFSN P system but also can be learning through the
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w2

w4

Fig. 6. The weight learning results of Example 1.

AFSN P system. The results presented in this paper provide a novel way to solve
the knowledge learning problem in some real-world applications, such as expert
systems, fault diagnosis, process control, and so on.
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4. Chen, H., Ishdorj, T.-O., Păun, Gh., Perez-Jimenez, M.J.: Handling Languages with
Spiking Neural P Systems with Extended Rules. Romanian Journal of Information
Science and Technology 9(3), 151–162 (2006)
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11. Pan, L., Păun, G.: Spiking Neural P Systems: An Improved Normal Form. Theoretical
Computer Science 411(6) 906–918 (2010)

12. Wang, J., Peng, H.: Fuzzy Knowledge Representation Based on An Improving Spiking
Neural P System. In: 2010 Sixth International Conference of Natural Computing,
ICNC2010, 6, 3012–3015 (2010)

13. Wang, T., Wang, J. Peng, H. Deng, Y.L.: Knowledge Representation Using Fuzzy
Spiking Neural P System. In: 2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications, Volume-1, 586–590 (2010)

14. Wang, J., Zhou, L., Peng, H., Zhang, G.X.: An Extended Spiking Neural P System
for Fuzzy Knowledge Representation. International Journal of Innovative Computing,
Information and Control, 7(7A), 3709–3724 (2011)

15. Peng, H., Wang, J., Perez-Jimenez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy Rea-
soning Spiking Neural P System for Fault Diagnosis. Information Sciences, 2012
(Accepted)

16. Gutierrez-Naranjo, M.A., Perez-Jimenez, M.J.: Hebbian Learning from Spiking Neu-
ral P Systems View. Lecture Notes in Computer Science, Volume 5391/2009, 217–230
(2009)

17. Peng, H., Wang, J.: Adaptive Spiking Neural P Systems. In: 2010 Sixth International
Conference of Natural Computing, ICNC2010, 6, 3008–3011 (2010)

18. Yeung, D.S., Tsang, E.C.C.: Weighted Fuzzy Production Rules. Fuzzy Sets and Sys-
tems, 88, 299–313 (1997)

19. Yeung, D.S., Tsang, E.C.C.: A Multilevel Weighted Fuzzy Reasoning Algorithm for
Expert Systems. IEEE Trans. Syst., Man, Cybern. A, 28(2), 149–158 (1998)

20. Chen, S.-M., Ko, Y.-K., Chang, Y.-C., Pan J.-S.: Weighted Fuzzy Interpolative Rea-
soning Based on Weighted Increment Transformations and Weighted Ratio Transfor-
mation Techniques. IEEE Transactions on Fuzzy Systems, 17(6), 1412–1427 (2009)




