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Abstract. Ambient calculus is a theory which deals with mobile computing
and computation and encompasses such notions as mobile agents, the ambients
where the agents interact and the mobility of the ambients themselves. P
systems is a formalism which abstracts from the structure and functioning of
living cells and describes distributed parallel computing devices with multiset
of objects processing. Ambient calculus and membrane computing are based
on the same concepts and structures though they are developed in different
areas of computer science. The purpose of our work now is to express ambient
calculus by means of P systems, namely by tissue P systems with dynamic
network of membranes.

1 Introduction

This paper is organized as follows: firstly, basic concepts and ideas of ambient calculus
[2] will be described. After that we will give the notion of dynamic networks and will
introduce the notion of tissue P systems with dynamic networks of membranes. We will
give some ideas how to express systems of mobile ambients using this type of P systems
with tree topology.

1.1 Ambient Calculus

An ambient is a named bounded place where computation happens. Ambients form sys-
tems with hierarchical nested structure. Ambients are allowed to move inside neighbour
ambients and to move outside parent ambients. The movement of ambients is controlled by
the computation which happens inside them. Furthermore, the process which is running
inside an ambient can open (dissolve) the ambient’s subambient.

There is a security feature in ambient calculus: the access to an ambient by a com-
putational process is authorized. The authorization is performed using the name of an
ambient.
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If an ambient with the name to which the process appeals to does not exist, then the
process is blocked until an ambient with this name appears in the area of activity of the
process.

There are three mobility primitives in ambient calculus:

• open n opens the ambient named n. The operation will be blocked until a subambient
inside the surrounding ambient with this name appears.

• in n makes the enclosing ambient with whole its content to move inside the neigh-
bouring ambient named n. The operation will be blocked until a subambient inside
the surrounding ambient with this name appears.

• out n makes the enclosing ambient to exit out of its parent ambient named n. The
operation will be blocked until the name of the parent ambient of the enclosing
ambient will be n.

The following primitives describe the structure of a process in Ambient Calculus:

restriction Expression (νn)P means creation of the name n restricted to the scope P .

inactivity Expression 0 denotes the process which does not perform any action.

parallel composition Expression P |Q denotes processes P and Q running in parallel.

replication Expression !P means unbounded replication of P . !P ⇔ P = P |!P .

It is proved that ambient calculus is Turing-complete [2].

1.2 Membrane Computing and Ambient Calculus

Although membrane computing [6] and ambient calculus belong to different branches
of computer science, they are based on the same concepts and ideas. The structure of
traditional P systems [6] and of mobile ambients is hierarchical. The computation has
a high level of parallelism and is distributed over membranes/ambients. The notions
of a membrane and of an ambient are similar. The computation in ambient calculus is
presented by computational processes which are running inside ambients, but in P systems
by the process of application of communication and evolution rules.

In [8] it has been shown that P systems can be expressed in the frame terms of ambient
calculus.

2 Tissue-like P Systems with Dynamic Network of Mem-
branes

2.1 Dynamic Networks

We assume we have a complex computer network (as an example we can take Internet)
where the possibility to create and remove communication channels or to move commu-
nicating nodes exists. We assume that nodes can communicate even during the time of
their motion through the network. We call such a type of networks dynamic networks.

All problems typical for static networks [5] are typical for dynamic networks, too. Some
important issues in this framework are:
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• distribution of network addresses,

• addressing of nodes,

• routing of the messages in the network.

The permanent changing of network’s structure makes these problems more difficult.
When, for example, a channel has been removed or created, or a node has been moved,

then the set of nodes to which the node has direct connection changes, the subnetwork to
which the node belongs changes. If we use structured addresses, then in dependence of
the strategy of distributing the addresses when changing the network structure we have
to redistribute the network addresses between nodes again.

There are at least two reasons which make the routing problem more difficult in dy-
namic networks: when the structure of the network changes, the necessity to choose the
new path for the routing message may appear and even the necessity to change destina-
tion network address of the message being sent may appear because of the redistributing
network addresses between the nodes.

There are a lot of architectures of dynamic networks: with dynamic and static parts
(for example, see [1]), that is when a part of network can be changed (i.e., communica-
tion channels and network nodes can be created and removed) and another part remains
unchanged. As an example of such networks we can consider the network of cellular tele-
phones, or today’s Internet with mobile computing devices – laptops and others. These
are networks with mobile nodes-leaves but with static routers (or gateways).

However, one can consider dynamic networks where all nodes can be moved.
A lot of strategies can be used to solve the problems of distribution of addresses and

of routing in dynamic networks.
We will call dynamic data transmission network a construct of communicating nodes

and communication channels which can be presented as a graph where channels can be
created and removed, nodes can be created and removed in runtime.

In the model we consider below we will abstract from the strategies of distribution of
addresses, of addressing and of routing.

2.2 P Systems with Dynamic Networks of Membranes

We define the type of tissue P systems [3] where the system of membranes represents the
dynamic network of membranes and channels.

Definition: A P system with a dynamic network of membranes is a construct

Π = (O, A, T, SA, M, µ, i0),

where:

– O is an alphabet of symbol-objects of the system. It is a finite non-empty set.

– A is the set of valid names of membranes. Names can be of arbitrary nature. The
set A can be finite or infinite.

– T is the set of types (classes) of membranes. One type of membranes represents
the set of communication/evolution rules and priorities among the rules. We will
write T = {T1, T2, . . . , Tt}, where T1, . . . , Tt are types of membranes. Type Ti
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– SA ⊆ O ×A is the list of correspondences of symbol-objects from O and the names
A of membranes. We will write SA = {(s1, a1), (s2, a2), . . . , (sk, ak)}, where si ∈ O,
aj ∈ A. A pair (si, ai) means that to membrane with the name ai symbol-object si

is assigned. The meaning of this item will be explained later.

– M is the set of membranes currently presented in the system. We will write
M = {$1, $2, . . . , $n}. $1, $2, . . . , $n are membranes. A membrane $ ∈
{$1, $2, . . . , $n} can be denoted as $ = {a, t, ω}. a ∈ A is name of the mem-
brane, t ∈ T is type of the membrane, ω ∈ O∗ is the multiset of symbol-objects
presented inside the membrane.

– µ ⊆ M ×M is the set of communication channels between membranes. We denote a
communication channel between membranes $i and $j by the ordered pair ($i, $j).
This pair denotes that a multiset of objects can be sent directly from the membrane
$i to the membrane $j , but it does not mean that objects can be sent from $j to
$i.

– i0 is optional. It is the name of the output membrane. The result of a computation
is considered to be in this membrane. If we have no output membrane i0, then we
will consider as the result of a computation the multiset of objects which appear in
the environment of the system.

The evolution/communication rules are of the general general forms

r : u → v [(a1,t1)ω1](a1,t1) [(a2,t2)ω2](a2,t2) . . . [(ak,tk)ωk](ak,tk)δ

or
r : u → v [(a1,t1)ω1](a1,t1) [(a2,t2)ω2](a2,t2) . . . [(ak,tk)ωk](ak,tk)

where:

• u ∈ O+. If |u| = 1, then the system is called non-cooperative, otherwise if |u| > 1
the system is called cooperative.

• v ∈ (OTAR)∗. OTAR ⊆ O × TAR is the set of symbol-objects and communication
(or target) commands. TAR = {here} ∪ ({go}×A∗) is the set of target commands.
Target command (s, here) means that after the application of the rule the newly
created symbol s must remain in the membrane where the rule was applied. The
target command (s, go path) means that after the application of the rule the newly
created symbol s must be sent to the destination indicated by path. path ∈ A∗ is a
string of the form a1a2 . . . ak. In other words, path is a route from the membrane
where the rule is applied to the membrane with the name ak and which consists of the
sequence of channels ($a0 , $a1), ($a1 , $a2), . . . , ($ak−1

, $ak
), where $a0 , . . . , $ak

are membranes with the names a0, . . . , ak and $a0 is membrane where the rule is
applied. We will say that the path (or route) path is valid in the current time if
all communication channels from path are present in the system in current time,
otherwise we will say that the path is invalid.
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• [(a,t)ω](a,t) is a membrane creation command. It means that after the application of
the rule the new membrane $ = {a, t, ω} will be created. If the rule contains such
kind of commands, then we call it a membrane creation rule.

• δ is the membrane dissolution command. It means that after the application of the
rule the membrane where the rule was applied will be removed from the system (dis-
solved), together with all communication channels of the form ($, $0) and ($0, $).
$ is any membrane of the system and $0 = {a0, t0, ω0} is the membrane where the
rule was applied. In other words, after the application of the rule, the membrane
where the dissolution rule was applied will be removed from the system together
with all channels connected to it.

The tuple (M,µ) is called the configuration of the system in the current time.
The set of membranes (without considering their contents) and the set of communica-

tion channels is called the structure of the system.
An evolution of the system is any sequence of transitions between configurations. The

transitions between configurations are performed by the application of rules.
The rules which modifies the structure of the system are called structure rules.
The rules are applied synchronously, in a non-deterministic maximally parallel manner,

as in [6].
The application of rules of the form u → v [(a1,t1)ω1](a1,t1) [(a2,t2)ω2](a2,t2) . . . [(ak,tk)-

ωk](ak,tk)δ or u → v [(a1,t1)ω1](a1,t1) [(a2,t2)ω2](a2,t2) . . . [(ak,tk) ωk](ak,tk)δ in all membranes
is executed according to the following algorithm (all steps for each rule in all membranes
are executed synchronously):

Step 0: A condition if a rule can be applied is checked.

Step 1: The multiset u is removed from the membrane where the rule is applied. The
rule can be applied only in the case when the multiset u is present in the membrane.
This condition is checked at Step 0.

Step 2: The multiset of objects from v is created and all objects are sent to the mem-
branes according to the target commands from v. That is, if we have a target
command (s, here), then the object s is created and remains inside the membrane
where the rule is being applied. If we have the target command (s, go a), then the
symbol s is sent directly to membrane $a with name a through communication
channel ($,$a). We call the target commands of this form short-distance target
commands. We assume that $0 is the membrane where the rule is being applied.
If the communication channel ($0, $a) does not exist, then the rule can not be
applied. This condition is checked at Step 0. If we have a target command of
the form (s, go a1a2 . . . ak), then we say that the remote delivery procedure starts
in parallel for symbol s directed to the membrane named ak through the sequence
of membranes named a1, a2, . . . , ak−1. We call the target commands of this form
distant (or long-distance) target commands. The remote delivery procedure is not
synchronized with the process of application of rules. It works in parallel with
the process of application of rules and the time when the symbol s will be delivered
to the destination membrane is not determined. All this means that the execution
of the algorithm can continue with the following step (Step 3) without waiting for
finishing the remote delivery procedure.

435



Step 3: The membranes $a1 = {a1, t1, ω1}, $a2 = {a2, t2, ω2}, . . . , $ak
= {ak, tk, ωk}

pointed in the membrane creation commands [(a1,t1)ω1](a1,t1) [(a2,t2)ω2](a2,t2)-
. . . [(ak,tk) ωk](ak,tk) are created. If the rule is a dissolution one, then the membrane
where the rule is applied is dissolved, otherwise go to the Step 0.

We call a macrostep of the system (or time unit) the sequence of execution of Steps
0–3.

We measure the time of evolution of the system in macrosteps.
We call current time (or current macrostep) the macrostep being considered.
We call network of membranes the set of membranes and communication channels of

the system.
We call halt-configuration of the system the configuration in which no evolu-

tion/communication rule can be applied. We consider the result of the computation the
multiset of objects presented in the membrane named i0 or in the environment at the
halt-configuration.

The remote delivery procedure delivers symbol-objects from one point of the net-
work of membranes to another point. It works according to the algorithm given below:

Notations (we give them informally):

• destination – the destination membrane.

• source – the source membrane. It is the membrane where the target command
(s, go path) was launched.

• current – the membrane where the symbol being delivered is situated.

• the function get next(path) has as the result the first membrane from the route to
the membrane addressed by path. In static networks (the structure of the system
does not change in time) it is get next(a1a2 . . .) = a1. If the structure of the system
changes during the evolution, it is not the case anymore because the path a1a2 . . .
may become invalid before the application of the function get next(a1a2 . . .).

• the function new path(path) searches for the new path from the membrane current
to the membrane destination addressed by path from the membrane before current.
That is, when the object s comes to the following membrane, the path from the
membrane is searched again. If we have a static network, then new path(a1a2 . . .) =
{a2 . . .}, but it is not the case if the network is dynamic. If path is invalid or the
membrane destination cannot be reached in the current time, then the function will
wait until the membrane destination can be reached.

Note: in the type of P systems considered in this paper we will abstract from methods
and techniques of routing in dynamic networks of membranes and we will not define
algorithmic functions get next and new path.

Steps:
Input: current = source

Step 1 current := get next(path);

Step 2 if(current == destination)then STOP ;
else goto Step 3;
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Step 3 path := new path(path);

Step 4 goto Step 1;

Output: current = destination

When the remote delivery procedure finishes its work the symbol s will find itself inside
the membrane destination. We stress that even if membrane destination does not exist
on the moment of starting the remote delivery procedure, the procedure will start anyway,
but it will be finished only when the membrane destination will appear in the system and
the symbol s will be successfully delivered to it.

In this way, we have defined the evolution and communications of the system. Now
we will define the operation of modification of the structure of the system (more precisely,
the modification of the set of communication channels).

Assume we have membranes $a ∈ M and $b ∈ M in the system Π. Then, $a =
{a, t, ω} and $b = {b, t′, ω′} and there are no other membranes with the same name b as
$b, that is, $ = (b, t′′, ω′′) ∈ M iff $ = $b. We have the symbol sb ∈ O associated to the
name (not membrane!) b, that is, we have (sb, b) ∈ SA.

Affirmation: We have a communication channel from the membrane $a to the mem-
brane $b ($a, $b) ∈ µ iff we have inside the membrane $a the symbol sb associated to
the name b of membrane $b.

Formally: If we have a P system Π with $a = {a, t, ω} ∈ M , $b = {b, t′, ω′} ∈ M ,
sb ∈ O, (sb, b) ∈ SA, then ($a, $b) ∈ µ ⇔ sb ∈ ω.

If we have in Π more than one membrane with the same name b, that is there are
at least two membranes $b = {b, t′, ω′} and $′

b = {b, t′′, ω′′}, and we have a membrane
$a = {a, t, ω} with symbol sb ∈ ω, then one of the membranes with the name b is chosen
in a non-deterministic way to be connected with the membrane $a.

There are no restrictions in participating in communication/evolution rules over the
objects associated to the names (that is, s ∈ O|(s, a) ∈ SA&a ∈ A). We define the set of
Om ⊆ O by Om = {s ∈ O|(s, a) ∈ SA&a ∈ A}.

In this way, by using evolution/communication rules one can create and remove com-
munication channels.

Rules of the form u → v . . . with s ∈ u or s ∈ v where s ∈ Om modify the set of
communication channels and they make part of structure rules.

Rules with s ∈ u where s ∈ Om are called channel removing rules.
Rules with s ∈ v where s ∈ Om are called channel creation rules.
For example, assume we have a P system Π with membranes $a = {a, t, ω} and

$b = {b, t′, ω′}, (sb, b) ∈ SA and sb /∈ ω. Assume t = {rb : i → sb . . .}. It is clear that
after the application of the rule rb inside membrane $a the symbol sb and hence channel
($a, $b) will be created.

2.3 Modified Tissue-like P Systems with Dynamic Network of Mem-
branes

Here we consider a more restricted type of tissue P systems with a dynamic network of
membranes, more suitable for representing tree-like networks of membranes.

Specifically, we consider constructs of the form

Π = (O, A, T, SP , SC ,M, µ, i0),

where:
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– O, A, T, M, µ, i0 have the same meaning as in tissue-like P systems with a dynamic
network of membranes (see above).

– SP ∈ O × A is the list of correspondences between object-symbols and names of
membranes-parents.

– SC ∈ O × A is the list of correspondences between object-symbols and names of
membranes-children.

Modifications:
We describe only the modified components of this type of P systems. The rest of

components is the same as in tissue-like P systems with a dynamic network of membranes
described above.

2.3.1 Communication Channels

In this type of P systems we will use only bi-directional parent-child channels. We say
that the bi-directional parent-child channel ($a, $b) which connects membranes $a =
{a, t, ω} and $b = {b, t′, ω′} allows the transmission of objects between $a and $b in both
directions. That is, the short-distance target commands of the form (s, go a) inside $b

and viceversa (s, go b) inside $a can be executed. We say that the ordered pair ($a, $b)
denotes a parent-child communication channel between membranes $a and $b, where $a

is parent and $b is a child (or, in other words, $a is a parent for $b and $b is a child for
$a). Let us define functions children and parents: children($) = {$c|($, $c) ∈ µ} and
parents($) = {$p|($p, $) ∈ µ}. We impose the restriction |parents($)| <= 1 for all-
$ ∈ M , which means that every membrane can have at most one parent.

This definition of channels is very suitable for building tree-like networks, but it can
be used only to build networks with at most one cycle. In this way, we cannot use this
type of channels to build networks with an arbitrary topology.

2.3.2 Addressing

We introduce two special types of names:

1. up. Used for addressing the parent. According to the definition of parent-child
channels, at most one membrane-recipient can be addressed by up. That is, assume
we have membranes $p = {a, t, ωp} ∈ M and $c = {a′, t′, ωc}, communication
channel ($p, $c) and target command (s, go up) being applied inside $c. Then,
after the application of the command, the symbol s will be placed inside membrane
$p, that is, ωp = {s} ∪ ωp.

2. all. Used to broadcast (send simultaneously) objects to all children of the mem-
brane. Assume we have membranes $p = {p, t, ωp}, $c1 = {c1, t

′, ωc1}, . . .,
$cn = {cn, t(n), ωcn}, and parent-child channels ($p, ωc1), . . . , ($p, ωcn). Then, after
the application of the target command (s, go all), copies of s will be found inside
membranes $c1, . . . , $cn.

In this way, the set of target commands will be of the form: TAR = {here} ∪ ({go} ×
{A ∪ {up} ∪ {all}}∗).

Using names of membranes from A one can address children membranes, but addressing
of a parent is not possible. That is, if we have two membranes $p = {a, t, ω} and $c =
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{b, t′, ω′}, and the parent-child channel ($p, $c), then the target command (s, go b) can be
applied inside $p, but the target command (s, go a) cannot be applied inside $c. Instead
of this command one should use (s, go up).

2.3.3 Controlling the Set of parent-child Channels

Assume we have membranes $a = {a, t, ω} ∈ M and $b = {b, t′, ω′} ∈ M . Assume
(sa, a) ∈ SP and (sb, b) ∈ SC .

Affirmation: We have the parent-child channel in Π ($a, $b) ∈ µ iff we have the
parent symbol sa associated to the name a inside membrane $b and the child symbol
sb associated to the name b inside membrane $a. Formally: If we have a P system
Π with $a = {a, t, ω} ∈ M , $b = {b, t′, ω′} ∈ M , (sa, a) ∈ SP , (sb, b) ∈ SC , then
($a, $b) ∈ µ ⇔ sa ∈ ω′&sb ∈ ω.

It is necessary to note that, unlike in the previous section, the communication channel
is controlled by both membranes.

Like in the previous section, if we have more than one membrane with the name a
and/or more than one membrane with the name b and the conditions of the existence of the
communication channel are respected in some of these membranes, then the membranes
to be connected are chosen in the nondeterministic way. In other words, if we have
membranes $a1 = {a, t1, ω1}, $a2 = {a, t2, ω2}, . . . , $al = {a, tl, ωl} and $b1 = {b, t′1, ω′1},
$b2 = {b, t′2, ω′2}, . . . , $bk = {b, t′k, ωk}, sb ∈ ωi, i ∈ {1, . . . , l} and sa ∈ ω′i, i ∈ {1, . . . , k},
then s = min(l, k) parent-child channels ($ai, $aj) are created, where i ∈ {1, . . . , l} and
j ∈ {1, . . . , k} are chosen in the nondeterministic manner.

3 Expressing Ambient Calculus by Means of P Systems

In this section we will give some ideas how to express ambient calculus by means of
modified tissue P systems with dynamic network of membranes.

3.1 Current Configuration

We call current configuration of mobile ambients the expression
n[P1| . . . |Pp|m1[. . .]| . . . |mq[. . .]], where P1, . . . , Pp are processes running in parallel
inside the ambient n, m1, . . . , mq are subambients nested by ambient n.

We distinguish two groups of membranes in P systems:

– Group A will serve as a model of an ambient from ambient calculus.

– Group P will model a process from ambient calculus.

To represent a hierarchy of ambients we will use modified tissue P systems with
a dynamic network of membranes with a tree-topology. To all membranes from the
group A we will connect by parent-child channels all corresponding membranes from
the group A and all corresponding membranes from the group P . I.e., for the ambient
n[P1| . . . |Pp|m1[. . .]| . . . |mq[. . .]] we will create the following network of membranes:

Membranes Group A: $n = {n, an, ωn} ∈ M , $m1 = {m1, am1, ωm1} ∈ M , . . . , $mq =
{mq, amq, ωmq} ∈ M ;
Group P: $P1 = {P1, tP1, ωP1} ∈ M , . . . , $Pp = {Pp, tPp, ωPp} ∈ M
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Channels ($n, $P1), . . . , ($n, $Pp), ($n, $m1), . . . , ($n, $mq) ∈ µ; (sn, n) ∈ SP ,
(sP1, P1), . . . , (sPp, Pp), (sm1,m1), . . . , (smq, mq) ∈ SC ; sP1, . . . , sPp, sm1, . . . , smq ∈
ωn, sn ∈ ωP1, . . . , sn ∈ ωPp, sn ∈ ωm1, . . . , sn ∈ ωmq

3.2 Mobility

As it has been mentioned above, there are three elementary kinds of mobility of ambients:

1. move into one’s neighbour

2. move out of one’s parent

3. open (dissolve) an ambient

The motion of ambients through the hierarchy is presented as a commutation of com-
munication channels.

The motion inside one’s neighbour Assume we have the configuration
n[m1[. . .]|m2[. . .]| . . .]. Then we will have the corresponding P system with
the structure $n = {n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $m2 = {m2, tm2, ωm2} ∈ M ;
($n, $m1), ($n, $m2) ∈ µ; (sn, n) ∈ SP , (sm1, m1), (sm2,m2) ∈ SC ,
(s′m1,m1) ∈ SP ; sm1, sm2 ∈ ωn, sn ∈ ωm1, sn ∈ ωm2. Assume that
the ambient m1 moves inside the ambient m2. The new configuration
will be n[m2[m1[. . .]| . . .]| . . .] and the corresponding structure of the P sys-
tem $n = {n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $m2 = {m2, tm2, ωm2} ∈ M ;
($n, $m2), ($m2, $m1) ∈ µ; sm2 ∈ ωn, s′m2 ∈ ωm1, sn, sm1 ∈ ωm2. The channel
($n, $m1) will be removed.

The motion outside one’s parent Assume we have the configuration
n[m2[m1[. . .]| . . .]| . . .]. Then we will have the corresponding P system with
the structure $n = {n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $m2 = {m2, tm2, ωm2} ∈ M ;
($n, $m2), ($m2, $m1) ∈ µ; (sn, n) ∈ SP , (sm1,m1), (sm2,m2) ∈ SC ,
(s′m1,m1) ∈ SP ; sm2 ∈ ωn, s′m2 ∈ ωm1, sn, sm1 ∈ ωm2. Assume that
the ambient m1 moves outside the ambient m2. The new configuration
will be n[m1[. . .]|m2[. . .]| . . .] and the corresponding structure of the P sys-
tem $n = {n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $m2 = {m2, tm2, ωm2} ∈ M ;
($n, $m1), ($n, $m2) ∈ µ; sm1, sm2 ∈ ωn, sn ∈ ωm1, sn ∈ ωm2. The channel
($m2, $m1) will be removed.

The opening Assume we have the configuration n[m1[. . .]|m2[P1|P2|m3[. . .]|m4[. . .]]].
The corresponding structure in the P system is $n =
{n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $m2 = {m2, tm2, ωm2}, $p1 =
{p1, tp1, ωp1}, $p2 = {p2, tp2, ωp2}, $m3 = {m3, tm3, ωm3}, $m4 =
{m4, tm4, ωm4} ∈ M ; ($n, $m1), ($n, $m2), ($m2, $p1), ($m2, $p2),
($m2, $m3), ($m2, $m4) ∈ µ; (sn, n), (sm1,m1), (sm2,m2) ∈ SP ,
(s′m1,m1), (s′m2,m2), (s′p1, p1), (s′p2, p2), (s′m3,m3), (s′m4,m4) ∈ SC ; s′m1, s

′
m2 ∈ ωn,

sn ∈ ωm1, sn, s′p1, s
′
p2, s

′
m3, s

′
m4 ∈ ωm2, sm2 ∈ ωp1, sm2 ∈ ωp2, sm2 ∈ ωm3,

sm2 ∈ ωm4 Assume that the ambient m2 opens. Then we obtain the con-
figuration n[m1[. . .]|P1|P2|m3[. . .]|m4[. . .]]. In the P system we obtain the
structure $n = {n, tn, ωn}, $m1 = {m1, tm1, ωm1}, $p1 = {p1, tp1, ωp1},
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$p2 = {p2, tp2, ωp2}, $m3 = {m3, tm3, ωm3}, $m4 = {m4, tm4, ωm4} ∈ M ;
($n, $m1), ($n, $p1), ($n, $p2), ($n, $m3), ($n, $m4) ∈ µ; s′m1, s

′
p1, s

′
p2, s

′
m3, s

′
m4 ∈

ωn, sn ∈ ωm1, sn ∈ ωp1, sn ∈ ωp2, sn ∈ ωm3, sn ∈ ωm4. The channels ($m2, $p1),
($m2, $p2), ($m2, $m3), ($m2, $m4) will be removed.

In this way we have to elaborate the set of evolution/communication and structure
rules in order to modify the configuration of the P system as shown above.

3.3 Security

As we mentioned above, there is a security feature in ambient calculus: the access to an
ambient is authorized using the correct ambient name. The ambient name serves as some
kind of password for accessing the ambient.

In the P system considered above, the membranes from the group A have the same
names as the ambients they are staying for.

In this way, when a process is going to access some ambient, for example, the ambient
named n, the corresponding membrane from the group P in the P system sends some
multiset of objects to the membrane with name n. If the ambient with name n exists, that
is the corresponding membrane with the name n exists, then with respect to the definition
of modified tissue P systems with dynamic networks of membranes the multiset will be
delivered to the membrane with address n. Otherwise, the action will be blocked until a
membrane with name n appears.

4 Final Remarks

In this paper we have introduced a class of tissue P systems with da ynamic network of
membranes.

The modified tissue P systems with a dynamic network of membranes could be used
as an intermediate type to represent ambient calculus. The final scope of our work is to
express ambient calculus by means of traditional hierarchical P systems with active [4] or
mobile [8] membranes. Using these types of P systems it is possible to express tissue P
systems with a dynamic network of membranes with tree topology.

A part of this work has already been completed in hierarchical P systems with com-
munication controlled by concentration [9]. Namely, the architecture of communication
between neighboring membranes has been implemented, and it was shown that the sub-
membranes of a membrane communicates in the same manner as computer-nodes do in
computer electronic networks with common data transmission medium. As an example of
such kind of networks the Ethernet network technology was modelled. That model will
be used as a communication instrument between mneighboring embranes in the model of
mobile ambients in hierarchical P systems.

Several questions remain to be explored:

• the generative power of tissue P systems with a dynamic network of membranes and
their relationships with other classes of P systems,

• the minimal class of P systems (P systems with minimal features) in which it is
possible to express ambient calculus,

• the complexity of the model of mobile ambients in different types of P systems.
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