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Summary. In this article we investigate the operations of insertion and deletion per-
formed at the ends of a string. We show that using these operations in a P systems
framework (which corresponds to using specific variants of graph control), computational
completeness can even be achieved with the operations of left and right insertion and
deletion of only one symbol.

1 Introduction

The operations of left and right insertion and deletion that we consider in this
article correspond to the operations of left and right concatenation and quotient
with a finite language. While these operations are known for a long time, their
joint investigation in a distributed framework originates from the area of natu-
ral computing, where they were used in the context of networks of evolutionary
processors (NEP) [7]. Such networks are a special type of networks of language
processors [6] that feature a set of (rewriting) nodes rewriting languages and af-
ter that redistributing some regular subsets between the nodes. In networks of
evolutionary processors, the rewriting operations are replaced by three types of
operations having a biological motivation: insertion, deletion, and mutation (sub-
stitution). The corresponding systems are quite powerful and we refer to [8] for
more details. The redistribution of the node contents based on a regular condition
is a very powerful operation. Accepting hybrid networks of evolutionary processors
(AHNEP) replace this condition by random context conditions, however, the set
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of operations is changed and now includes the insertion and deletion operations at
the extremities of the strings; we refer to [21, 9] for more details on AHNEP.

The operations of insertion and deletion on the extremities of a string can also
be seen as a particular case of a more general variant, where insertion and deletion
can be performed anywhere in the string. The insertion operation defined in such
a way was first considered in [14, 15] and after that related insertion and deletion
operations were investigated in [17, 18]. Another generalization of the insertion
and deletion operations that involves the checking of contexts for the insertion and
deletion was considered with a linguistic motivation in [13, 20] and with a biological
motivation in [4, 5, 18, 26]. Generally, if the length of the contexts and/or of the
inserted and deleted strings are big enough, then the insertion-deletion closure of
a finite language leads to computational completeness. There are numerous results
establishing the descriptional complexity parameters sufficient to achieve this goal,
we refer to [31, 30] for an overview of this area.

Some descriptional complexity parameters lead to variants that are not com-
putationally complete. An investigation of insertion and deletion operations com-
bined with regulating mechanisms was done for these cases, more precisely, with
the graph-controlled, the matrix, and the random-context controls [11, 28, 16]. As
it was shown in these articles, in most of the cases the additional control leads
to computational completeness. The graph-controlled regulation is of particular
interest, as it can be related to the notion of P systems. Such systems formal-
ize the functioning of a living cell that topologically delimits processing units by
membranes, thus leading to a tree (or graph) structure of processing nodes. The
elements processed in some node (membrane) then are distributed among the
neighbors in the structure. We refer to [24, 25] and to the web page [29] for more
details on P systems. In the case of the operations of insertion and deletion acting
on strings this directly corresponds to a graph control where the control nodes
correspond to the membranes.

The research on context-free insertion and deletion (i.e., without contextual
dependency) shows that if the lengths of the inserted and deleted strings are 2 and
3 (or 3 and 2), respectively, then the insertion-deletion closure of finite languages
is computationally complete [22]. When one of these parameters is decreased, this
result is not true anymore [32]; moreover, even the graph-controlled variant cannot
achieve computational completeness [19]. This changes when a graph control with
appearance checking is used [1] or in the case of a random context control [16]. In
both variants, minimal operations (involving only one symbol) were considered,
leading to RE (the family of recursivey enumerable languages) in the case of set-
controlled random context conditions and to PsRE (the family of Parikh sets of
RE) in the case of graph control with appearance checking.

We note that the operations of left and right insertion and deletion are incom-
parable with normal insertion and deletion: because of the positional information,
the regular language a+b+ can be obtained even with left and right insertions of
only one symbol, yet not when insertions are possible at arbitrary positions in the
string. On the other hand, the Dyck language cannot be obtained when insertion
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is only possible at the ends of the strings, while with normal insertion this can be
done easily. In [1, 3], left and right insertion and deletion operations (under the
name of exo-insertion and -deletion) were considered in the P systems framework
(i.e., with a graph control) and it was shown that systems with insertion of strings
of length 2 (respectively 1) and deletion of strings of length 1 (respectively 2)
lead to computational completeness. In the case of minimal insertion and deletion
(i.e., of only one symbol), a priority of deletion over insertion (corresponding to
an appearance check) was used to show computational completeness.

In this article we continue these investigations and we consider P systems with
minimal left and right insertion and deletion and prove that computational com-
pleteness can be achieved even in this case, with the structure of the P system we
need being matrix-like. We also directly show that matrix grammars using minimal
left insertion and minimal right deletion rules are computationally complete (with
matrices of length at most 3). Moreover, we also prove that using an additional
minimal mutation operation (substitution of one symbol by another one) allows
for reducing the height of the tree structure of the P system to the minimum size
1.

2 Preliminaries

After some preliminaries from formal language theory, we define the string rewrit-
ing rules to be used in this paper. As string rewriting systems, we will consider
Post systems, matrix grammars, and sequential P systems. Moreover, we will give
some examples and preliminary results to illustrate our definitions.

The set of non-negative integers is denoted by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the elements of V ∗ are called
strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let
{a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol ai
in x is denoted by |x|ai

; the number of occurrences of all symbols from V in x is
denoted by |x|. The family of recursively enumerable string languages is denoted
by RE. For more details of formal language theory the reader is referred to the
monographs and handbooks in this area as [10, 27].

We here consider string rewriting rules only working at the ends of a string:

Post rewriting rule P [x/y] with x, y ∈ V ∗: P [x/y] (wx) = yw for w ∈ V ∗.
Left substitution SL [x/y] with x, y ∈ V ∗: SL [x/y] (xw) = yw for w ∈ V ∗.
Right substitution SR [x/y] with x, y ∈ V ∗: SR [x/y] (wx) = wy for w ∈ V ∗.

If in a (left or right) substitution SL [x/y] or SR [x/y] x is empty, then we
call it an insertion and write IL [y] and IR [y], respectively; if in a (left or right)
substitution SL [x/y] or SR [x/y] y is empty, then we call it a deletion and write
DL [x] and DR [x], respectively. If we only insert one symbol a, then we will also
write +a, a+, −a, and a− for IL [a], IR [a], DL [a], and DR [a], respectively.
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In general, a (string rewriting) grammar G of type X is a construct (V, T,A, P )
where V is a set of symbols, T ⊆ V is a set of terminal symbols, A ∈ V + is the
axiom, and P is a finite set of rules of type X. Each rule p ∈ P induces a relation
=⇒p⊆ V ∗ ×V ∗; p is called applicable to a string x ∈ V ∗ if and only if there exists
at least one string y ∈ V ∗ such that (x, y) ∈ =⇒p; we also write x =⇒p y.
The derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The

reflexive and transitive closure of =⇒G is denoted by
∗

=⇒G.
The language generated by G is the set of all terminal strings derivable from

the axiom, i.e., L (G) =
{
v ∈ T ∗ | A ∗

=⇒G v
}
. The family of languages generated

by grammars of type X is denoted by L (X).

In general, we write Sk,m
R for a type of grammars using only substitution rules

SR [x/y] with |x| ≤ k and |y| ≤ m. In the same way, we define the type Sk,m
L for a

type of grammars using only substitution rules SL [x/y] with |x| ≤ k and |y| ≤ m,
as well as the types ImL , ImR , Dk

L, and Dk
R, respectively. The type DkIm allows

for the deletion of strings with length ≤ k and for the insertion of strings with
length ≤ m. If, in addition, we also allow substitutions SR [x/y] with |x| ≤ k′ and
|y| ≤ m′, we get the type DkImSk′m′

; we observe that the type DkImSk′m′
is

subsumed by the type Sk′m′
if k ≤ k′ and m ≤ m′. If we allow the parameters k

and/or m to be arbitrarily large, we just omit them, e.g., DI is the type allowing
to use deletions and insertions of strings of arbitrary lengths.

Example 1. Let G = (V, T,A, P ) be a regular grammar, i.e., the rules in P are of
the form A → bC and A → λ with A,C ∈ V \ T and b ∈ T . Then the grammar
G′ = (V, T,A, {SR [A/y] | A → y ∈ P}) with substitution rules generates the same
language as G, i.e., L (G′) = L (G). Hence, with REG denoting the family of

regular languages, we obviously have got REG ⊆ L
(
S1,2
R

)
. �

It is not difficult to check that grammars of type D1I1S1 have a rather lim-
ited computational power. Indeed, we can show the following representation of
languages generated by grammars of type D1I1S1:

Theorem 1. Every language L ⊆ T ∗ in L
(
D1I1S1

)
can be written in the form

T ∗
l ST

∗
r where Tl, Tr ⊆ T and S is a finite subset of T ∗.

Proof. Let G = (V, T,A, P ) be a grammar of type D1I1S1 and let N := V \ T .
We first construct the start set S as follows: Consider all possible derivations in
G from A with only using substitutions and deletions, but without loops, i.e., no
string is allowed to appear more than once in such a derivation, which means that
all these derivations are of bounded length (bounded by the number of strings
in V of length at most |V |).Then S consists of all terminal strings obtained in
this way (finding these strings is a finitely bounded process, as to each of the
possible strings in V of length at most |V |, at most |P | rules can be applied). A
symbol from N remaining inside a string blocks that string from ever becoming
terminal by applying rules from P , and deletion of a symbol can be avoided by
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just not introducing the symbol which by a sequence of minimal substitutions
would lead to the symbol to be deleted. Hence, for constructing the sets Tl (Tr,
respectively) we can restrict ourselves to the terminal symbols b either directly
inserted by minimal insertion rules Il [b] (Ir [b], respectively) or obtained by a
sequence of one minimal insertion together with a bounded (by |V |) number of
minimal substitutions Sl [a/b] (Sr [a/b], respectively).

Therefore, in sum L (G) can be written as the finite union of languages gener-
ated by grammars of type I1, i.e., L (G) = ∪w∈SL (Gw) where

Gw = (T, T, w, {Il [b] | b ∈ Tl} ∪ {Ir [b] | b ∈ Tr}).
In fact, this representation of languages in L

(
D1I1S1

)
means that for the type

D1I1S1 we could forget minimal deletions and substitutions and instead consider
finite subsets of axioms instead of a single axiom. Putting an A in front of the
types for this variant of grammars, we just have proved that

L
(
A-D1I1S1

)
= L

(
A-I1

)
. �

2.1 Post Systems

A Post system is a grammar using only Post rewriting rules (a grammar of type
PS). A Post system (V, T,A, P ) is said to be in normal form (a grammar of type
PSNF ) if and only if the Post rewriting rules P [x/y] in P are only of the forms
P [ab/c], P [a/bc], P [a/b], and P [a/λ], with a, b, c ∈ V . A Post system (V, T,A, P )
is said to be in Z-normal form (a grammar of type PSZNF ) if and only if it is in
normal form and, moreover, there exists a special symbol Z ∈ V \ T such that

• Z appears only once in the string x of a Post rewriting rule P [x/y], and this
rule is P [Z/λ];

• if the rule P [Z/λ] is applied, the derivation in the Post system stops yielding
a terminal string;

• a terminal string can only be obtained by applying the rule P [Z/λ].

Although basic results concerning Post systems are folklore since many years,
e.g., see [23], we need the special Z-normal form for the proof of our main theorem;
the following result is an immediate consequence of the proof given in [12] for
Lemma 1 there:

Theorem 2. For every recursively enumerable language L ⊆ T ∗ there exists a Post
rewriting system G, G = (V, T,A, P ), in Z-normal form such that L (G) = L, i.e.,
L (PS) = L (PSNF ) = L (PSZNF ) = RE.

2.2 Matrix Grammars

A matrix grammar of type X is a construct GM = (G,M) where G = (V, T,A, P )
is a grammar of type X, M is a finite set of sequences of the form (p1, . . . , pn),
n ≥ 1, of rules in P . For w, z ∈ V ∗ we write w =⇒GM

z if there are a matrix
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(p1, . . . , pn) in M and objects wi ∈ V ∗, 1 ≤ i ≤ n + 1, such that w = w1,
z = wn+1, and, for all 1 ≤ i ≤ n, wi =⇒G wi+1. The maximal length n of a matrix
(p1, . . . , pn) ∈ M is called the degree of GM .

L(GM ) =
{
v ∈ T ∗ | A =⇒∗

GM
v
}
is the language generated by GM . The family

of languages generated by matrix grammars of type X (of degree at most n) is
denoted by L (X-MAT ) (L (X-MATn)).

Theorem 3. L
(
D2I2-MAT2

)
= L

(
D1I1-MAT3

)
= L (PSNF ) = RE.

Proof. From Theorem 2 we know that L (PSNF ) = RE, hence, we will only show
that for every Post system G = (V, T,A, P ) in normal form we are able to construct
equivalent matrix grammars G1 = (G,M1) and G2 = (G,M2) of type D2I2 and
of type D1I1, respectively:

M1 = {(DR [x] , IL [y]) | P [x/y] ∈ P} ,
M2 = {(DR [b] , DR [a] , IL [c]) | P [ab/c] ∈ P}

∪ {(DR [a] , IL [c] , IL [b]) | P [a/bc] ∈ P}
∪ {(DR [a] , IL [b]) | P [a/b] ∈ P}
∪ {(DR [a]) | P [a/λ] ∈ P} .

As each rule in G is directly simulated by a matrix in M1 and in M2, respec-
tively, we immediately infer L (G) = L (G1) = L (G2). �

Whereas the matrices in M1 are only of length 2, the degree of M2 is 3; it
remains as an open question whether also with rules of typeD1I1 we could decrease
the degree to 2 or not; we conjecture that the answer is no. As we have shown
in Theorem 1, with grammars using rules of type D1I1S1 we are not able to
obtain RE, we even remain below the regular language class; hence, we need such
regulating mechanisms as matrices to reach computational compleness.

2.3 P Systems

We now introduce another variant to guide the derivations in a grammar using rules
of those types introduced above, i.e., specific variants of left and right substitution
rules.

A (sequential) P system of type X with tree height n is a construct Π =
(G,µ,R, i0) where G = (V, T,A, P ) is a grammar with rules of type X and

• µ is the membrane (tree) structure of the system with the height of the tree
being n (µ usually is represented by a string containing correctly nested marked
parentheses); we assume the membranes, i.e., the nodes of the tree representing
µ, being uniquely labelled by labels from a set Lab;

• R is a set of rules of the form (h, r, tar) where h ∈ Lab, r ∈ P , and tar, called
the target indicator, is taken from the set {here, in, out} ∪ {inj | 1 ≤ j ≤ n};
the rules assigned to membrane h form the set Rh = {(r, tar) | (h, r, tar) ∈ R},
i.e., R can also be represented by the vector (Rh)h∈Lab;
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• i0 is the initial membrane where the axiom A is put at the beginning of a
computation.

As we only have to follow the trace of a single string during a computation of
the P system, a configuration of Π can be described by a pair (w, h) where w is the
current string and h is the label of the membrane currently containing the string w.
For two configurations (w1, h1) and (w2, h2) of Π we write (w1, h1) =⇒Π (w2, h2)
if we can pass from (w1, h1) to (w2, h2) by applying a rule (h1, r, tar) ∈ R, i.e.,
w1 =⇒r w2 and w2 is sent from membrane h1 to membrane h2 according to the
target indicator tar. More specifically, if tar = here, then h2 = h1; if tar = out,
then the string w2 is sent to the region h2 immediately outside membrane h1; if
tar = inh2

, then the string is moved from region h1 to the region h2 immediately
inside region h1; if tar = in, then the string w2 is sent to one of the regions
immediately inside region h1.

A sequence of transitions between configurations of Π, starting from the initial
configuration (A, i0), is called a computation of Π. A halting computation is a
computation ending with a configuration (w, h) such that no rule from Rh can
be applied to w anymore; (w, h) is called the result of this halting computation if
w ∈ T ∗. L (Π), the language generated by Π, consists of all strings over T which
are results of a halting computation in Π.

By L (X-LP ) (L
(
X-LP ⟨n⟩)) we denote the family of languages generated by

P systems (of tree height at most n) using rules of type X. If only the targets
here, in, out are used, then the P system is called simple, and the corresponding
families of languages are denoted by L (X-LsP ) (L

(
X-LsP ⟨n⟩)).

Example 2. Let Π = (G, [1 [2 ] 2 [3 ] 3 [4 ] 4 ] 1 , R, 1) be a P system of type D1
RI

2
L

with
G = ({a,B} , {a} , {DR [a] , DR [B] , IL [aa] , IL [B]} , aB) ,
R = {(1, DR [a] , in2) , (1, DR [B] , in3) , (1, DR [B] , in4)}

∪ {(2, IL [aa] , out) , (3, IL [B] , out)}
The computations in Π start with aB in membrane (region) 1. In general,

starting with a string a2
n

B, n ≥ 0, in membrane 1, we may either delete B
by the rule (1, DR [B] , in4), getting a2

n

as the terminal result in the elementary
membrane 4 (a membrane is called elementary if and only if it contains no inner
membrane) or delete B by the rule (1, DR [B] , in3). With the string a2

n

arriving
in membrane 3, we get Ba2

n

in membrane 1 by the rule (3, IL [B] , out). Now we
double the number of symbols a by applying the sequence of rules (1, DR [a] , in2)

and (3, IL [aa] , out) 2n times, finally obtaining a2
n+1

B. Hence, in sum we get
L (Π) =

{
a2

n | n ≥ 0
}

for the language generated by this P system µ of type
D1

RI
2
L. �
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3 Computational Completeness of P Systems with Minmal
Substitution Rules

In this section we consider several variants of P systems with substitution rules
of minimal size, the main result showing computational completeness for simple
P systems with rules of type D1I1. Yet first we show that for any recursively
enumerable language we can construct a P system, with the height of the tree
structure being only 1 (which is the minimum possible according to Theorem 1),
of type D1

RI
1
LS

1
R, i.e., using minimal right insertions and minimal right deletions

and mutations (substitutions).

Theorem 4. L
(
D1

RI
1
LS

1
R-LP

⟨1⟩) = RE.

Proof. From Theorem 2 we know that L (PSZNF ) = RE, hence, we will only
show that for every Post system G = (V, T,A, P ) in Z-normal form we are able
to construct equivalent P system Π of type D1

RI
1
LS

1
R. We assume that the rules

in P are labelled in a unique way by labels from a finite set Lab with 1 /∈ Lab
and z ∈ Lab. We now construct a P system Π, Π = (G′, µ,R, 1), with a flat
tree structure µ of height 1, i.e., with the outermost membrane (the so-called skin
membrane) being labelled by 1, and all the other membranes being elementary
membranes inside the skin membrane being labelled by labels from

Lab′ = {1,#} ∪ {l | l : p ∈ Lab}
∪

{
h̄ | h : P [ah/bhch] ∈ P

}
∪
{
h̄ | h : P [ahbh/ch] ∈ P

}
.

G′ = (V ′, T, A, P ′), V ′ =
{
x, x̄l | x ∈ V, l ∈ Lab

}
∪ {#}, and P ′ contains the

minimal left insertion, right deletion, and right substitution rules contained in the
rules of R as listed in the following:

h : P [ahbh/ch]: (1, DR [bh] , inh),
(
h, SR

[
ah/ā

h
h

]
, out

)
, (h, IL [#] , out),(

1, DR

[
āhh

]
, inh̄

)
,
(
h̄, IL [ch] , out

)
;

h : P [ah/bhch]:
(
1, SR

[
ah/ā

h
h

]
, inh

)
, (h, IL [ch] , out),(

1, DR

[
āhh

]
, inh̄

)
,
(
h̄, IL [bh] , out

)
;

h : P [ah/bh]: (1, DR [ah] , inh), (h, IL [bh] , out);
h : P [ah/λ]: (1, SR [ah/ah] , inh), (l,DR [ah] , out), for ah ̸= Z;
z : P [Z/λ]: (DR [Z] , inz);

the additional membrane # is used to trap all computations not leading to a
terminal string in an infinite loop by the rules (1, IL [#] , in#) and (#, IL [#] , out);
for this purpose, the rule (h, IL [#] , out) is used in case of h : P [ahbh/ch], too.
Due to the features of the underlying Post system in Z-normal form, all terminal
strings from L (G) can be obtained as final results of a halting computation in the
elementary membrane z, whereas all other possible computations in Π never halt,
finally being trapped in an infinite loop guaranteed by the rules leading into and
out from membrane #. Hence, in sum we get L (Π) = L (G) . �

Summarizing the results of Theorems 1 and 4, we get:
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Corollary 1. L
(
D1I1S1

)
= L

(
D1I1S1-LP ⟨0⟩) ⊂ REG ⊂

L
(
D1

RI
1
LS

1
R-LP

⟨n⟩) = RE for all n ≥ 1.

If we want to restrict ourselves to the simple targets here, in, out, then we have
to use a more difficult proof technique than in the proof of Theorem 4.

Theorem 5. L
(
D1I1-LsP ⟨8⟩) = RE.

Proof. In order to show the inclusion RE ⊆ L
(
D1I1-LsPLsP ⟨8⟩), as in the proof

of Theorem 4 we start from a Post system G = (V, T,A, P ) in Z-normal form with
assuming the rules in P to be labelled in a unique way by labels from a finite set
Lab with 1 /∈ Lab and z ∈ Lab and construct an equivalent simple P system Π,
Π = (G′, µ,R, 1), of type D1I1, with G′ = (V ′, T, A, P ′) and

V ′ = V ∪ VR ∪ {S}, VR = {D,E, F,H, J,K,M},
P ′ = {+X,−X | X ∈ V ∪ {S}} ∪ {X+, X− | X ∈ V ∪ VR},

as follows: The membrane structure µ consists of the skin membrane 1 as well
as of linear structures needed for the simulation of the rules in G: For every rule
h : P [ahbh/ch] and every rule h : P [ah/bhch] in P we need a linear structure of
8 membranes

[
(h,1)

[
(h,2)

...
[
(h,8)

]
(h,8)

...
]

(h,2)

]
(h,1)

and for every rule h : P [ah/bh]
and every rule h : P [ah/λ] in P we need a linear structure of 6 membranes[
(h,1)

[
(h,2)

...
[
(h,6)

]
(h,6)

...
]

(h,2)

]
(h,1)

; moreover, for getting the terminal results, we

need the linear structure of 3 membranes
[
(z,1)

[
(z,2)

[
(z,3)

]
(z,3)

]
(z,2)

]
(z,1)

.
The simulations of the other rules from P are accomplished by the procedures

as shown in the tables below, where the columns have to be interpreted as follows:
in the first column, the membrane (label) h is listed, in the second one only the
rule p ∈ P is given, which in total describes the rule (h, p, in) ∈ R, whereas the
rule p in the fifth column has to be interpreted as the rule (h, p, out) ∈ R.; the
strings in the third and the fourth column list the strings obtained when going up
in the linear membrane structure with the rules (h, p, in) from column 2 and going
down with the rules (h, p, out) from column 5, respectively. The symbol F cannot
be erased anymore, hence, whenever F has been introduced, at some moment, the
computation will land in an infinite loop with only introducing more and more
symbols F . The main idea of the proof is that we choose the membrane to go into
by the rule (1,K+, in) in a non-deterministic way. The goal is to reach the terminal
membrane (z, 3) starting with a string wZ, w ∈ T ∗, in the skin membrane:

(z, 3) w
(z, 2) Z− wZ F+
(z, 1) K− wZK wF F+
1 K+ wZ wFF
Getting the terminal string w ∈ T ∗

The tables below are to be interpreted in the same way as above; yet now
we only list the results of correct simulations in column 4 and omit the results of
adding the trap symbol F . Moreover, the rule D− in the skin membrane is the only
one in the whole system which uses the target here, i.e., it has to be interpreted
as (1, D−, here).
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(h, 8) ScwDH H−, F+
(h, 7) +S cwDH ScwD E+, F+
(h, 6) +c wDH ScwDE M+, F+
(h, 5) H+ wD ScwDEM −S, F+
(h, 4) D+ w cwDEM M−, F+
(h, 3) a− wa cwDE J+, F+
(h, 2) b− wab cwDEJ J−, F+
(h, 1) K− wabK cwDE E−, F+
1 K+ wab cwD D−

cw
Simulation of h : P [ab/c]

(h, 8) SbcwDH H−, F+
(h, 7) +S bcwDH SbcwD E+, F+
(h, 6) +b cwDH SbcwDE M+, F+
(h, 5) +c wDH SbcwDEM −S, F+
(h, 4) H+ wD bcwDEM M−, F+
(h, 3) D+ w bcwDE J+, F+
(h, 2) a− wa bcwDEJ J−, F+
(h, 1) K− waK bcwDE E−, F+
1 K+ wa bcwD D−

bcw
Simulation of h : P [ab/c]

(r, 6) SwDH H−, F+
(r, 5) +S wDH SwD E+, F+
(r, 4) H+ wD SwDE S−, F+
(r, 3) D+ w wDE J+, F+
(r, 2) a− wa wDEJ J−, F+
(r, 1) K− waK wDE E−, F+
1 K+ wa wD D−

w
Simulation of h : P [a/λ], a ̸= Z

(h, 6) SbwD D−, F+
(h, 5) +S wD Sbw E+, F+
(h, 4) +b wD SbwE −S, F+
(h, 3) D+ w bwE J+, F+
(h, 2) a− wa bwEJ J−, F+
(h, 1) K− waK bwE E−, F+
1 K+ wa bw
Simulation of h : P [a/b]

From the descriptions given in the tables above, it is easy to see how a suc-
cessful simulation of a rule h : P [xh/yh] ∈ P works. If we enter a membrane
(h, 1) with a string v not being of the form uxh, then at some moment the only
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chance will be to use F+, introducing the trap symbol F which cannot be erased
anymore and definitely leads to a non-halting computation. The additional sym-
bols D,E,H, J,M intermediately introduced on the right-hand side of the string
guarantee that loops inside the linear membrane structure for the simulation of a
rule h : P [xh/yh] ∈ P cannot lead to successful computations as well. In sum, we
conclude L (Π) = L (G) . �

Due to the matrix-like membrane structure of the simple P systems constructed
in the preceding proof, we could obtain the computational completeness of matrix
grammars of type D1I1 as an obvious consequence of Theorem 5, yet the direct
transformation of the construction given in the proof of this theorem would yield
a lot of matrices with lengths more than 3, whereas the direct proof given in
Theorem 3 only needed matrices of length at most 3.

4 Conclusion

In this paper we have considered string rewriting systems using the operations of
minimal left and right insertion and deletion. Using even only the operations of
minimal left insertion and minimal right deletion, matrix grammars reach com-
putational completeness with matrices of length at most 3; our conjecture is that
this required length cannot be reduced to 2. As our main result, we have shown
that sequential P systems using the operations of minimal left and right insertion
and deletion are computationally complete, thus solving an open problem from
[2]. The simple P system constructed in the proof of Theorem 5 had rather large
tree height; it remains an open question to reduce this complexity parameter. On
the other hand, in Theorem 4 we have shown that using minimal left insertion,
minimal right deletion, and, in addition, minimal right mutation (substitution of
one symbol by another one on the right-hand side of a string) we can reduce the
height of the tree structure of the P system to the minimum 1 and even avoid the
use of the target here. Moreover, we would also like to avoid the target here in
the case of simple P systems using minimal left and right insertion and deletion,
as with avoiding the target here, the applications of the rules could be interpreted
as being carried out when passing a membrane, in the sense of a molecule passing
a specific mebrane channel from one region to another one. We shall return to this
qestion and related ones in an extended version of this paper.
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A. Salomaa (eds.): New Trends in Formal Languages. LNCS 1218, 299–318, Springer,
Heidelberg (1997).

7. J. Castellanos, C. Mart́ın-Vide, V. Mitrana, J.M. Sempere: Solving NP-complete
problems with networks of evolutionary processors. In: J. Mira, A.G. Prieto (eds.):
IWANN 2001. LNCS 2084, 621–628, Springer, Heidelberg (2001).

8. J. Dassow, F. Manea, B. Truthe: On normal forms for networks of evolutionary
processors. Proc. UC 2011, 89–100 (2011).

9. J. Dassow, F. Manea: Accepting hybrid networks of evolutionary processors with
special topologies and small communication. Proc. DCFS 2010, 68–77 (2010).
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12. R. Freund, M. Oswald, A. Păun: Gemmating P systems are computationally complete
with four membranes. In: L. Ilie, D. Wotschke: Pre-proceedings DCFS 2004. The
University of Western Ontario, Rep. No. 619, 191–203 (2004).

13. B. Galiukschov: Semicontextual grammars. Logica i Matem. Lingvistika, 38–50. Tallin
University (in Russian) (1981).

14. D. Haussler: Insertion and Iterated Insertion as Operations on Formal Languages.
PhD thesis, Univ. of Colorado at Boulder, 1982.

15. D. Haussler: Insertion languages. Information Sciences 31 (1), 77–89 (1983).
16. S. Ivanov, S. Verlan: Random context and semi-conditional insertion-deletion sys-

tems. arXiv, CoRR abs/1112.5947 (2011).
17. L. Kari: On Insertion and Deletion in Formal Languages. PhD thesis, University of

Turku, 1991.
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25. Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Membrane Comput-
ing. Oxford University Press, 2010.
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