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Summary. Counting the number of cells obtained in an experiment is crucial in many
areas in Biology. Nonetheless, this is usually performed by hand by the researcher due the
intrinsic difficulty of the task. In this paper, we present a set of techniques for counting
cells inspired in the treatment of Digital Images via tissue-like P systems with promoters.

1 Introduction

Due to the increasing amount of information stored as visual data, the development
of new software for dealing efficiently with digital images becomes a necessity. The
number of application areas is growing and the progress of new technology needs
the design of new software for handling such information. Among the classical
areas, we can cite biometrics [1], surveillance [15] or medical imaging [3], but there
are many others.

Recently, a new research line has been open by applying well-known membrane
computing techniques for solving problems from digital imagery. For example, the
segmentation problem, [13, 14, 16, 17, 39], thresholding [12] or smoothing [33].
Special attention deserves [20], where the symmetric dynamic programming stereo
(SDPS) algorithm [21] for stereo matching was implemented by using simple P
modules with duplex channels.

We focus here on a problem from Microbiology. Automated image analysis is
increasingly used in Microbiology to quantify important parameters for research
and application. The most studied so far are the following: cell numbers, cell
volumes, frequencies of dividing cells, in situ classification of bacteria, enumeration



70 I. Ardelean et al.

of actively respiring bacteria, characterization of bacterial growth on solid medium,
viability and physiological activity in biofilms (e.g. [4, 5, 19, 23, 26, 30, 11, 34,
35, 37, 38, 40, 41, 43]). In this paper we report our study of the application of
Membrane Computing techniques to the problem of counting cells and show some
preliminary results. The whole process is a combination of different techniques of
processing images (binarization, segmentation, noise reduction . . . ) which can be
performed by different families of P systems. The final algorithm is a sequence of
partial processes which can be performed by Membrane Computing techniques,
and the application of such processes can be seen as a global machine which takes
as input a digital image showing a biological entity (usually, a photograph taken
with a microscopy in a wet lab) and the output is the number of cells in the picture.

The different families of P systems used in the stages of the process have in-
spired parallel software programs which have been developed by using a device ar-
chitecture called CUDATM, (Compute Unified Device Architecture). CUDATM is a
general purpose parallel computing architecture that allows the parallel NVIDIA1

Graphics Processors Units (GPUs) to solve many complex computational prob-
lems in a more efficient way than on a CPU. GPUs constitute nowadays a solid
alternative for high performance computing, and the advent of CUDA allows pro-
grammers a friendly model to accelerate a broad range of applications. This novel
architecture has been previously used to implement parallel software that simu-
lates the behavior of P systems [6, 8, 9, 10, 32, 33], and, in a similar way than in
other implementations, the obtained results in the problem of counting cells are
quite promising.

The paper is organized as follows: Next, we recall the computational model
used to design the different families of P systems that performs the stages of
the algorithm. In section 3, we outline the steps of the process that takes as an
input a digital image taken in a wet lab and outputs the number of cells in the
image. Section 4 shows an illustrative example and some details of the CUDA
implementation. The paper finishes with some conclusions and open lines for a
future research.

2 Formal Framework

Next, we recall some basics on the P system model chosen for implementing the
solution described below. The model is tissue-like P systems with promoters. Pro-
moters are usually defined on cell-like models [24] and its extension to tissue-like
is quite natural. Next, we recall the formal definition.

Definition 1. A tissue-like P system with promoters of degree q ≥ 1 is a tuple of
the form

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, iout)

where

1 http://www.nvidia.com.
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1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ ⊆ Γ is the input alphabet;
3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment

available in an arbitrary large amount of copies;
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration;
5. R is a finite set of rules of the following form:

(pro | i, u/v, j), for 0 ≤ i ̸= j ≤ q, pro, u, v ∈ Γ ∗

In these rules, the labels 1, . . . , q correspond to the q cells and the label 0 cor-
responds to the environment;

6. iin ∈ {1, 2, . . . , q} denotes the input region;
7. iout ∈ {1, 2, . . . , q} denotes the output region.

The rule (pro | i, u/v, j) can be applied over two cells (or a cell and the envi-
ronment) i and j such that u (contained in cell i) is traded against v (contained in
cell j). The rule is applied if in i the objects of the promoter pro are present. The
promoter is not modified by the application of the rule. If the promoter is empty,
we will write (i, u/v, j) instead of (∅ | i, u/v, j).

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, i.e. in each step we apply a maximal multiset of
rules. A configuration is an instantaneous description of the system Π, and it
is represented as a tuple (w0, w1, . . . , wq), where w1, . . . , wq, where represent the
multiset of objects contained in the q cells and w0 represent the multiset of objects
from Γ −E placed in the environment (initially w0 = ∅). Given a configuration, we
can perform a computation step and obtain a new configuration by applying the
rules in a parallel manner as it is shown above. A sequence of computation steps
is called a computation. A configuration is halting when no rules can be applied
to it.

3 Counting Cells

Counting cells in a picture taken by a microscopy in a wet lab is a hard task.
The study of the cells is usually made in such conditions (light filters, noise data,
aqueous media, . . . ) where it is difficult for the human expert to decide whether a
spot in the image correspond to a cell or not. In such conditions, the development
of a software that provides the exact number of spots in the image that correspond
to cells is impossible, since two different experts hardly agree in this issue.

From this starting point, and bearing in mind that the research in Microbiology
needs computer aid, we propose a Membrane Computing protocol for obtaining
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Fig. 1. (Left) Image with two filaments of heterocystous cyanobacterium labeled with
0.02% crystal violet (the arrows indicates the presence of heterocysts, specialized cells,
not labeled by crystal violet in our experimental labeling conditions: 0.02% crystal violet
concentration and 5 minutes of coloration). (Right) Binarization of the image.

the number of cells in a image, or more exactly, the number of spots in the image
that probably correspond to a cell. Since this is a empirical problem, instead of
a formal definition of the problem, we will base our description in a case study.
We start by considering the image of Fig. 1. Such image correspond to filamen-
tous cyanobacterium and has been taken by using the number of cells within each
filament. It is very important to calculate the ratio of the number of heterocysts
to non-differentiate cells, also called vegetative cell, as well as to calculate the
distribution of filaments lengths (correlated to the total number of cells within
each filament) within a population (composed of hundreds of filaments per each
milliliter) of this cyanobacterium. In microbiological, studies for the determination
of number of dividing cells related to the number of total cells are also very use-
ful to calculate the growth rate in natural population of bacteria/cyanobacteria,
heterocystous or not ([2, 7, 22, 25, 27, 29, 42]).

The target is to take the image as an input and provide a the number of cells
as output and performing the different stages of the process by using Membrane
Computing techniques. The stages are the following:

• Stage 1: Binarization. This fist stage consist on getting a new image from
the original with only two colors (a binary image). In this stage we use a family
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Fig. 2. The first image (top-left) is a detail of Figure 1 (left). The second and third
ones (top-right and bottom-left) show details of the thinning process. Finally, the last
image (bottom-right) shows a set of pixels inside each individual cells. Different cells are
marked with different colors. The number of such different colors provides the number of
cells.

of tissue-like P systems similar to the described one in [12, 32] for this aim. A
result of this process can be seen in Figure 1 (right).

• Stage 2: Segmentation. This is the process that split the image in several
meaningful regions. It is basic for the treatment of digital images and it is widely
used in medical images for identifying the region of interest. We also perform
this stage by using Membrane Computing techniques, namely, the algorithm
described in [13].

• Stage 3: Noise Reduction. The images taken in a wet lab are usually far
from having homogeneous regions. Due to the intrinsic nature of the biological
research, in the image it is common tho find little spots that in a mechanic
process of counting cells, can be easily taken as little cells when they are merely
spots due to the noise. Obviously, removing such noise imply to take difficult
decision and should be done carefully. We propose three different steps to
eliminate noise from an image:
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– Stage 3.1: Labeling black connected components. The first step con-
sists on determining connected components in the image. The set of pixels
to be considered as a cell is a connected set of pixels. The connectivity
problem among pixels and the study of connected components is a problem
linking Digital Imagery and Algebraic Topology and it has been recently
studied in the framework of Membrane Computing. For this step, we pro-
pose a partial application of the Membrane Computing algorithm proposed
in [18].

– Stage 3.2: Calculating Areas. This step starts after the identification of
the connected components of the image. Our proposal is to use Membrane
Computing techniques in order to determinate the size of the connected
component. In our approach, the size of the spot is its number of pixels.
This process is also performed by using the symport/antiport rules used
in tissue like P systems and basically consists on counting the number of
objects in the P system which represent the pixels of a concrete spot.

– Stage 3.3: Eliminating small components. From the previous step, we
have a number associated to each spot, representing its size. In this stage
we will consider a threshold in order to decide if a spot is large enough to
be considered meaningful or if the spot should be considered as noise, and
hence, to be ignored. Obviously, the threshold depends on the experiment
and it must be provided by the experts.

• Stage 4: Counting Cells. The three previous stages can be considered as
preprocessing of the image. The algorithm for counting cells starts now. The
key point in this stage is to consider the geometry that a cell usually shows
in an image taken form a microscopy in a wet lab. Such images usually show
the cells as convex spots and the image of multicellular beings usually shows
a wavy border. An appropriate process of thinning, inspired in other thinning
process2 with Membrane Computing techniques, produces little isolated set of
point for each cell (see Figure 2 (bottom-right)).

• Stage 5: Output. In the last stage, the isolated set of pixels that represent
the cells are codified as an appropriate set of objects of the alphabet in the
output membrane of the corresponding P system. Counting these sets of objects
provides the number of cells in the image

3.1 Implementation

Inspired in the families of tissue-like P systems that perform the stages of the pro-
cess of counting cells, a software tool has been implemented by using CUDATM,
(Compute Unified Device Architecture) [28, 31]. CUDATM is a general purpose
parallel computing architecture that allows the parallel NVIDIA Graphics Pro-
cessors Units (GPUs) to solve many complex computational problems in a more
efficient way than on a CPU.

2 See these proceedings
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The experiments have been performed on a computer with a CPU AMD Athlon
II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
main memory. The used graphical card (GPU) is an NVIDIA Geforce GT240
composed by 12 Stream Processors with a total of 96 cores to 1340 MHz. It has
1 GB DDR3 main memory in a 128 bits bus to 700 MHz. So, the transfer rate
obtained is by 54.4 Gbps. The used Constant Memory is 64 KB and the Shared
Memory is 16 KB. Its Compute Capability level is 1.2 (from 1.0 to 2.1). The
implementation deals with N blocks of threads for the complete image in our
GPU of 96 cores.

3.2 Example

Figures 1 and 2 shows several details of an illustrative example of the process. The
original image in Fig. 1 shows a filamentous cyanobacterium able to differentiate
heterocysts (the arrows indicates the presence of heterocysts, not labeled by crystal
violet in our experimental conditions ) when grown on mineral medium (so called
BG0) in the absence of combined nitrogen (biological identification at the level of
genus is under work). In these conditions the biological specimen (the filamentous
cyanobacterium) is able to utilize atmospheric nitrogen as a source of nitrogen
to synthetizise its own biochemical components (amino acids, proteins etc); the
first major steps in this utilization of atmospheric nitrogen occurs in heteocysts,
differentiate cells within the filament [36]. The number of cells found in the image
from Fig. 2 is 13.

4 Conclusions

The development of experimental sciences where a big amount of data is stored
as digital images needs of powerful software which helps the researcher to un-
derstand the studied processes. In particular, Microbiology significantly benefits if
automated image analysis is used by microbiologists in their professional activities;
furthermore the interplay between microbiologists, mathematicians and engineers
in this field could be helpful in developing new opportunities within old software,
or ,even, to generate new software more appropriate for different microbiological
task.

In this respect, Membrane Computing devices have features that make them
suitable for the study of digital images, as the encapsulation of the information
and its treatment in parallel. This paper reports how an appropriate combination
of families of tissue-like P systems can solve the problem of counting cells. The
study of how these or other families can be combined for solving more problems
from Microbiology (or from other experimental sciences) is a challenge for the next
years.
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9. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
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