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Summary. Metabolic P grammars are a particular class of multiset rewriting grammars
introduced in the MP systems’ theory for modelling metabolic processes. In this paper,
a new algebraic formulation of inverse dynamical problems, based on MP grammars
and Kronecker product, is given, for further motivating the correctness of the LGSS
(Log-gain Stoichiometric Stepwise) algorithm, introduced in 2010s for solving dynamical
inverse problems in the MP framework. At the end of the paper, a section is included
that introduces the problem of multicollinearity, which could arise during the execution
of LGSS, and that defines an algorithm, based on a hierarchical clustering technique,
that solves it in a suitable way.
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1 Introduction

Metabolic P (MP) systems are a particular class of cell-like P systems [33, 34, 36,
35] introduced by Vincenzo Manca in 2004, for modelling metabolic processes [29].
An MP system is essentially a particular type of deterministic discrete dynamical
system which inherits from the P systems’ framework a native similitude with the
functioning of a living cell.

MP systems share with P systems the multiset rewriting mechanism as their
fundament. However, while P systems are essentially unconventional computa-
tional models, MP systems are intended to generate dynamics instead of compu-
tations. Namely, their aim in modelling biological phenomena is that of finding
the multiset rewriting mechanism underlying an observed biological behaviour.

Metabolic P systems can be considered as the result of a research activity
initiated in 1990s with some initial works [15, 28, 30]. They are different, with
respect to other “P variants” applied in the context of systems biology [3, 4,
6, 38, 39]. The main difference is in their determinism. In fact, their basis are
MP grammars, where multiset transformations are regulated by functions in a
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deterministic way [19]. An MP system is an MP grammar equipped with a temporal
interval τ , a conventional mole size ν, and substances masses, which specify the
time and population (discrete) granularities respectively [19].

An MP grammar G can be considered as a generator of time series, determined
by the following structure (n,m ∈ N, the set of natural numbers):

G = (M,R, I, Φ)

where:

1. M = {x1, x2, . . . , xn} is a finite set of elements called metabolites, or sub-
stances. A metabolic state is given by a list of n values, each of which is asso-
ciated to a metabolite.

2. R = {αj → βj | j = 1, . . . ,m} is a set of rules, or reactions, with αj and βj
multisets over M for j = 1, . . . ,m.

3. I are initial values of metabolites, that is, a list x1[0], x2[0], . . . , xn[0] providing
the metabolic state at step 0.

4. Φ = {ϕ1, . . . , ϕm} is a list of functions, called regulators, one for each rule,
such that, for 1 ≤ j ≤ m, and for some kj (0 ≤ kj ≤ n)

ϕj : Rkj → R.

An MP grammar G is parametric, when a set P of parameters is added to G,
and metabolic states include also elements of P (to which, the state assigns real
values), therefore regulators may include parameters as their arguments . If G
is parametric, also the time series of parameters has to be provided in order to
specify G.

An MP grammar can be easily representable by an MP graph [22]. Moreover,
the set of the rules of the system can be also represented by a stoichiometric
matrix A, which gives a sort of “matrix-like representation” of the stoichiometry
(see Figure 1).

An MP grammar G defines, for any x ∈M , a time series

(x[i] | i ∈ N, i > 0)

in the following way. Let

s[i] = (x1[i], x2[i], . . . , xn[i])

the (row) state vector of G at step i, which can be seen as a function from the set
of metabolites to R, then the flux ϕj(sj [i]) of rule rj at step i, is given by applying
the regulator ϕj to sj [i], a substate of s[i] associated to rj , and constituted by kj
components called the tuners of rj .

If we consider the rule r2 of the MP grammar given in Figure 1, for example,
then the flux at step i is calculated by:

ϕ2(s2[i]) = ϕ2(A[i], B[i])

= c2A[i]2 + c3B[i]3
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MP grammar
 

Rules           Regulators
r₁: ∅ → A   φ₁ = c₁A²
r₂: A → B   φ₂ = c₂A²+c₃B³
r₃: B → ∅   φ₃ = c₄B
r₄: A → C   φ₄ = c₅+c₆AC²
r₅: C → ∅   φ₅ = c₇+c₈C
 

c₁, c₂, ... , c₈ ∈ ℝ
A[0], B[0], C[0] ∈ ℝ

r₃

r₁

r₅

r₂

MP graph

1   -1    0   -1    0
0    1   -1    0    0
0    0    0    1   -1(       )𝔸 =

Stoichiometric matrix

Action of r₂ on substances A, B and C
(it consumes A and produces B)

Action of r₁, r₂, r₃, r₄ and r₅ 
on substance B (produced
by r₂ and consumed by r₃) 

}
}

a column for each rule 
r₁   r₂    r₃    r₄   r₅

A
B  a row for each substance 
C

#     #      #      #     #

Fig. 1. An example of MP grammar (where ∅ denotes an empty multiset and sub-
stance symbols occurring in regulators denote the corresponding substance quantities),
the stoichiometric matrix A is directly deduced by the MP grammar on the top left cor-
ner. The MP graph on the top right corner is obtained by translating the rules in the
source-target-edge notation [26].

where c2, c3 are given real constants, and A and B are said to be the tuners of the
rule r2.

The value of x[i + 1], for each x ∈ M , is given by the following equation,
where αj(x) and βj(x) denote the multiplicities of x in the multiset αj and βj ,
respectively:

x[i+ 1] = x[i] +

m∑
j=1

[(βj(x)− αj(x)) · ϕj(sj [i])].

More generally, if we denote by A the stoichiometric matrix of the system and by

Φ[i] = (ϕ1(s1[i]), ϕ2(s2[i]), . . . , ϕm(sm[i]))

the row vector of fluxes at step i, it can be proved that [16]:

(s[i+ 1]− s[i])T = A× ΦT [i] (1)

that is, by transposition:

s[i+ 1]− s[i] = Φ[i]× AT . (2)
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These last two equations define equivalently the Equational Metabolic Algorithm
(EMA). In the following, the MP dynamics we will present are computed in MAT-
LAB1 by applying EMA. We refer to [19, 20, 18, 21] for a comprehensive presen-
tation of the MP theory.

The dynamics which can be modelled by MP systems can be very complicated
even by considering simple MP grammars (i.e. with few substances and linear regu-
lators). In [23] MP systems were successfully applied to the field of real periodical
function approximation. The complexity of the dynamics compared to the sim-
plicity of the MP grammar which calculates it by EMA, suggests that MP system
theory can be a suitable framework for modelling biological dynamics.

The procedure introduced in [23] to define the models has been widely extended
in [25, 26] for defining the LGSS (Log-Gain Stoichiometric Stepwise) algorithm,
which derives MP grammars generating time series of observed dynamics. LGSS
can be applied independently from any knowledge about reaction rate kinetics and
it represents the most recent solution, in terms of MP systems, of the dynamical
inverse problem, that is, of the identification of (discrete) mathematical models of
an observed dynamics and satisfying all the constraints required by the specific
knowledge about the modelled phenomenon. The LGSS algorithm combines and
extends the log-gain principles developed in the MP system theory [16, 17] with
the classical method of Stepwise Regression [7], which is a statistical regression
technique based on Least Squares Approximation and statistical F-tests [5].

LGSS has been implemented by Luca Marchetti in 2010 as a set of MATLAB
functions. We refer to [24, 31, 32, 27] for some successful applications of LGSS and
MP systems for discovering the internal regulation logic of phenomena relevant in
systems biology.

The starting point of the LGSS algorithm was the search for the right regu-
lators associated to the reactions of an MP grammar which provide the observed
time series when dynamics is computed by means of EMA. If we consider the
role of each regulator, we realize that it affects the variations of many substances.
Therefore regulators are constrained to satisfy altogether, at each step, an alge-
braic system based on the stoichiometry of the observed phenomenon. The crucial
point for regulator determination was a special kind of regression formulated as
“stoichiometric expansion” of EMA by means of an initial set of basic functions
called regressors.

In the next section we will introduce a new algebraic formulation of the sto-
ichiometric expansion, based on MP grammars and Kronecker product, which
better describes and motivates its adoption in LGSS for solving inverse dynamical
problems.

1 See http://www.mathworks.it/index.html for details on the MATLAB software.
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2 Stoichiometric expansion

Given a system with n variables x1, x2, . . . , xn, let us suppose to know the time
series of these variables along time points 0, 1, . . . , t. Let

s[i] = (x1[i], x2[i], . . . , xn[i])

the (row) state vector at time i, and

xj [i+ 1]− xj [i] = ∆j [i]

for j = 1, 2, . . . , n, then

s[i+ 1]− s[i] = (∆1[i], ∆2[i], . . . ,∆n[i])

whence, from equation (2), we get

Φ[i]× AT = (∆1[i], ∆2[i], . . . ,∆n[i]). (3)

For the determination of the regulators which provide the best approximate
solution of the system (3), which has m unknowns (the m components of the flux
vector Φ[i]), LGSS applies a procedure called stoichiometric expansion. Let us
assume that the regulators we are searching for can be expressed as linear com-
binations of some basic regressors g1, g2, . . . , gd which usually include constants,
powers, and products of substances, plus some basic functions which are considered
suitable in the specific cases under investigation:

ϕ1 = c1,1g1 + c1,2g2 + . . .+ c1,dgd

ϕ2 = c2,1g1 + c2,2g2 + . . .+ c2,dgd (4)

. . . = . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕm = cm,1g1 + cm,2g2 + . . .+ cm,dgd.

Let us consider the t-expansion Φt
1, Φ

t
2, . . . , Φ

t
m of regulators as the vectors

constituted by the right members of equations (4) evaluated along t steps (where
the values of all the variables of the system are supposed to be known):

Φt
1 = c1,1G

t
1 + c1,2G

t
2 + . . .+ c1,dG

t
d

Φt
2 = c2,1G

t
1 + c2,2G

t
2 + . . .+ c2,dG

t
d (5)

. . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φt
m = cm,1G

t
1 + cm,2G

t
2 + . . .+ cm,dG

t
d.

Now, let Cd
1 , C

d
2 , . . . , C

d
m be the unknown column vectors, of dimension d, con-

stituted by the coefficients of the regressors providing the linear combinations of
regulators ϕ1, ϕ2, . . . , ϕm we are searching for, and

C = (Cd
1 , C

d
2 , . . . , C

d
m)
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the matrix having these vectors as columns. Moreover, let ∆t
1, ∆

t
2, . . . ,∆

t
n be the

column vectors of dimension t constituted by substance variations of substances,
from step i to step i+ 1, for 0 ≤ i ≤ t− 1, and

∆ = (∆t
1, ∆

t
2, . . . ,∆

t
n)

the matrix having these vectors as columns. Let also Φt be the following matrix
constituted by m column vectors of t elements:

Φt = (Φt
1, Φ

t
2, . . . , Φ

t
m).

Finally, let
G = (Gt

1, G
t
2, . . . , G

t
d)

the matrix, of dimension t×d, having as columns the vectors obtained by evaluating
the regressors g1, g2, . . . , gd on the t observed time points. With the notation above,
the system of equations (5) becomes:

G× C = Φt. (6)

Now, it easily follows from (3) that:

Φt × AT = ∆ (7)

where the exponent T denotes the matrix transposition. Therefore, by combining
equations (6) and (7), we finally obtain the t-expansion of the system (3) as:

G× C× AT = ∆. (8)

The coefficients of C are the unknowns which needs to be estimated by LGSS.
We show now that they can be obtained by a Least Square Estimation deduced
by equation (8), by using direct product ⊗ between matrices, also called Kronecker
product [9, 10, 40, 41], which results a special case of tensor product used in linear
algebra and in mathematical physics.

Given two real matrix A,B of dimension n×m and t×d respectively, then the
direct product:

A⊗B

is the matrix, of dimension nt×md, constituted by nm blocks Bi,j , such that, if
A = (ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m), then Bi,j = ai,jB (in Bi,j all the elements of
B are multiplied by ai,j , see Figure 2).
The Kronecker product is bilinear and associative, that is, it satisfies the following
equations:

A⊗ (B + C) = (A⊗B) + (A⊗ C)

(A+B)⊗ C = (A⊗B) + (A⊗ C)

(kA)⊗B = A⊗ (kB) = k(A⊗B)

(A⊗B)⊗ C = A⊗ (B ⊗ C).
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(
a b c
d e f

)
⊗
(
α β
γ δ

)
=


a

(
α β
γ δ

)
b

(
α β
γ δ

)
c

(
α β
γ δ

)

d

(
α β
γ δ

)
e

(
α β
γ δ

)
f

(
α β
γ δ

)


Fig. 2. An example of Kronecker product of two matrices.

Moreover, matrix direct product verifies also the following equations:

(A⊗B)× (C ⊗D) = (A× C)⊗ (B ⊗D)

(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

where the exponent T denotes transposition and the last equation holds only when
the involved matrices are invertible.

Let us denote by vec(W ) the vectorization of the matrix W , obtained by con-
catenating in a unique column vector all the columns of W in their order. Then,
a general property of matrix direct product asserts that [10]:

A×X ×B = Y iff (BT ⊗A)× vec(X) = vec(Y ). (9)

Therefore, if we apply equivalence (9) to equation (8) we obtain:

(A⊗G)× vec(C) = vec(∆) (10)

where the stoichiometric matrix is multiplied, by Kronecker product, with the re-
gressor matrix and the result is multiplied with the vectorization of the regressor
coefficient matrix, and then equated to the vectorization of the substance varia-
tion matrix, by providing nt equations with md unknown values. The system of
equations given in (10) is the stoichiometric expanded system calculated by LGSS.

According to the Least Square approximation method [43, 13], if nt ≥ md,
then the best approximation to vec(C), minimizing the difference between the two
members of equation (10), is given by the following vector:(

(A⊗G)T × (A⊗G)
)−1 × (A⊗G)T × vec(∆). (11)

Some constraints may be imposed to the fluxes provided by regulators, which
may be of general nature, or may be specific to some classes of systems (for exam-
ple, fluxes should not be negative, and the sum of fluxes of all reactions consuming
a substance x cannot exceed the quantity of x). In Figure 3 are represented the
regressor matrix G and the substance variation matrix ∆ which are used by LGSS
for least-squares approximating the coefficients c1, . . . , c8 of the MP grammar given
in Figure 1.
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Regressor matrix
(A[0])²
(A[1])²

...
(A[t-1])²

A²
{

B[0]
B[1]

...
B[t-1]

{

B

C[0]
C[1]

...
C[t-1]

{

C

A[0]·(C[0])²
A[1]·(C[1])²

...
A[t-1]·(C[t-1])²

AC²

{ )
(B[0])³
(B[1])³

...
(B[t-1])³

B³

{[ ]t [ ]t [ ]t [ ]t [   ]t

Substance variation matrix
A[1] - A[0]
A[2] - A[1]

...
A[t] - A[t-1]

∆

( {[  ]t
A

B[1] - B[0]
B[2] - B[1]

...
B[t] - B[t-1]

∆ {[  ]t
B

C[1] - C[0]
C[2] - C[1]

...
C[t] - C[t-1]

∆ { )[  ]t
C

1
1
...
1

(
{

1[ ]t

Δ= 𝔾 = 

Fig. 3. The regressor matrix G and the substance variation matrix ∆ used for approxi-
mating the coefficients c1, c2, . . . , c8 of the MP grammar given in Figure 1.

However, the approximation given by (11) cannot in general be considered the
best way for solving the inverse dynamical problem. In fact, apart the computa-
tional cost of considering all the d regressors at same time, several reasons suggest
to follow a gradual strategy in the determination of a subset of regressors and
their corresponding coefficient which provide the best approximation to the given
dynamics. There are two main requirements which are essential for an appropriate
application of least squares method: the linear independence among the regressor
expansions and the parsimony of the set of regressors. In other words, the best ap-
proximation is obtained by determining a parsimonious set of linearly independent
regressors ensuring an error under a given threshold.

Linear independence is a requirement of least squares method and is solved by
considering systems of equations which have been stoichiometric expanded. The
parsimony of the model, instead, avoids problems of overfitting. In fact, the more
regressors are considered in the model, the less is the degree of freedom left for
the error [1]. This implies that solution fits very well with the dynamics on the
observation points, but it is too constrained to them for behaving in a satisfactory
way outside them (i.e. the model fits well the data, but it has not predictive power,
see Figure 4 for an example).

In order to cope with the requirements explained above, LGSS integrates the
least squares approximation of stoichiometric expanded systems with a regression
strategy based on a step-wise approach as defined in [26]. Such kind of approach
permits to define the model, step by step, by inserting into the model only those
expanded regressors (among the columns of the matrix given by the direct product
A⊗G) which satisfy specific statistical tests. In this way, we can obtain MP models
which fit the dynamics and that comprehends a small set of regressors.

3 Problems related to the regression in LGSS

The stepwise approach adopted in LGSS is based on the assumptions which are
at the basis of the classical multiple regression model [1]. These assumptions con-
cern with some properties of the expanded regressors (i.e. they must be linearly
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independent and, possibly, not correlated2) and with the probability distribution
of the errors associated to observations in considered time series (i.e. the errors
should be normally distributed with mean zero). When one or more of these as-
sumptions are not completely satisfied, some mistakes can occur in the definition
of the regulators. In particular, there are several problems which we need to be
aware of in the context of multiple regression. Some of them have been discussed
in [26] and can be solved by substituting the ordinary least squares with other
estimation methods based on the weighted least squares [42] or on the generalized
least squares [12].

Here we focus on solving the problem of multicollinearity, which consists in
having regressors that are highly correlated among them. This is the most common
problem occurring in LGSS and also one of the most difficult to be solved [1]. When
we develop a new MP model, we hope to have a strong correlation between each
expanded regressor and the dependent variable vec(∆), but we do not want to
have expanded regressors correlated among them. In fact, this phenomenon may
cause errors in the selection of the right set of regressors during the execution of
the stepwise regression. In the case of perfect collinearity, the regression algorithm
breaks down completely (because the matrix given by the direct product A ⊗ G
has not maximum rank). Since in LGSS usually regulators are assumed to be
linear combinations of polynomial regressors, then it is very common to meet
multicollinearity problems.

2 The correlation between regressors is intended to be calculated by means of the Pear-
son’s correlation coefficient [37], which ranges from −1 to 1 and provides a measure of
dependence between the behaviours of two magnitudes (−1: perfect anti-correlation;
0: no correlation; 1: perfect correlation).

Fig. 4. Comparison between the predictive power of two regression models: a 13-degree
polynomial Ŷ = c0 + c1X + c2X

2 + . . .+ c13X
13 (depicted by the continuous line) and a

least squares line (depicted by the dotted line). The dataset used to calculate the models
are the 14 points depicted as blue circles, the last point represented by the red star is the
value of Y we want to predict with our models. The 13-degree polynomial is a perfect
example of model which overfits the data: in fact, it provides a perfect fit for all the
points of the dataset, but it completely fails the prediction of Y in the 15th data point.
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Fig. 5. Sirius’ dynamics.

As an example, let us consider the dynamics given in Figure 5 related to a
synthetic oscillator, introduced in [16] and very often considered in the MP theory,
called Sirius. The oscillator is made of three substances A, B and C and five
reactions whose regulators are supposed to depend on the set of substances given
in Table 1.

For the metabolic oscillator Sirius, we want to apply LGSS for discovering the
formulae of the regulators by assuming that they will be given by linear com-
binations of polynomial functions on substance quantities of degree less than or
equal to 3. Since we do not know the right set of regressors which will be used,
we should start LGSS by considering the set of all possible regressors given in
Table 2. If we do this, however, the problem of multicollinearity arises since there

Set of the Dependence of the
reactions corresponding regulators

r1 : ∅ → A A, B and C
r2 : A→ B A and C
r3 : A→ C A and B
r4 : B → ∅ only B
r5 : C → ∅ only C

Table 1. The reactions (and the corresponding tuners) of the Sirius oscillator.

r1 : Constant, A, B, C, A2, B2, C2, AB, AC, BC, A3, B3,
C3, A2B, A2C, B2C, AB2, AC2, BC2, ABC.

r2 : Constant, A, C, A2, C2, AC, A3, C3, A2C, AC2.
r3 : Constant, A, B, A2, B2, AB, A3, B3, A2B, AB2.
r4 : Constant, B, B2, B3.
r5 : Constant, C, C2, C3.

Table 2. The set of possible regressors for each regulator of Sirius.
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are many regressors which are highly correlated with each other (for example the
two regressors A2 and A3, whose correlation coefficient is equal to 0.98).

In order to overcome the problem, LGSS computes the variance inflation factor
(VIF) for each regressor [1], which gives an idea of the degree of multicollinearity
introduced by a regressor, when some other regressors are already in the regression
equation. In LGSS the user can select a threshold value for the variance inflation
factor, in order to avoid the insertion of collinear regressors. This solution, however,
may affect the performance of the algorithm since the computing of VIF requires
many additional computations [26].

Of course, a way to overcome the problem of multicollinearity is to drop
collinear variables before launching the regression phase of LGSS. In the following
we define an algorithm, based on a hierarchical clustering technique [11], which
permits to cluster the time series of the regressors associated to the same reaction
and to select those which are less correlated and that best satisfy the log-gain
principle [16, 17], a principle developed in the MP theory based on a general crite-
rion concerning the variations of quantities involved in biological phenomena [2].
The algorithm is based on the following procedure (we refer to [25] for details
concerning the calculation of the log-gain score used in the algorithm).
For each reaction r in the MP system:

1. start by associating the time series of regressors of reaction r to different
clusters.

2. Compute distances (similarities) between clusters. We consider the distance
between one cluster and another cluster to be equal to the average distance
from any time series of one cluster to any time series of the other cluster.
The distance d(g1, g2) of two regressors g1, g2 is given by the following two
equations, where corr(Gt

1, G
t
2) denotes the value of the Pearson’s correlation

coefficient [37] between the time series obtained by evaluating the two regres-
sors on the t observed time points:

d(g1, g2) = 1− |corr(Gt
1, G

t
2)|

if we do not want to distinguish between positive and negative correlations,
and

d(g1, g2) = 1− corr(Gt
1, G

t
2)

when we need to consider this.
3. Find the closest (most similar) pair of clusters and merge them into a single

cluster (so that now we have one cluster less).
4. Repeat steps 2 and 3 until all the distances between clusters are greater than

a user defined threshold value.
5. For each cluster computed, calculate the log-gain score of each regressor in-

cluded (as defined in [25]) and select the one which have higher log-gain score.
This permits to discard those regressors whose time series express changes
which are not realistic in biology. The set of regressors for r which will be
considered during the regression phase of LGSS are those collected at this
step.
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Fig. 6. On the top: the dendrogram which represents the clusters computed for the
regressors of the rule r1 of Sirius, by considering a threshold value of 0.1. On the bottom:
the chart which displays the number of the computed clusters, for each reaction of Sirius,
with respect to different threshold values of the maximum correlation distance between
clusters.

r1 : Constant, A, B, AB, AB2.
r2 : Constant, A, C, AC, AC2.
r3 : Constant, A, B, AB, AB2.
r4 : Constant, B.
r5 : Constant, C.

Table 3. The set of possible regressors for each regulator of Sirius after the execution
of the clustering algorithm. The total number of regressors is decreased of the 60% with
respect to the set considered in Table 2.

The algorithm described above was included in LGSS and permits to solve the
problem of multicollinearity without affecting the performance of the regression.
In fact, LGSS launches this algorithm before starting the regression phase. The
application of the algorithm, to the set of 48 regressors of Table 2, permits to
reduce of more than the 60% the total set of regressors, by considering a threshold
value of 0.1 (see Figure 6). The new set of regressors is given in Table 3.

The MP grammar computed by LGSS, starting from the set of regressors in
Table 3, is given in Table 4 (see also Figure 7). This MP grammar is much better
than the one given in Table 5, provided by LGSS with the initial set of possible
regressors of Table 2. In fact, the new model uses less regressors (with lower degree)
and permits a more clear comprehension of the regulative role of each substance
of the system.
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r1 : ∅ → A ϕ1 = 0.047 + 0.087A
r2 : A→ B ϕ2 = 0.002A+ 0.0002AC
r3 : A→ C ϕ3 = 0.002A+ 0.0002AB
r4 : B → ∅ ϕ4 = 0.04B
r5 : C → ∅ ϕ5 = 0.04C

Table 4. The MP grammar of the Sirius oscillator, the dynamics is given in Figure 7.

Fig. 7. Sirius’ dynamics calculated by means of the MP grammar given in Table 4.

4 Conclusions

In this paper, a new algebraic formulation of inverse dynamical problems, based on
MP grammars and Kronecker product, has been given, which provides, in general
terms, the logic underlying the LGSS algorithm and proves its correctness in the
approximate solution of inverse dynamical problems.

Even if computational tools are available for evaluating unknown parameters
of ODE models [14, 8], LGSS seems to point out a more general methodology.
In fact, LGSS not only discovers unknowns parameters, but suggests also the
form of regulators as a combination of basic functions. This possibility could be
very important in the case where the knowledge about the phenomenon under
investigation is so poor that no clear idea is available about the kind of model
underlying the observed behaviour.

The LGSS algorithm introduces a new perspective in the analysis of time series
produced by the variables of a system evolving in time. This perspective can be
defined as a generative one, where phenomena observed in time are reconstructed
in terms of variable influences/transformations determined by the internal global
states of the system. This approach is of course relevant in systems biology, but has
a wide field of applications. In fact, in all the cases where some variables change
according to some mutual relationship, due to mutual and systemic logic involving
them, we are allowed to apply this general paradigm of discrete mathematical
analysis.
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r1 : ∅ → A ϕ1 = 1.06 + 0.082A
r2 : A→ B ϕ2 = 3.6 · 10−6A2 + 0.0002AC
r3 : A→ C ϕ3 = 0.004B + 8.9 · 10−7A2 + 0.0001AB + 3.3 · 10−8A2B
r4 : B → ∅ ϕ4 = 0.04B
r5 : C → ∅ ϕ5 = 0.04C

Table 5. The MP grammar of the Sirius oscillator computed by LGSS starting from
the set of regressors given in Table 2. Due to the problem of the multicollinearity of
regressors, the MP grammar is more complicated than the one given in Table 4.
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