The Power of Symport-3 with Few Extra Symbols

Artiom Alhazov!:? and Yurii Rogozhin?

1 Universita degli Studi di Milano-Bicocca

Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy

E-mail: artiom.alhazov@unimib.it

Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

Academiei 5, Chiginau MD-2028 Moldova

E-mail: {artiom,rogozhin}@math.md

Summary. Membrane systems (with symbol objects) are formal models of distributed
parallel multiset processing. Symport rules move multiple objects to a neighboring region.
It is known that P systems with symport rules of weight at most 3 and a single membrane
are computationally complete with 7 superfluous symbols. It is also known that without
any superfluous symbols such systems only generate finite sets.

We improve the lower bounds on the generative power of P systems with few su-
perfluous objects as follows. 0: empty set and all singletons; k: all sets with at most k
elements and all sets of numbers k+regular with up to k states, 1 < k < 5; 6: all regular
sets of non-negative integers. All results except the last one are also valid for different
modes, e.g., sequential one, also for higher values of k.

1 Introduction

Membrane systems (with symbol objects) are formal models of distributed parallel
multiset processing. Symport rules move predefined groups objects to a neighbor-
ing region [4]. In maximally parallel mode (typical for membrane computing), this
alone is sufficient to construct a computationally universal device, as long as the
environment may contain an unbounded supply of some objects. The number of
symbols specified in a symport rule is called its weight. The result of a computa-
tion is the total number of objects when the system halts. In some cases, however,
for technical reasons the desired result may only be obtained alongside a small
number of superfluous objects in the output region.

There were multiple papers improving the results on P systems with sym-
port/antiport of small weight (an antiport rule moves objects between 2 regions
in both directions, and its weight is the maximum of objects per direction), see [2]
for a survey of results. Computational completeness is achieved even for minimal
cooperation: either symport/antiport of weight 1, or symport of weight at most

62 A. Alhazov, Y. Rogozhin

2. This holds for 2 membranes, without superfluous objects if the output is con-
sidered in the skin, or with 1 superfluous object under the classical assumption of
the output in the elementary membrane. In the tissue case, the accepting systems
can even be made deterministic.

With cooperation of up to 3 objects, a single membrane suffices. The regions
are called the skin and the environment, the latter contains an unbounded supply
of some objects, while the contents of the former is always finite. With antiport-
2/1 alone (i.e., exchanging 1 object against 2), the computational completeness is
obtained with a single superfluous object. With symport-3 (i.e., symport rules only,
of weight up to 3), one proved in [3] that 13 extra objects suffices for computational
completeness. This result has been improved in [1] to 7 superfluous symbols. In
the same paper it was shown that without any superfluous symbols such systems
only generate finite sets.

The computation consists of multiple, sometimes simultaneous, actions of two
types: move objects from the skin to the environment, and move objects from the
environment into the skin. It is obvious that trying to move all objects out in
the environment will activate the rules of the second type. Since, clearly, rules of
the first type alone cannot generate more than finite sets, it immediately follows
that the “garbage” is unavoidable. This paper tries to improve the currently best
bounds on how much “garbage” is sufficient.

2 Definitions

Throughout the paper, by “number” we will mean a non-negative integer. We
write N; FINj, to denote the family of all sets of numbers each not smaller than
j, of cardinality k. By N;REG) we denote the family of all sets M of numbers
each not smaller than j, such that {x — j | € M} is accepted by some finite
automaton with k states, with at least one transition from every non-final state.
We assume the reader to be familiar with the basics of the formal language theory,
and we recall that for a finite set V', the set of words over V is denoted by V*,
the set of non-empty words is denoted by V™, and a multiset may be represented
by a string, representing the multiplicity by the number of occurrences, the order
not being important.

2.1 Finite Automata

Definition 1. A finite automaton is a tuple A = (X, Q, qo,0,F), where X is an
input alphabet, Q is the set of states, qo € Q is the initial state, F C Q is the set
of final states, and 6 : Q x X — 29 is the transition mapping.

The function § is naturally extended from symbols to strings. The language ac-
cepted by A is the set {w € X* | §(qgo, w) N F # 0}.

The Power of Symport-3 with Few Extra Symbols 63
2.2 P Systems with Symport

The scope of this paper is limited to P systems with symport only, with a single
membrane.

Definition 2. A P system with symport rules and one membrane is a tuple
II=(0,E,u= [], ,w, R), where

O is a finite set called alphabet; its elements are called symbols,
E C O is the set of objects appearing in the environment in an unbounded
supply,

e 1 is the membrane structure, trivial in case of one membrane; the inner region
is called the skin and the outer region is called the environment,
w € OF is the specification of the initial contents of the inner region,
R is the set of rules of types (u,out) or (v,in), u,v € OT.

An action of a rule (u, out) is to move the multiset of objects specified by u from
the skin into the environment. An action of a rule (v,in) is to move the multiset
of objects specified by v from the environment into the skin (v € E* is not allowed
by definition). The objects are assigned to rules non-deterministically. Maximal
parallelism allows application of multiple rules simultaneously and multiple times,
as long as there are enough copies of objects for them, and provided no further
rule is applicable to the unassigned objects.

The computation halts when no rules are applicable at some step. The result
of a halting computation is the total number of objects in the inner region when
it halts. The set of numbers N (IT) generated by a P system IT is the set of results
of all its computations.

The family of sets of numbers generated by a family of P systems with one
membrane and symport rules of weight at most k is denoted by NOP; (symy)
in maximally parallel mode. We add superscript sequ to P to indicate sequential
mode instead.

3 Few-Element Sets

We now present a few simple systems.
Iy = (O={a}, E=0,p= [], ,w=a,R={(a,in), (a,out)}).

System Il perpetually moves a single object in and out, effectively generating the
emptyset. For any z € N, setting R = () and w = a® will lead to a system II;
which immediately halts, generating a singleton {z}.

We now proceed to arbitrary small-cardinality sets. To generate a multi-element
set, the system must make at least one non-deterministic choice. Since we want
to allow the difference between the elements to be arbitrarily large, such choice

64 A. Alhazov, Y. Rogozhin

must be persistent, i.e., the decision information should not vanish, at least until
multiple objects are moved accordingly. For any numbers y > z, consider the
following P system:

H2 = (O = {G;, b7i7p7q}7E = {q}a,u = [}1 , W = amby_z+1ip7 R)7
R = {(i, out), (ip, out), (pg, in), (pgb, out) }.

There are two possible computations of Il: either i exits alone, halting with
a®b¥ =% 1p, generating y + 2, or i exits with p, leading to a sequence of application
of the last two rules until no objects b remain in the skin, halting with a*pq,
generating x + 2. Therefore, 115 generates an arbitrary 2-element set with 2 extra
objects.

This construction can be improved to generate higher-cardinality sets as fol-
lows. Let m > 2; for arbitrary m + 1 distinct numbers denote the largest one by y
and the others by x;, 1 < j < m. We construct another P system:

Hm+1:(O7E:{QJ|1SJSm}aM: []1 awaR)v
O={a; [1<j<y+1}U{i}U{pj,q; [1<j<m},
y+1 m

w=i[]a]]w
j=1 j=1

R = {(i, out) } U{(ipj, out), (p;jq;,in) | 1 < j < m}
U (pjgjar,out) |1 <j<m, z; +1 <k <y+1,j#k}.

Such system behaves like II5, except it also chooses among different objects p; to
send out symbols ay, for k > x;. It halts either with a; - - - ay41p1 - - - prm generating
y+m+1, or with a1 ---as;q;p1- - pm generating z; +m + 1. For m = 2, 3,4 this
leads to IT5 generating {x1 + 3,22 + 3,y + 3}, I14 generating {z1 + 4,22 +4, 23+
4,y + 4}, and IT5 generating {z1 + 5,22 + 5,23 + 5,24 + 5,y + 5}, i.e., any 3-, 4-
or 5-element set with 3, 4 or 5 extra objects, respectively.

4 Sequential Mode and Straightforward Regularity

Remark 1. All P systems constructed in the previous section de facto work sequen-
tially, hence the results are valid for P system in any other traditional derivation
mode (e.g., sequential, asynchronous, minimally parallel, maximal strategy).

The sequential mode is an interesting candidate for a research topic, due to
its simplicity, even though its power (as that of any sequential multiset rewrit-
ing system without control) cannot exceed NM AT = NREG, and infinite sets
without zero cannot be generated in this case either, for the same argument as in
maximally parallel case.

We now proceed by constructing a P system generating the length set of a
language accepted by a finite automaton A = (Q, X, 4, o, F'), where Q = {qg; |

The Power of Symport-3 with Few Extra Symbols 65

0 < j < m}; we assume A satisfies the following property: there is at least one
transition from every non-final state.

HA:(O:QUQ/UZ"E:Q/UEMU/: [}17w:q0"'me6,R)’
R = {(gjq;,0ut) |0 < j <m}
U {(gjaqk,in) | qr € 0(qj,a), a € X} U{(qj,out) | ¢; € F}.

Notice also that adding an arbitrary number of objects from X to the initial
configuration increases the result by the corresponding number. Unfortunately,
besides the needed number, the skin region at halting also contains the superfluous
symbols, as many as there are states in A. Therefore, we have obtained all sets
N;REG), j > k. Within this section it is enough to consider j = &, because REG
contains REGYy.

Remark 2. If we fix j, k and restrict A to be deterministic, then the number set
M generated by the corresponding P system can be characterized by the following
properties: x > j for all € M and there exists a number 0 < p < k such that
ifx > j+k—p, then z € M if and only if x + p € M. Hence, acceptability
of sufficiently large numbers is determined by the remainder of their division by
some p < k. The general result is also valid for non-deterministic systems, but
exact characterization in terms of states is less straightforward.

The simplest examples of application of IT4 are the set of all positive numbers
and the set of all positive even numbers.

It is not difficult to notice that the result of IT4 does not depend on the
computation mode, e.g., it is valid also for maximally parallel mode. Therefore,
both NOP;“"(syms) and NOP;(symg) contain

o0 o0
NFINyUNFIN; U U N,FIN, U U N,REG,,.
k=2 k=1

We recall that the upper bound for NOP;“?"(symg) is NNREG U NFIN.

5 Larger Sets and Few Extra Objects

We now focus on the maximally parallel mode, and revisit the symport-3 construc-
tion from [1]. The 7 extra objects were denoted lp, b, d, x1, 24, x5, T¢.

Recall that any regular set of numbers is generated by some non-deterministic
register machine with only ADD-instructions, or, equivalently, accepted by a finite
automaton. It suffices to take the same construction, and notice that object d is no
longer needed to check for the conflicting counters. Removing it from the system
leads to P systems generating Ng REG. Hence, the contribution of the previous

66 A. Alhazov, Y. Rogozhin

section for maximally parallel P systems can be limited to infinite sets of the form
small number+infinite regularity accepted by at most 5 states.

We now recall the construction from [1] with the corresponding changes to
generate NgREG, rewritten in the syntax of finite automata. Let L be an arbi-
trary set from NgREG. Then there exists a finite automaton A = (X, Q, qo,0, F)
accepting L — 6 = {n — 6 | n € L}. We construct a P system simulating A:

=(0,E, [], ,w,R,1), where
O={r;|[1<i<6}UQU{(p,¢,7) |P,g€Q, 1 <j<3}U{a,Ab H},
EZQU{(p,q,Q)|p,q€Q}U{a,A,z2,x3,H},

w = qorrzszszebA [(p.q,1)(p,q.3),
p,qeP
= {1: (z1@ox3,in), 2: (xoxsxs5,0ut), 3 : (T3xe,0ut), 4: (Hb,in)}
U {5: (gb,out) | g € F}
U {6 : (Hbx,out) |z € {(p,q.1),(p.q.3) | p.q € Q} U{A}}
U {7 (p(p, g, V)21, 0ut), 8: ((p,q, V)xa(p, g,2),in),
9:((p0:2)(p, 4,3)A, out), 10 = ((p, ¢, 3)259, in),
11: (Axaa in) | q € (p,s)}-

Notice that the effect of rules 1,2,3 is that sending object x1 out will bring x5 and
x3 in, which, in turn, will send objects x4, x5 and xg out. Notice also that rules
8,10,11 need x4, x5 and xg, so if these objects are inside the membrane, then all
objects of the form (p,q,7), 7 € {1,3} may be sent out, without enabling these
rules. We will skip mentioning objects x; in the simulation.

The simulation of a transition in A is performed as follows:

e The state p brings object (p, g, 1) out, also sending x1 out to enable the rest of
the simulation.

e Object (p,q,1) brings object (p,q,2) in, which, in turn, brings both (p,q, 3)
and A out.

e Object (p,q,3) brings in the next state ¢, while object A brings in object a,
contributing to the result.

If the current state is final, rule 5 may be applied, leading to iteration of rules 4
and 6, taking out all objects except H,b, x1, x4, x5, ¢ and the desired number of
copies of a.

Remark 3. If we were interested in generating vectors rather than numbers, simula-
tion of partially blind register machines could be also performed with six additional
objects. Since this gives no additional power for numbers (i.e., NMAT=NREG),
we presented the simpler construction, without subtraction.

The Power of Symport-3 with Few Extra Symbols 67

6 Discussion

It has been known that P systems with symport rules of weight at most 3 generate
at least Ny RE, and cannot generate infinite sets containing 0. We have improved
the lower bound to

NFINyUNFIN; UNoFINy UN3FIN3 UNyFINgU NsFIN5
UN1REG, U NsREGy U NsREGs U NyREG4 U N5 FIN5
UNsREG U N7RE.

It is open whether this bound is tight, since the current best known upper
bound is NyREUNFIN.

For the sequential case, the bounds are given in the end of Section 4. It is
particularly interesting whether infinitely many additional objects are unavoidable
for generation of regular number sets in the sequential mode.

Acknowledgements

The first author acknowledges the project RetroNet by the Lombardy Region of
Italy under the ASTIL Program (regional decree 6119, 20100618).

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances and Open Problems. In: R. Freund, Gh. Paun, G. Rozenberg, A.
Salomaa: Membrane Computing, 6th International Workshop, WMC 2005, Vienna,
Revised Selected and Invited Papers. Lecture Notes in Computer Science 3850,
Springer, 2006, 1-30.

2. R. Freund, A. Alhazov, Yu. Rogozhin, S. Verlan: Communication P Systems. Chapter
5 in: Gh. Paun, G. Rozenberg, A. Salomaa: The Ozxford Handbook of Membrane
Computing, 2010, 118-143.

3. P. Frisco, H.J. Hoogeboom: P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2004, 145-170.

4. A. Paun, Gh. Paun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20, 2002, 295-305.

